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Equilibrium and non-equilibrium molecular dynamics were performed to determine the relationship
between the static structure factor, the molecular conformation, and the rheological properties of
chain molecules. A spring-monomer model with Finitely Extensible Nonlinear Elastic and Lennard-
Jones force field potentials was used to describe chain molecules. The equations of motion were
solved for shear flow with SLLOD equations of motion integrated with Verlet’s algorithm. A multiple
time scale algorithm extended to non-equilibrium situations was used as the integration method.
Concentric circular patterns in the structure factor were obtained, indicating an isotropic Newtonian
behavior. Under simple shear flow, some peaks in the structure factor were emerged corresponding
to an anisotropic pattern as chains aligned along the flow direction. Pure chain molecules and chain
molecules in solution displayed shear-thinning regions. Power-law and Carreau- Yasuda models were
used to adjust the generated data. Results are in qualitative agreement with rheological and light
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scattering experiments. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803526]

INTRODUCTION

The understanding of polymer fluid dynamics is im-
portant in connection with plastics manufacture, lubrication,
application of paints, processing of food, and the flow of
biological fluids.! Flow behavior of viscoelastic fluids, such
as polymer solutions, is more complex than that of the fa-
miliar Newtonian fluids. These fluids display shear thinning,
normal-stresses, shear thickening, die swell, memory effects,
etc. These effects are strongly correlated with flow-induced
conformational changes of the polymer chains and these
changes are often dramatic. The orientation and deformation
of polymers due to flow have been measured by flow birefrin-
gence, light scattering, and neutron scattering experiments,
but they may also be studied by computer simulations.

A semi-dilute polymer solution in a single phase may
exhibit strong turbidity when subjected to shear flow due
to shear-induced enhancement of concentration fluctuations
and/or phase separation. This phenomenon is one of the most
remarkable properties of these solutions and it is attributed to
dynamical coupling between stress and diffusion. The local
variation of the composition influences the local stress. Under
shear flow, the local stress increases in the region having large
polymer concentration.’

Experimentally, the enhancement of concentration fluc-
tuations due to flow has been observed by light scattering
(LS) and small angle neutron scattering (SANS). In several
reports, the static structure factor was determined for a semi-
dilute solution of polystyrene in di-octyl-phthalate (PS/DOP)
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in shear’~® and extensional’ flows. The evolution of the struc-
ture factor in the flow field was visualized as a series of con-
tour plots. The scattering pattern becomes anisotropic due to
chains alignment induced by flow.

Milner® proposed a model to calculate the structure factor
coupled with rheological constitutive equations. In this model
both the amplitude of the concentration fluctuations and the
viscoelastic responses were linearized with respect to the con-
centration fluctuations and the shear rate. The shape of these
structure factors was found to agree, qualitatively, with the ob-
served scattering intensity distribution, indeed demonstrating
that the theory describes the enhancement of concentration
fluctuations under shear flow. However, most calculations of
the structure factor and the comparisons with experimental re-
sults have been limited to the shear rate region satisfying We
<1.0 where We is the Weissenberg number.”

Rheology provides an indirect, and hence limited,
indicator of material structure at molecular level. Rheological
measurements are more useful when combined with direct
ways of elucidate the structure of the material under flow,
such as microscopy, birefringence, light scattering, polarime-
try, among others.’ The orientation and deformation of chain
molecules have been measured, for example, using flow
birefringence, light scattering, and neutron scattering exper-
iments. Computer simulation methods have complemented
such experimental techniques.'*"3

Molecular dynamics (MD) simulations, on the other
hand, provide a powerful tool to investigate the microscopic
underlying mechanisms of macroscopically observable
transport phenomena.'® The main advantage of simulation
techniques over other methods is the possibility to calculate
physical properties of systems at conditions that are difficult

© 2013 AIP Publishing LLC
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to approach experimentally.'” Several equilibrium MD proce-
dures have been developed'®2° to compute the static structure
factor with one-dimensional wave vectors analyzing the ef-
fect of the chain molecules. Recently, MD has been used also
as a complement to experimental studies. Such is the case of
Burchard et al.?! who employed static and dynamic light scat-
tering, combined along with equilibrium MD to characterize
experimental results of hyper-branched polymers.

Laun et al.*? reported one early work where SANS
scattering patterns were compared to Non-Equilibrium
Molecular Dynamics (NEMD) simulations. They conducted
rheological studies of concentrated polymer dispersions
(styrene-ethylacrylate-copolymer spheres in glycol or water)
by SANS in a wide range of shear rates. Their results showed
regions of shear thinning and shear thickening as functions
of the applied shear rates. The obtained SANS scattering pat-
terns were compared to NEMD simulations employing soft
sphere models. In spite of the simple particle model used,
the scattering patterns obtained from simulation exhibited a
remarkable similarity to the directly measured SANS data.
Aust et al.,”> used NEMD to study systems of Finitely Exten-
sible Nonlinear Elastic (FENE) + Weeks-Chandler-Andersen
(WCA) chains with various lengths in dilute solutions at good
solvent conditions. They concluded that, regarding rheology,
there is an effect of chain length on the shear viscosity for
the intrinsic viscosity extracted from the intramolecular in-
teractions. The normal stresses produced by the solvent were
negligibly small compared to those calculated for the model
polymer solution. A particular result that we observed also
in our calculations is that the solvent, modeled as purely re-
pulsive Lennard-Jones (LJ) potential (WCA), exhibited non-
Newtonian behavior at shear rates above 0.3 (y > 0.3).

Jose and Szamel** reported recently a Brownian dynam-
ics computer simulation study on the structural properties
of semidilute polymer solutions in shear flow. The polymer
model was a truncated and shifted Lennard-Jones potential
with FENE potential used for the bond connectivity. Chains
of 10 monomers were used in the calculations which were
conducted at reduced temperature of kgT/e = 4.0. The main
finding, as reported by these authors, was that the anisotropic
deformation of the solution structure factor could be repro-
duced using a simple model system which included relatively
short chains and overdamped Brownian dynamics without any
hydrodynamic interactions. The structure factors reproduced
the experimentally observed butterfly patterns by Wu et al.?

For the last four decades Molecular Dynamics stud-
ies have offered a wide understanding about the dynam-
ics of polymers. The reason for this is due to the natural
way that MD links the conformational properties of poly-
mers with their macroscopic properties. In this work extensive
NEMD studies of a simple shear flow of chain molecules are
performed. The main objective of this NEMD study is to elu-
cidate, at the molecular level, the relationship between rheo-
logical properties, static structure factors, and molecular con-
formation of chain molecules in solution. As far as we know,
this study reports for the first time results for chain solutions
in good solvent condition at three different concentrations;
range from semi-dilute solution to pure chains (melt). We
employ commonly used dispersive force fields to model the
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particle interactions. The study provides, in this manner, de-
tailed information about changes in the rheology of polymer
solutions.

METHODOLOGY
Model and simulation

Flexible linear chains in good solvent conditions were
simulated. Both, the solvent and the chain molecules were
built of spherical particles of equal mass m and diameter
o. The truncated and shifted Lennard-Jones potential was
used to model pair interactions between non-bonded parti-
cles which include: solvent-solvent, solvent-bead, and non-
bonded beads interactions

12 6
LY 46 (i) —_ (i) + €, rij S re
Uj = rij rij (D)

0, rij = Tec,

the cut-off ratio for the solvent-solvent interaction was fixed
to r. = 2.50, meanwhile for the solvent-bead and non-bonded
beads it was r, = 226 (WCA potential). The potential be-
tween chain-bonded segments is modeled by the sum of two
terms: the first one is the FENE attractive potential which
extends to the maximum bond extension Ry.2> The second
term is the LJ potential at a cut-off ratio of 2164 the locus
of the minimum in the LJ potential function. This potential
is implemented in LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator)?® for bead spring chains:

2
b 2 Tij
Ul = —0.5k; R} In [1 - (R—O) }
|: o 12 o 6
+4e (—) - <—> + €, 2)
r,-j rij

where k¢ is a sort of spring constant. Figure 1 summarizes the
particle interactions.

NEMD simulations in the NVT ensemble were
performed using the SLLOD equations of motion for a ho-
mogeneous shear flow,>” which is equivalent to the p-SLLOD
equations for planar Couette flow.!> The Nose-Hoover
thermostat®®2° was applied to keep the temperature constant.

chain model

Bond
potential

L-J potential

O

}_|(5 solvent model

O

FIG. 1. Particle interactions scheme. Dark circles correspond to beads in
the chain molecules. Light circles represent solvent particles. Non-bonded
particles, including solvent and beads, interact with truncated and shifted
Lennard-Jones potential while bonded chains are represented by a FENE
+ Lennard-Jones potential.
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The equations of motion are:

dio = P 4 g1V, 3)
miq
pia =Fia—Piu'Vv—§Pia, (4)
= P50 Z3NksT 12 (5)
- Q E) - B T ’
2
e = ) - = 3NksT, ©)

l a

where subscripts i and a are used to distinguish molecules
from particles, respectively, and the dot notation means time
derivative. The symbols ¢q;,, pia, Fiq, and m;, represent the
position, momentum, and force vectors, and the mass of
particle a in molecule i, respectively. N is the total number
of particles, T is the temperature, and kp is the Boltzmann
constant. Q, ¢, p., and 7 represent the inertial mass, coordi-
nates, momenta, and dimensionless time, respectively, of the
Nose-Hoover thermostat. The velocity gradient tensor Vv in
shear flow is given by

0 0 0
vo=|y 0 0], 7
0 0 0

where y is the applied shear rate.

The whole set of variables is in reduced units; the rel-
evant parameters are: p* = po’, T" = kgTle, U = Ule,
P* = Po3/e, t* =t(elo*m)?, y* = y(m/o?€)'/?, and n* =
nazl(me)’m, where p is the local density, U is the energy, P
is the pressure tensor, 7 is the viscosity, and 7 is the time. For
simplicity, hereafter the asterisk notation will be omitted.

Regarding the temperature, MacDowell et al.** calcu-
lated, using Monte Carlo simulation, the critical temperature
of chain molecules of various lengths. Using truncated and
shifted Lennard-Jones and FENE potentials to model parti-
cle interactions, similar to those employed in this work, they
found that for infinite length chains, the critical temperature
asymptotically reaches a value of 3.3¢/kg. According to this
report we felt appropriate to take a reduced temperature of
ky,Tle = 4.0 in our calculations. In this manner we ensure
that our systems were in liquid state. Furthermore, Heyes®! re-
ported that for a Lennard-Jones fluid, the solvent in our case,
its shear viscosity remains constant at this reduced tempera-
ture for a wide range of shear rate. The rest of the parameters
used in the simulation are shown in Table I.

TABLE I. Dimensionless variables and parameters used in simulation.

Variable Symbol Value
Particle mass m 1.0
Particle diameter o 1.0
Energy € 1.0
Density P 0.84
Temperature T 4.0
FENE’s constant ky 30
Maximum bond length Ro 1.5

J. Chem. Phys. 138, 184901 (2013)

Structure factor

The structure factor S(k) is defined as the autocorrelation
function:*?

1
S(k) = v (okP—k) (®

where

N
pi =Y exp(—ik-r)) 9)

j=1

is the Fourier transform of the microscopic (total) density and
r j denotes the position of particle j, with 1 < j < N. This equa-
tion, together with the Euler’s identity: exp (+ia) = cos (a)
=+ isin(a) allows computing static structure factors from
molecular simulation. The minimum k vector for a box of
length L for the N particle system is* (27/L) and hence,
the components of the k vector are restricted, due to peri-
odic boundary conditions, to multiples of (27r/L). If k has only
components x and y, then:

R . 2\ . 2T\ |
k=kX+k,y=n, A X +n, A y, (10)

where n, and n, are integer numbers.

The structure factor can be measured directly through ra-
diation scattering experiments; in particular, from Static Light
Scattering (SLS). This experimental technique has been a use-
ful tool to elucidate the molecular structure of materials. It has
been used to determine density fluctuations of a system due to
external light perturbation with a wavelength of 2 /k. In par-
ticular, the SLS has been widely used to characterize polymer
chains in solution. The weight-average molecular weight M,
the radius of gyration R,, and the second virial coefficient B,
are some of polymer properties that can be obtained from SLS
experiments.

In a dilute polymeric solution formed by n, chains
(n, > 1), with N monomers per chain, the static structure fac-
tor, also called scattering function, for a single chain can be
obtained from>*

N

1
Si(k) = v > (explik-(ri — rl), an

J.k=1

where k is the scattering vector which is the difference be-
tween the scattered beam wave vector k; and the incident
beam wave vector k,. For finite concentrations, the interfer-
ence between monomers of neighbor chains must be taken
into account. In this case, the structure factor is given by

N
St = Sik) + 52 Y (explik-ry —rapl). (12)
i,j=1

the second term adds up the correlations between nearby
chains 1 and 2. At low concentrations, however, the statistical
average for different chains is mostly zero, and S(k) becomes
identical to S (k).
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Rheological models

Considerations are here given to describe the shear be-
havior of the non-Newtonian polymer solutions. The shear-
thinning region of polymer solutions is usually modeled by a
power-law equation (also called Ostwald de Waele model),

T=Kyp", (13)

where K is the consistency index and » is called the flow in-
dex. The Carreau-Yasuda®:3® equation, on the other hand, has
proved to be an excellent model to fit the whole shear rate
interval, including the Newtonian and the shear-thinning re-

gions. The equation is given by

_ Mo
[1+Ay)?P’

where 7 is the zero shear rate viscosity, A is a characteris-

tic time constant, y is the shear rate, and p is a numerical
exponent.

n (14)

Material functions

The pressure tensor P is given by a sum of site-site
contributions:

PH:—% Z%?H‘F%ZZ’%U'FIU ; (15)

i j>i

where Py, is the pressure tensor component acting along / di-
rection through a normal plane to the k axis, py; and p;; are
the k£ and / components of the momentum of particle i and
m; its associated mass. Furthermore, V is the system volume,
ry; is the k-component of the scalar distance r;, and Fy; is
the I-component of the force resulting from the interaction be-
tween particles i and j. The first term of Eq. (15) represents the
kinetic contribution and the second arises from pair interac-
tions (LJ and FENE potentials). For the system studied here,
the main contribution to pressure tensor stems from the pair
potentials.

The viscometric functions, namely the shear viscosity 7,
and the first and second normal stress coefficients are defined
by

P
n=-—", (16)
14
Py — Py N
I (17)
4 4
Py, — P, N.
W= = (18)
14 14

RESULTS AND DISCUSSION

The system used in the simulations consisted in 60 chains
N, with a length Nj, of 100 beads each. The chains are im-
mersed in a bath of N, solvent particles. Calculations were
performed for 0.0 (pure solvent), 0.1, 0.5, and 1.0 chain mass

J. Chem. Phys. 138, 184901 (2013)

fractions. The mass fraction ¢ was calculated as

NenNp
= — 19
¢ Nch Nh + Nv ( )
Accordingly this, the solutions will be identified, here-
after as the 0.0, 0.1, 0.5, and 1.0 solutions.

Equilibrium molecular dynamics

At equilibrium conditions (y = 0) the final configura-
tions show a random distribution of particles, indicating an
isotropic state. In Figure 2 we observe the corresponding pro-
jections of the static structure factor in two dimensions. Con-
centric circular shapes in the structure factor plots show ev-
idence of an isotropic distribution of particles; the structure
factor as a function of scattering vector is independent of
the measuring direction. Observing the shape of the scatter-
ing patterns, results obtained from these simulations and light
scattering experiments® are in qualitative agreement.

Non-equilibrium molecular dynamics

Non-equilibrium molecular dynamics simulation under
simple shear Couette flow was performed. The flow was in
the x direction, the velocity gradient in the y direction, mean-
while the vorticity was along the z direction. The whole set of
simulations was performed using the LAMMPS?® code where
a triclinic box was used to enclose the particles. A total of 6
x 10° time steps were performed for each simulation run
with a time step length of 0.005. The initial 2 x 103 inte-
gration steps were performed for equilibration purposes. A
shear strain was applied to the simulation space causing the
deformation of the box. The amount of tilt or skew that can
be applied to the simulation box was limited (for computa-
tional efficiency) to be one half of the parallel box length.
The strain, however, can deform the box continuously by any
arbitrary amount. When the tilt reaches the limit, the box was
re-shaped to the opposite limit; this is an equivalent tilting
of periodic space. In a long NEMD simulation these box re-
shaping events may occur many times.

Rheological characterization

Prior to the NEMD simulations, the radial distribution
function was calculated to ensure that the simulated system
was initially in liquid state. The calculated shear viscosity as
a function of the shear rate is depicted in Figure 3. There,
two regions can be distinguished: a Newtonian region at low
shear rates and a shear thinning region from intermediate to
high shear rates. The smallest viscosities correspond to the
pure solvent and increase with the chain concentration. The
solvent, which is modeled as a LJ fluid, displays a closely
constant viscosity for the whole range of shear rates, indicat-
ing a Newtonian behavior.

Parameters of the Power-law model (13), used to ad-
just the simulation data are depicted in Table II. The adjust-
ment of data in the shear thinning region with the Power-law
model is quite good for the pure chains meanwhile the pure
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FIG. 2. Structure factor projections on the x-y plane at y = 0. There is isotropy in all cases: (a) 0.0, (b) 0.1, (c) 0.5, and (d) 1.0 solutions.

100}

1]105

1._ _:

10° 10"

FIG. 3. Shear viscosity vs. shear rate for the 0.0 (@), 0.1 (v), 0.5 (4), and 1.0
(0J) solutions. Power law model fits well the simulated data in the shear thin-
ning region, while the Carreau-Yasuda model fits the behavior of simulated
data in the whole range of shear rates.

solvent behaves closely as a Newtonian fluid. The small-
est Power-law index n corresponds to the pure chains
(n=0.4958). It increases as the chain concentration decreases
until n =~ 1.0 for the solvent. Good qualitative agreement with
experimental data®’ is obtained.

Table II contains also the parameters of the Carreau-
Yasuda model (14) obtained in the adjustment of the sim-
ulated data in the whole shear rate range. The p parameter
shows a tendency to increase with the chain concentration.
The time constant A is the inverse of the strain rate at the

TABLE II. Parameters of Power-Law and Carreau-Yasuda models that fit
simulation data.

¢ K n no A p
0.00 2.4348 0.9948 2.57

0.10 1.9924 0.7624 6.18 97 0.126
0.50 3.2020 0.7619 26.41 1132 0.177
1.00 2.1110 0.4958 124.52 3669 0.243
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FIG. 4. First normal stress coefficient vs. shear rate for the 0.1 (v7), 0.5 (A),
and 1.0 (O) solutions.

onset of the shear-thinning region.'? In this way, the inverse
of A marks the shear rate at which the transition between the
Newtonian plateau and the shear thinning region occurs. The
inverse of A for the 0.1, 0.5, and 1.0 solutions are, approxi-
mately, 0.01, 0.0009, and 0.0003, respectively. These values
are consistent with the shear viscosity behavior obtained from
the shear viscosity curve displayed in Figure 3.

The first and second normal stress coefficients are plot-
ted in Figures 4 and 5, respectively. Consistent with exist-
ing experimental results, these coefficients show an increas-
ing shear-thinning behavior with the shear rate. Also, at equal
shear rate, the normal stress coefficients are larger for solu-
tions with larger chain concentration. This behavior indicates
that the chain molecules enhance the elasticity of solutions.
Data for the first normal stress coefficient were fitted with
a power law model: ¥y = My ~*. The parameter M follows
a pronounced increase with the chain concentration; being
0.002, 0.335, and 12.136 for the 0.1, 0.5, and 1.0 solutions, re-
spectively. Parameters o which takes the values 1.973, 1.515,
and 1.273 for the 0.1, 0.5, and 1.0 solutions, respectively, are
very close to the values obtained for similar NEMD simu-
lation results by Le et al.'”> and Bosko et al.*® These values
are within the range of experimental values for pure polymers
and concentrated solutions.! In order to assess our results in
the context of the literature, Table III displays some rheologi-
cal parameters calculated in this work and compare them with
those reported from other sources. As may be seen, our results
fit quite well with this previous work.

J. Chem. Phys. 138, 184901 (2013)
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FIG. 5. Second normal stress coefficient vs. shear rate for 0.1 (), 0.5 (A),
and 1.0 (OJ) solutions.

The second normal stress coefficient has been studied
less extensively in experiments than the first coefficient. It is
negative and smaller in magnitude than the first normal stress
coefficient.! In Figure 6, the ratio of the second and first nor-
mal stress coefficients vs. shear rate for the pure chains is
depicted. For linear polymers this ratio is between 0.05 and
0.15.38 Calculated results show an agreement with experimen-
tal data for typical polymers.'

The absolute value of the first normal stress difference
(N1 = Py, — Py)) as a function of the shear rate is pre-
sented in Figure 7 illustrating agreement with experimen-
tal data reported by Kontopoulou®® for polymer solutions
and Kulicke and Wallbaum*' for polystyrene in toluene. For
the pure solvent—a Lennard-Jones fluid—the curve behavior,
however, is not consistent with that of a Newtonian fluid for
which N| must be zero. The simulated results suggest that the
LJ fluid is not wholly representative of the reference Newto-
nian behavior. This behavior was also found by Castillo-Tejas
et al.,*> Heyes,®® and Aust et al.”?

Structure of the Lennard-Jones solvent

Although the Lennard-Jones fluid exhibits an approxi-
mately constant viscosity in the whole shear viscosity range, a
small value different from zero in the first normal stress differ-
ence is observed. However, the absence of molecular ordering
(isotropy) in the solvent is confirmed by showing its structure
factor patterns. The results are depicted in Figure 8. There,

TABLE III. Comparative table of some rheological parameters.

[ ocyp™™] (Y1 ocy™®] Y2 o y~#]

Author Nj, (Beads) m o B (—=N3,/Ny) range
This work 100 0.5 1.27 1.29 0.02-0.12
Daivis et al.!! 50 0.45 1.35 1.36 NA
Kroger et al.'® 100 0.47 15 NA 0.01-0.26
Aust et al.? 60 0.59 1.15 NA NA
Bosko ef al.’8 91 0.523 1.306 1.537 0.05-0.15
Chen et al.>® 100 0.56 NA NA 0.1-0.2
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FIG. 6. Ratios of the second and first normal stress coefficients vs. shear rate
for the 0.5 (A) and 1.0 (OJ) solutions.

the structure factor shows concentric-circle patterns for both
low and high shear rates, which is indicative that flow does
not induce ordering on the solvent.

Structure of the chain molecules in solution

Figures 9 and 10 display the structure factor patterns de-
veloped by the chain molecules for the 0.1 and 0.5 solutions,
respectively, and at two shear rates. The contribution of the
solvent to the structure factor has been omitted, and only the
coordinates of the chain molecules are considered for this
quantity. In both figures there are marked differences of the
structure factor patterns at the two shear rates. At the low
shear rate of 0.01 both patterns display two large peaks close
to the center (small scattering vector k) with maxima of S(k,,
ky) = 4.84 for the 0.1 solution and S(k,, k,) = 4.54 for the 0.5
solution. For large scattering vectors, the structure factors dis-
play a concentric circular pattern. The 0.5 solution displays
even a full symmetry in all radial directions. This concentric
circular pattern and symmetry indicates that, at low shear

S
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J. Chem. Phys. 138, 184901 (2013)
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FIG. 7. Absolute value of the first normal stress difference vs. shear rate for
the 0.0 (@), 0.1 (v), 0.5 (A), and 1.0 ((J) solutions.

rates, the chain molecules in the solutions are randomly
arranged in an isotropic state. On the other hand, for the high
shear rate of 0.7, the peaks are displaced away from the center
and aligned in the flow direction. This alignment reveals that
the chains are also aligned in that direction. There are two
symmetric regions of peaks with maxima of S(k,, k,) = 4.82
for the 0.1 solution and S(k,, k,) = 3.41 for the 0.5 solution.
The axis of symmetry, in both cases, is slightly tilted with
respect to the horizontal. There are also, along the vertical
direction, two incipient peaks located in the extremes with
maxima of S(ky, k,) = 3.012 for the 0.1 solution and S(k,, k)
= 2.131 for the 0.5 solution. Figure 11 depicts results for pure
chains. At the low shear rate of 0.01, the structure factor dis-
plays concentric circles pattern which indicates an isotropic
state for the chain molecules. At the high shear rate of 0.7,
there are six regions in the structure factor pattern with large
and well defined peaks. One of these regions corresponds to
the peaks located along the vertical axis of the dispersion pat-
tern. The static structure factor for the six peaks reaches now
a maximum of S(kx, ky,) = 2.9. This pattern resembles the

-1
k.,o

FIG. 8. Structure factor patterns on the x-y plane of the pure solvent at shear rates of (a) y = 0.1 and (b) y = 0.7. Both cases display isotropic behavior.
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FIG. 9. Structure factor patterns on the x-y plane of the 0.1 solution at shear rates of (a) y = 0.01 and (b) y = 0.7.
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FIG. 10. Structure factor patterns on the x-y plane of the 0.5 solution at shear rates of (a) y = 0.01 and (b) y = 0.7.
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FIG. 11. Structure factor patterns on the x-y plane of pure chains at shear rates of (a) y = 0.01 and (b) y = 0.7.
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FIG. 12. Evolution of the structure factor patterns on the x-y plane as a function of the shear rate at the shear-thinning region for the pure chain molecules.
(a)y =0.02,(b)y =0.1,(c) y =0.2,(d) y = 0.3, (e) y = 0.4, and (f) y = 0.7. Peaks appear as the shear rate increases. The scattering pattern changes are

due to molecular organization.

experimental SANS intensity patterns reported by Laun
et al.?> for styrene-ethylacrylate copolymer dispersions in
glycol and water.

Chain alignment along the flow direction for a shear rate
of y = 0.7 can be deduced from Figures 9-11. An increase
in the number of peaks on the structure factor is observed
with well-defined peaks, as the chain concentration increases
in the solution, due to an increase of the dispersed light. The
shape of the central blue region in the structure factor pro-
jection evolves as a function of the shear rate; from an el-
lipsoidal shape for isotropic solutions—at low shear rate—to
overlapped circles for non-isotropic solutions—at high shear
rate—when the chains align in the flow direction. The pres-
ence of new peaks in the structure factor is due to the aug-
mented dispersion as the concentration and orientation of the
chains increase. On the other hand, the intensity of disper-
sion, which can be related directly with the magnitude of the
structure factor at the peaks, decreases with the chain concen-
tration. For example, for the solution at a shear rate of 0.7 the
maxima of S(ky, k) are 4.82, 3.41, and 2.9 for the chain mass
fractions of 0.1, 0.5, and 1.0, respectively.

Evolution of the static structure factor

Static structure factors were computed with code devel-
oped based upon the Rapaport’s codes** and the molecular
conformation snapshots employed the Visual Molecular Dy-
namics (VMD)* and Ovito*® softwares.

In Figure 12, the evolution of S(k) as a function of shear
rate is displayed. Two new peaks emerge, corresponding to
the change in the radius of gyration of the chain molecules
when they align, as it is shown in Figure 13. The magnitude
of the peaks increases in proportion to the shear rate.

Deformation in the structure factor pattern is due to the
anisotropy of the solution induced by the flow. As the chains
align with the flow, six peaks in the scattering pattern emerge,
whose magnitude depends on the shear rate. Figure 14 dis-
plays the relation between structure, viscosity, and molecular

i 55_
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FIG. 13. Mean square radius of gyration as a function of shear rate. The in-
creasing in the value of this parameter with the shear rate evidences the align-
ment of the chains along the flow. Symbols differentiate chain mass fraction
in the solution: 0.1 (v7), 0.5 (A), and 1.0 (OJ).
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FIG. 14. Scheme to represent the relation between the static structure factor, the chain conformation, and the shear viscosity for the pure chain molecules
(melt). The three-dimensional snapshots show the alignment process of the chain molecules with the flow as the shear rate increases. For the sake of clarity not
all chains used in calculations are include in the three-dimensional snapshots. Note also the changes in the structure factor patterns as the shear rate increases.

conformation. As expected, the alignment of the chains causes
the shear thinning.

CONCLUSIONS

In this work, NEMD simulations of linear chain solutions
immersed in a Lennard-Jones solvent under simple shear flow
were performed. In spite of the simplicity of the force fields
employed in the simulation, the generated data reproduce, in a
qualitative manner, the rheological behavior of shear-thinning
fluids. Proof of this is that the calculated data of shear viscos-
ity as a function of shear rate follow the Power-law behavior
and also are well fitted to the Carreau-Yasuda model. Also,
the first and second normal stress coefficients were in quali-
tative good agreement with simulation and experimental data
of polymer solutions.

The main result of this study, however, was to establish,
using molecular simulation only, the relation between the rhe-
ological properties, the static structure factor, and the molecu-
lar conformation of the chain molecules in the solutions. Par-
ticularly, it is shown that the growth of emerging peaks in the

static structure factor is due to the anisotropy induced by the
flow. The intensity of the dispersion, measured as the magni-
tude of the peaks, was also correctly calculated as being in-
versely proportional to the chain concentration. The ordering
of the chain molecules along the flow direction is reflected in
the shear thinning behavior of the fluid. The simulation results
are in qualitative agreement with scattering experiments.

Finally, it was also shown that the Lennard-Jones fluid
does not behave exactly as a Newtonian solvent at the shear
rates considered, since it displayed some viscoelastic effects
at high shear rates.
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