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Aweak-coupling scenario wherein bosonic preformed electron pairs emerge upon
cooling from two-electron correlations can explain the pseudogap phase consist-
ing of segments where a Bogoliubov-like energy-momentum relation gapped
spectrum alternates with a normal ungapped one. Bose–Einstein condensation
(BEC) of preformed pairs interacting with the background fermions leads to either
d- or s-wave-like superconducting gaps, the result being sensitive to the magni-
tude of the total number density of pairs nB at which BEC occurs and becomes
possible already for a moderately anisotropic s-wave pairing of fermions repelling
each other via isotropic coulombic forces. The present model is compatible with
the coexistence of pseudogap and of superconductivity phenomena.

Keywords: pseudogap; preformed pairs; Fermi arcs; gap symmetry

1. Introduction

A growing number of experimental data for pairing above Tc in cuprate superconductors
reinforce interest in pseudogap scenarios via the notion of ‘pairing without superconductiv-
ity.’This notion was introduced in the pioneering work by Eagles [1]; it resurfaced later [2,3]
as ‘preformed pairs.’ Here it is employed to develop a weak-coupling scheme providing
a common formalism to account for both pseudogap and superconductivity phenomena
observed in cuprates.

Recent angle-resolved-photoemission spectroscopy (ARPES) measurements [4–6] in
high-temperature superconductors (HTSCs) above their critical temperature Tc suggest
that the fermionic dispersion relation in a portion of the Brillouin zone exhibits a gapped
spectrum and in the remaining portion behaves as if the samples were a normal metal. Loci
of constant energy with normal-metal dispersion in two-dimensional momentum space is
commonly known as ‘Fermi arcs.’

Some experiments suggest that pairings emerge at temperatures much below a certain
T ∗ (itself much higher than Tc) and below which the pseudogap region characterized by
the loss of spectral weight and by certain transport property anomalies develops [7,8].
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However, there are contradictory indications that the ‘pseudogap does reflect the formation
of preformed pairs of electrons’ (see, e.g. in [5,9]) and thus, that pairing fluctuations persist
up to a temperature T ∗. Whether the pseudogap in cuprates is caused by actual pair formation
or reflects some ‘hidden’order that competes with superconductivity still awaits a definitive
answer. Here, T ∗ is defined as a temperature below which actual bosonic Cooper pairs (CPs)
appear in a system with a nearly filled conductivity band. We discuss the correctness or not
of T ∗ defined in such a manner to describe the peculiarities of cuprate pseudogaps.

Another puzzle relates to the order-parameter pairing symmetry. In spite of the
widespread belief that the superconducting order in cuprates is of d-wave symmetry, there
are also studies suggesting s (or an s+d mixture) -wave scenarios. For example, in Ref. [10]
support is argued for extended s-wave rather than d-wave superconductivity. In contrast,
an ingenious experiment [11] was crucial in showing that the superconducting order is
predominantly of d-symmetry in YBCO. Interesting too is the fact that the gapped portions
of a spectrum are seen not only in HTSCs but also in ultracold gases of fermionic atoms.
Short coherence lengths as in nearly local CPs in cuprates, as well as the similarity between
cuprates and ultracold atomic Fermi gases [12] might suggest a binary [13] (or even ternary
if hole CPs are included [14–16]) boson-fermion (BF) gas mixture model whereby two-
fermionic bound states can be viewed as actual bosonic excitations.

Here it is shown how seemingly inconsistent aspects of HTSCs such as: (i) the qualita-
tively different behaviours of T ∗ and Tc as function of doping concentration, specifically, an
everywhere decreasing T ∗ in sharp contrast to the well-known ‘dome-shaped’Tc behaviour
[17]; (ii) the appearance in k-space of alternating regions (the ‘Fermi arcs’) with either
gapped or normal quasiparticle distributions; and (iii) sharply controversial views on the
gap symmetry, can all be naturally reconciled already within a binary BF gas mixture model
containing preformed CPs. Finally, also based on Fermi arcs, an explanation is proposed
for a recent observation [18] of coexisting pseudogap and superconducting behaviour.

2. Hamiltonian

The Hamiltonian of pairable fermions and composite-boson CPs interacting with each
other was initially suggested phenomenologically but it may also be derived from the
Anderson model (see refs. in Ref. [19]). Or, it may be postulated to describe processes
like the s-channel ones familiar from particle physics [20] or found from the low-energy
limit of small-cluster states in a two-dimensional CuO lattice [21]. That Hamiltonian
is further generalized to include two important effects: (a) the anisotropy of the pairing
interaction and (b) coulombic repulsions between fermions (see, e.g. Ref. [22,23]) in terms
of creation/annihilation operators for fermions (a operators) and bosons (b operators). Then,
one has

H = Ho
el+Ho

B+H f + HU (1)

where
Ho

el + Ho
B =

∑
k,σ

ξka+
kσ akσ +

∑
K

EKb+
KbK (2)

along with

H f ≡ 1

N 1/2

∑
q,K

(
fqb+

Kaq+K/2↑a−q+K/2↓ + h.c.
)

(3)
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4104 T.A. Mamedov and M. de Llano

and

HU ≡ U

N

∑
k,k′,q

a+
k+q/2↑a+

−k+q/2↓a−k′+q/2↓ak′+q/2↑. (4)

In (2) fermion ξk ≡ εk−μ and boson EK energies are measured from μ and 2μ, respectively,
where K is the total or centre-of-mass wavevector of the bosonic CP and where the electron
chemical potential μ is fixed by the constancy of the total electron number. Its value μ equals
the radius of a sphere in energy space with its inner points occupied by the pairable/unpaired
fermions. Exterior points of that sphere correspond to two-fermionic states, i.e. CPs, of
energies EK higher than the lowest energy μ of single-electron excitations [24]. Here N is
the number of unit cells in a lattice given by Ld/v0 where L and v0 are, respectively, the
system size in d dimensions and the ‘volume’ of each cell.

A possible source in (2) for the term with bosonic energies EK is the usual BCS model
attraction of strength V to be used throughout this paper. (For tirelessly advocating for the
electron-phonon mechanism, even in cuprates, see Refs. [25,26]. A more recent discussion
is found in Ref. [27]). As such, the effect of the assumed mutual interfermionic attractions
is ‘embedded’ into the term in (2) with EK describing pairing correlations. Indeed, as found
(see e.g. Appendix of Ref. [28]), the familiar Cooper equation [29], in addition to the well-
known negative-energy solution E− ≡ −2�ωD(e2/λ−1)−1 associated with the appearance
of bound pairs, where λ ≡ N (0)V with N (0), the fermion density of states at the Fermi
surface EF and �ωD is the Debye energy, there emerges a second positive-energy solution
E+ ≡ +2�ωD(e2/λ +1)−1. The solution E− played a key role in understanding the ground
state in the BCS theory [30]. However, the scarcely known second solution E+ corresponds
to two-fermionic correlations with a total energy higher than the 2EF associated with two
individual electrons. It is analogous to the Schafroth [31] resonant modes also found in three
dimensional and two dimensional in the more general treatment [32] of Cooper pairing via
the Bethe–Salpeter integral equation that does not neglect hole pairs. Those resonances are
not bound states and by no means are they CPs either; they have nothing in common with
the excited pairs of the original BCS theory. The effect of E+ is expected to be tangible
when only few empty states are present in the conductivity band. To understand what
new physics emerges from the positive-energy correlations, they are included into (1) as
metastable composites (of zero total spin) of a bosonic nature.As in the original BCS theory,
an attraction of strength V responsible for pairing correlations is considered as an isotropic
positive parameter.

The BF vertex interaction hamiltonian H f in (3) drives mutual transitions between par-
ticles of fermionic and bosonic subsystems. The parameter f in H f (describing formations
of paired states from the background fermions followed by their disintegration into two
independent fermions) defines the ‘efficiency’ of those transitions. It depends not only on
the strength V of pairing correlations embedded in (2) but also on the peculiarities of the
electronic structure, in particular on the direction of a total wavevector Q of two correlated
fermions with momenta wavevectors −k + Q/2 and k + Q/2. This is why we believe that
transitions between particles of fermionic and bosonic subsystems must occur in line with
the symmetry of a 2D (or 3D) Brillouin zone. To account for directional dependency of
the efficiency of transitions (associated with the symmetry of background fermions) the
BF coupling parameter is taken as fq = f φq where dimensionless factors φq describe
the distribution fq around an average value [22] f . In order to make perfect contact with
BCS theory (but in a ternary BF gas with hole pairs) the BF vertex coupling constant f
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Philosophical Magazine 4105

Figure 1. Schematic evolution of an attractively-interacting Fermi gas into a BF binary gas. (a) At
T > T ∗ the resonances are separated from the top of the conduction band by a positive-energy gap.
At these temperatures occupied states are still only of single-particle nature. (b) On lowering T the
energy of two-particle states decreases. Boson and unpaired-electron energies equal each other at
exactly T ∗ below which the evolution of the pure Fermi gas of electrons into a binary BF gas ensues.
(c) Cooling below T ∗ produces a ground state of single fermions coexisting with preformed CPs
which becomes energetically favourable. (d) Dimensionless energy �0(λ, T )/EF of paired states
as a function of T/TF for several fractional number densities (EF − μ)/EF of bosons showing
how non-T -dependent ‘ bare’ bosonic CP energies are renormalized by switching on the BF vertex
interaction (3).

has been identified [14] with
√

2�ωDV where V was defined above along with the Debye
energy �ωD . Thus, distracting details of the real interactions like the effect of electronic
structure (responsible for the abovementioned ‘efficiency’) are concealed in these so-called,
anisotropy factors φq. The relation f = √

2�ωD V allows one to express results in terms
of the familiar BCS dimensionless λ ≡ N (0)V instead of f .

Lastly, HU is a coulombic term modelled as a spatially uniform repulsive field of strength
U which mimics repulsions between paired electrons within a field of surrounding unpaired
electrons.

The central idea behind the various binary BF models [12,19] is that if pairing is strong
enough, then single fermions form relatively tightly bound two-particle composites. A new
weak-coupling scenario different from those strong-coupling models is discussed in Refs.
[24,28,33–37]. This scenario relies on the possibility of two fermion resonances above
the Fermi sea since switching on an attraction between fermions produces two-fermionic
resonances of energy EK shifted upwards from EF by a positive gap (see, e.g. Ref.[28]).
At high temperatures, the appearance of positive energy resonances is not advantageous.
However, due to (3) the EK of individual resonances renormalizes to become a T -dependent
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4106 T.A. Mamedov and M. de Llano

�K which decreases upon cooling (see Figure 1(d)). The pure gas of electrons comes on the
verge of forming actual CPs by simultaneous satisfying (i) �0 = 0 which is the condition
of equality of the resonance energies and the energy of unpaired fermions occurring by a
decrease of �Ks and (ii) the condition μ = EF preventing the survival of paired states above
T ∗. When �0 = 0 the state of single-fermions coexisting with incoherent CPs becomes
more favourable than a state of single fermions only. As a result, below T ∗ two-particle
correlations, inevitably present in a gas of attractively interacting fermions, become actual
CPs. The T -behaviour of �0 and relative positions of the two-fermionic level with respect
to the top of the nearly filled conductivity band are schematically depicted in Figure 1
showing how the pure gas of electrons evolves into a binary BF gas mixture.

Three remarks are in order here.
First, inspection of terms b+

Kaq+K/2↑a−q+K/2↓ and bKa+
−q+K/2↑a+

q+K/2↓ in (3)
allows distinguishing the limits of nearly-half-filled and almost-full bands. In the former
case, electrons act as nearly independent of each other and processes described by Hint
appear unimportant. However, in the latter case (when the conduction band is crowded
with lots of electrons) the role of processes described by H f in (1) becomes important.
Applying the Exclusion Principle one finds that if the band is near half-filling then pair
formations rarely occur while pair disintegrations occur readily. For example, for processes
bKa+

−q+K/2↑a+
q+K/2↓ to occur both fermionic states with momenta/spins −q + K/2,↑ and

q + K/2,↓ must be empty. In contrast, in a nearly full band an abundant creation of paired
fermion states are accompanied by their scarce destruction. Thus, the term (3) drives a pure
fermionic system into a mixture of single- and two-fermionic objects. But this is especially
important only if the band of fermions is nearly full.

Second, generic compounds of cuprates are antiferromagnetic insulators. By introducing
holes of composition x onto the CuO2 planes x NCu electrons (where NCu is the number
of Cu sites) become mobile. These x NCu electrons subsist in the repulsive Coulomb field
of all other fermions and by assumption interact with each other via the pairing potential of
the BCS theory. The competition between electrons to occupy energy levels below EF so
as to minimize the volume of the Fermi sea leads, in the presence of Coulombic repulsions,
to pushing away from that sea attractively interacting charge-carrier levels. On the other
hand, the levels in a band originating from the generic insulating one in cuprates (where due
to Coulomb repulsions double occupancy is still rare) are occupied nearly up to the highest
energy. Therefore, the effect of a new solution E+ of the Cooper equation (i.e. pairings
above the Fermi sea) and terms b+

Kaq+K/2↑a−q+K/2↓ (along with bKa+
−q+K/2↑a+

q+K/2↓) in
(3) both might be especially significant. It was shown in Ref. [35] how the processes of
continual pair formation (above the Fermi sea) and their subsequent disintegration into two
unpaired electrons (within that sea) lowers the total energy of many-fermion system and
leads to a BF gas mixture.

Third, the two-fermionic entities (i.e. short-lived correlated states of two fermions
and/or CPs) which inevitably arise at corresponding temperatures in the system of fermions
interacting via the pairwise attractive potential V of the BCS model interaction are described
in terms of bosonic operators b+ and b in (3) and these objects satisfy BE statistics, and
thus bosonic. This is because they depend only on the total K of the pair of fermions and
not also [16] on their relative wavevector k ≡ 1

2 (k1 − k2) as with BCS pairs [30] which
are strictly not bosonic arguably since there lacks [16] an exact transformation to construct
pure bosonic operators depending only on K from the fermionic ones depending on both K
and k.
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3. Main formulae

Both fermion and boson spectra in this model are defined as in Ref. [37] where it was shown
that below T ∗ the spectrum of unpaired fermions appears partially gapped. The energy Ek
of unpaired electrons is found via a generalized energy gap Egk(λ, T ) in

Ek =
√

ξ2
k + E2

gk (5)

where

Egk(λ, T ) ≡
{

f
(
φk − �0

2�ωD

U
V

) √
NB(λ, T )/N for φk − �0

2�ωD

U
V > 0

0 for φk − �0
2�ωD

U
V ≤ 0.

(6)

Here NB(λ, T )/N is the total bosonic number per cell [37] and Ek fixes the familiar
occupation numbers nkσ = 1

2 [1 − (ξk/Ek) tanh (Ek/2kB T )] of unpaired electrons in each
state with wavevector k and spin σ . Above T ∗ the numbers nkσ are the same as in a
gas of non-interacting fermions distributed around the EF but below T ∗ these numbers
differ significantly from those in a normal state and become direction-dependent [28] upon
including an anisotropy of a pairing interaction. The boson spectrum in the BF mixture gas
is found as roots �Q of the equation [33]

�Q = EQ +
⎛
⎝1 − U

N

∑
q

φq
F(q, Q)

�Q − ζ(q, Q)

⎞
⎠

−1 ⎛
⎝ f 2

N

∑
q

∣∣φq
∣∣2 F(q, Q)

�Q − ζ(q, Q)

⎞
⎠ (7)

where ζ(q, Q) ≡ ξ−q+Q/2 + ξq+Q/2 and F(q, Q) ≡ 1 − nq+Q/2↑ − n−q+Q/2↓. For a
given μ these roots �Q determine the average numbers nBQ of actual bosonic CPs for a
wavevector Q (e.g. in Ref. [33]) to be nBQ = [

exp(�Q/kB T ) − 1
]−1. In this manner, the

total boson number density becomes

nB = NB/Ld ≡ L−d
∑

Q

[
exp(�Q/kB T ) − 1

]−1 (8)

with all Q � 0. In effect it comes from the nBQ which is determined not by the EQ of ‘bare’
bosons but rather by the T - and coupling-dependent energies of ‘dressed’ ones defined by
(7).

An expression for �Q was found in Ref. [33] via an infinite chain of equations for two-
time retarded Green functions for dynamical operators b(t) and b+(t ′) at times t and t ′ in
the Heisenberg representation. Analytical continuation from the real axis to the imaginary
axis (by substituting � −→ iωn) makes evident that the contribution to the ‘bare boson’
energy EQ given by the second term in rhs of (7) coincides with the boson self-energy cited
in Ref. [23] which was established with a diagrammatic technique for a hamiltonian such
as (1) (without HU ) but in an entirely different context.

At sufficiently large nB the condensation of an indefinite number of CPs into a state
with wavevector Q = 0 becomes possible. This occurs when �0 → 0 in (8). The condition
�0 = 0 satisfied at some Tc < T ∗ and μc which must be sufficiently lower than EF (to
provide a critical nB) result in an eruption of a BEC in the bosonic subsystem. If one ignores
the angular dependence of �Q and puts �0(Tc) = 0 for all directions Q → 0 then (6) yields
an expression for the superconducting gap that opens at and below Tc which varies over the
Fermi surface according to the symmetry of the anisotropy factors φk. By decreasing μ from
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4108 T.A. Mamedov and M. de Llano

EF towards μc the pseudogap in the single-particle spectrum converts to a superconducting
gap. Through the total number density of CPs nB and CP energy �0 the generalized gap
Ex. (6) in a single-particle spectrum appears a functional of the two-particle characteristics.

The nB , which is just half the total number of fermions that are actually paired at
temperature T , can be expressed as [24]

nB(λ, T ) = N (0)(EF − μ) (9)

where as before N (0) is the density of fermion states per spin and per unit volume at EF .
According to (9) the degree of lowering of μ below EF defines the composition of single-
and two-bound- fermion entities in a BF mixture.

4. Discussion

The T -behaviour of the boson energy �0 for different boson-number densities nB is shown
in Figure 1(d). Upon switching on the interparticle attraction two-fermionic correlations
of energy E0 emerge above the Fermi sea of a system of fermions competing to occupy
the lowest energy states [28]. This positive contribution E0 in (7) enlarges �0. At high
temperatures, the energy �0 of two-correlated fermions arising at the resonance level seen
in Figure 1(a) is higher than the sum of energies of two individual fermions. So the formation
of CPs at those temperatures becomes possible virtually only. However, due to continual
transitions between fermionic and bosonic subsystems, the value of �0 drops down toward
zero upon cooling whereby two-fermionic bound states actually materialize. This happens
first at T ∗, Figure 1(b). The formation of CPs decreases the total energy if T is below
T ∗. This occurs (i) due to the decrease in the unpaired fermion number contributing to the
energy and (ii) due to the lowering of energies �Q of each two-particle state. Cooling below
T ∗ leads to the emergence of more and more two-fermionic states: the number of unpaired
fermions drops, making the chemical potential μ slide down below EF , Figure 1(c). Now
�0 measured from 2μ is non-zero but as T is further lowered even more and continues to
decrease gives rise of further bosonization.

Two-fermionic positive-energy correlations in the assembly of attractively interacting
fermions which become actual CPs on cooling is the central idea behind the new weak-
coupling scenario developed here and in Refs. [24,28,33–37]. Many different scenarios,
e.g. stripe correlations, antiferromagnetism, orbital currents and pairing correlations, the
presence of each well supported by experiments on cuprates, can bring on the pseudogap
[17]. However, as found from (5)–(9), the notion of preformed pairs results not only in
gapped fermions above Tc, but also accounts for the striking phenomenon of Fermi arcs
alternating with a Bogoliubov-like dispersion of the pseudogapped phase.

Fermi arcs have been studied within a BF model for pairing of d-type symmetry [38]
where important aspects of possible relevance for the microscopic origin of superconduc-
tivity in cuprates are discussed. In particular, it was shown how the structural instabilities
seen in cuprates may suggest a way for fermions to appear either ‘in’ or ‘out’ of (the
initially localized) tightly-bound bosonic pairs. Scattering continuously between states of
itinerant fermions and states where charge carriers are momentarily trapped led in that
paper to an electronic structure consisting of (i) delocalized single fermions and (ii) local-
ized bound bosonic pairs which become itinerant and eventually condense upon cooling.
‘Schizophrenic’ carriers defined there as superpositions of itinerant and localized entities
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Philosophical Magazine 4109

Figure 2. (a)Anisotropy factor φk (full curve) of extended s-symmetry compared with dimensionless
Coulomb repulsion R between fermions (dashed curve) that shortens on lowering T . (b) Typical two-
dimensional Brillouin zone of hole-doped cuprates. Full curves depict normal Fermi lines. ‘Dotted +
full’ curves enumerated from 2 to 5 show consecutive positions of μ by its lowering below the EF
associated with the reduction in the number of unpaired fermions. Dispersion of fermions is gapless
only along the solid portions of those curves.

elucidate there important physics of the transition from the insulating parent compound
to the superconducting doping regime. Dispersionless bosonic excitations of the Fermi
assembly of energy 2
 and of polaronic origin used in Ref. [38] which, due to their localized
nature, are expected to be far above the Fermi sea. These contrast with the weak-coupling
bosons advocated in the present work. Besides, the possibility of getting the Fermi arcs
(a phenomenon unique in condensed-matter physics) already for pairing of s-type symmetry,
as suggested here, seems intriguing.

The generalized energy gap Egk in (5) as a function of direction of the wavevector k is
expressed in terms of the factors φk in (3) distributed around 1. These are fitted [28,37] as

φα
k = 1

1 − α/2
(1 − 4α sin2 ϕ cos2 ϕ) (10)

with the prefactor chosen so as to normalize to unity the mean value of φα
k over the azimuthal

angle ϕ determining the direction in k-space of the two-dimensional vector k. Here 0 ≤ α

≤ 1 with α = 0 for isotropic superconductors. Varying α from 0 to 1 spans all ranges from
weak to strong anisotropy. Specifically, we consider the pairing interaction of extended
s-symmetry and assume that as the direction of k varies φk takes on values along the
‘distorted circle’ obtained by moderately stretching the unit-radius circle along the vertical
and horizontal directions, i.e. the 0,±π and ±π, 0 directions, and compressing it along the
diagonal ±π,±π directions, as depicted in Figure 2(a) by the full curve (see Ref. [37]).
The curve in Figure 2(a) is found by choosing α = 0.35 in (10).

The effect of Coulomb repulsions U in (6) depends on the T -dependent pure num-
ber �0/2�ωD describing the degree of separation between boson and fermion spectra.
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This separation is different for different densities nB of bosons and diminishes by bosoniza-
tion, i.e. by raising the factor EF − μ in (9) as exhibited in Figure 1(d). The dashed
circle in that figure represents the dimensionless R = (�0/2�ωD) (U/V ) appearing in (6)
which diminishes on lowering T as does �0. At sufficiently small T there appear segments
of k-space wherein the difference φk − R becomes positive and leads according to (6)
to the gapped portions of the E vs k relation. Results are summarized in Figure 2(b).
Full curves, one of which is enumerated as 1 at the right-bottom corner of Figure 2(b),
depict normal Fermi lines which might be seen at T ≥ T ∗. At and below T ∗ the number
of the single fermions decreases so that μ(T ) dips below EF . ‘Dotted + full’ curves in
Figure 2(b) depict the lines of constant energies corresponding to states differing from each
other by the numbers of free fermions (panels from 2 to 5 in Figure 2(b) enumerate those
isoenergetic lines in order of decreasing μ). According to (6) the single-fermion dispersion
is gapless not along the entire ‘dotted + full’ curves but only along the full portions of those
curves whose extensions decrease as T is lowered below T ∗. These portions correspond
to areas in Figure 2(a) where the factor R in (6) is larger than φk. In contrast, along the
dotted curves in Figure 2(b) which on cooling, i.e. on even lower μ(T ) below EF , become
broader, the spectrum appears gapped, i.e. of a Bogoliubov type. Disconnected full segments
in Figure 2(b) are thus interpreted as the Fermi arcs observed in ARPES experiments
[4–6,12].Along those segments where φk−R ≤ 0 the T , and hence the factor �0(T )/2�ωD

in (6), is still too high to open a gap, thus leading to a dispersion relation as if the sample
were a normal metal. The Fermi arcs, i.e. gapless portions of a spectrum in Figure 2(b), are
centred on the diagonals of the square Brillouin zone. The lengths of these arcs diminish
and vanish completely on further cooling (designated as black dots along the diagonals).

A key finding exhibited in Figure 2(b) is that for any finite U in (6) the resulting
dispersion in a pseudogapped state contains fourfold disconnected Fermi arcs alternating
with the gapped segments in the entire momentum space, i.e. resembling d-wave symmetry.
This result does not depend on the actual pairing symmetry which itself might be d- as well
as moderate s-wave-like.As T decreases towards Tc the behaviour of a superconducting gap
depends, besides on the factors φq, on the �0(T ) in (6). There are two distinct possibilities:
First, �0(Tc) becomes zero for all directions of the total momentum Q = 0 of CPs (i.e.
BEC occurs upon the opening of a gap over the entire Fermi surface). In this case, as seen
by assuming �0 = 0 in Egk(λ, T ), the symmetry of a superconducting gap is defined solely
by the symmetry of φq. That is, s-like φq drives the gap in a superconducting state into an
s-symmetry. Only d-wave-like φq sets below Tc an order of the d-symmetry.

However, starting from the extended s-wave type φq (7) provides a second very different
possibility to obtain a superconducting gap resembling d-symmetry. The question is really:
Can the material superconduct in spite of fermions from portions of k-space still remaining
unpaired? The present scenario foresees this possibility.As may be seen [e.g. by substituting
q′= ±q + Q/2 for ±q in (7)] �Q depends not only on a magnitude Q of vector Q but
also on its direction given by the azimuthal angle ϕ. In the limit of Q → 0 there appears
�0 ≡ �(0, ϕ) in (7) which contains the angle ϕ. There are a lot of two-particle states with
the total momentum Q = 0 differing each from another by the value of ϕ. For an isotropic
pairing interaction all of these pairs are of the same energy �0. However, if the pairing
interaction V is direction-dependent [39] then �0 varies in ϕ. In other words, depending on
along which direction the wavenumbers k and −k of fermions making up a pair with total
momentum Q = 0 are, the energy �0 appears different. Thus, by scanning ϕ there appear
different segments in the k-space where the conditions �0 = 0 (necessary to provide a
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Figure 3. Pseudogap (dashed curve) T ∗/TF and BEC superconducting (full curve) Tc/TF phase
boundaries as functions of λ. Shaded dome-shaped region designates superconducting BEC phase.
The normal state lies above the T ∗/TF curve below which the pseudogap phase exists. Dotted curve
penetrating below superconducting dome depicts a situation which according to widespread belief, if
confirmed in observations, might be proof of different origins of superconductivity and the pseudogap.
However, this is also possible in a scenario based solely on preformed pairs.

critical density of CPs for BEC to occur) and �0 �0 [which provide the gapless portions of
Egk(λ, T )] are satisfied independently. In this situation, the superconducting gap, as well
as the pseudogap opening well above Tc, both open only partially. The fourfold portions
of momentum space where the superconducting gap opens will alternate with the gapless
portions of the dispersion relation and thus resemble a d-wave one, all of this in spite of the
assumed extended s-wave symmetry of the pairing interaction.

Hence, the d-symmetry of the order parameter seen in many experiments on cuprates,
can be materialized not necessarily by a d-wave-like pairing interaction, but can be alterna-
tively found in terms of extended s-wave symmetry and the density nB of preformed CPs
at which superconductivity begins. What is important is that unlike purely d-symmetry-
based models which bypass the possibility of s-wave-like gaps, the present model which
operates with nB embraces both s- and d-wave possibilities. Specifically, experiments
probing the surface of cuprates yield d-wave, while experiments probing the bulk point
to a substantial s-symmetry (see, e.g. Ref. [40]). If one assumes that the density of paired
fermions necessary for surface superconductivity to occur is less than the one necessary for
bulk superconductivity, then the results suggested in Ref. [40] may be interpreted in terms
of s-symmetry alone.

The scenario just described of the evolution of a pure fermion gas into a binary BF
gas mixture allows one to distinguish two critical temperatures, a depairing (or pseudogap)
temperature T ∗ below which preformed CPs appear without coherence, and a BEC critical
temperature Tc below which these CPs constitute a coherent fluid. Formulae related to
these for finite U were reported in Ref. [33]. Variation of T ∗ and Tc as functions of the
dimensionless BCS attraction parameter λ = N (0)V are shown in Figure 3. Correlating
λ with the concentration of hole carriers x (in a manner, e.g. as done in Ref. [24]) yields,
qualitatively at least, the familiar dome-shaped Tc as well as the well-known monotonically-
decreasing T ∗ with doping parameter x . In Figure 3, the values ν ≡ N (0)U = 0.9 and
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�D/TF = 0.35 are used for illustration purposes where �D and TF are, respectively, the
Debye and Fermi temperatures. It was found that an increase of the dimensionless Coulomb
factor ν lowers the maximum Tc and narrows the interval of coupling λ (equivalently
doping x) over which superconductivity occurs. But irrespective of the value of ν the T ∗
and Tc curves always merge together as λ (or x) increases, as seen in Figure 3. Larger
�D/TF s give higher Tcs while smaller ν makes the dome-shaped structure of Tc vs λ

become less prominent.
Many authors contradistinguish BCS and BF regimes of pairings by saying that an

increase in λ takes one from the weak-coupling limit (or BCS regime) to a Bose gas. It is
also believed that, because of a severe spatially-overlapping wavefunctions of CPs in the
BCS regime the conditions for pair formation and quantum coherence of pairs occurs at
the same temperature T ∗ = Tc. On the contrary, decrease of pair sizes by increasing λ,

allows one to idealize pairs as ‘individual molecules.’ In this latter Bose regime, the pair
formation and their condensation happen [12,41] at different temperatures T ∗ and Tc with
T ∗ > Tc. Because of its intuitive clarity this picture of evolution [42] of fermions from the
BCS regime to the limit of a Bose gas is quite popular. However, the present BF model is
very different in that already the weak-couplings allows for ‘individual’ bosonic excitations
made up two correlated fermions. The criterion for an actual boson must be consistent with
Bose–Einstein statistics, i.e. the possibility of condensing an indefinitely large number of
pairs into a single ground state. In particular, in the limit of λ → 0 this picture leads to
different temperatures of pair formation T ∗ and of their condensation Tc–a result opposite
to the prescription of BF models relying on tightly-bound pairs. Furthermore, in contrast
to strong-coupling models increased λ leads to pair-formation at much lower temperatures
than occurs for smaller λ, as seen in Figure 3.

In sharp contrast to Figure 3, some data suggest a pseudogap existing below Tc [43].
Because of the usual condition T ∗ � Tc for precursor pairing, an observation of T ∗ < Tc

would apparently rule out models of HTSCs that posit a common origin for both pseudo- and
SC-gaps. Observation of T ∗ < Tc is also reported from resonant ultrasound spectroscopy
(RUS) measurements [18]. The smaller of two identified temperatures, 61.6 K and at 68 K, at
which the RUS spectra of an overdoped single crystal undergo a discontinuity are interpreted
in Ref. [18] as T ∗and the higher one as Tc.

Some authors, e.g. Ref. [44], tend to interpret T ∗ < Tc as suggesting a hidden order
responsible for the pseudogap phenomenon. However, operating in terms of extended
s-wave pairing interaction and the density nB of preformed CPs merits further discussion on
a possible pseudogap below Tc. Indeed, if one assumes that the material superconducts and
that this happens in spite of fermions from portions of k-space still remaining unpaired, then
one can easily see that there must be no obvious transitions between unpaired fermions and
fermions constituting CPs of the condensate. For transitions to occur a CPmust preliminarily
disintegrate. Only then can a fermion of the Fermi arc bind with a fermion arising from
the disintegration and the result enter the condensate. However, this is related with the
appearance of a singly occupied state in the region of states from which a condensate of
CPs is made and thus forbidden by energy considerations [30]. Absence of transitions be-
tween Fermi-arc fermions and fermions constituting CPs suggests considering the unpaired
fermions as independent from those bound up in condensate CPs. Becoming independent
below Tc those of the Fermi arcs must undergo their own evolution. In particular, they may
pair up and lead to the opening of a new kind of pseudogap in the spectrum of Fermi-arc
fermions.
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5. Conclusions

It was shown how two-fermionic positive-energy correlations in a gas of attractively in-
teracting fermions become actual CPs but without the long-range phase coherence one
associates with superconductivity. This leads one to develop a weak-coupling scenario
for a binary gas mixture of these CPs coexisting with pairable, but unpaired fermions.
The mixture reveals a pseudogap phase emerging from pure fermions via small segments
alternating with gapless portions of the fermion spectrum. Changing direction the arrowhead
of wavevector k in two-dimensional momentum space traces so-called nodal lines centred
at the diagonals of a square Brillouin zone along which the gap vanishes. As a result, the
dispersion consists of disconnected segments resembling d-wave symmetry. Cooling below
T ∗ leads to a broadening of the gapped regions followed by a decrease in the extent of the
nodal lines.

Also shown was how the Fermi arcs separated by gapped portions of the energy-
momentum relation seen inARPES experiments may emerge in the present scenario not only
for d-wave symmetry but already for a moderately-anisotropic s-wave pairing of fermions
repelling each other via isotropic coulombic forces as either d- or s-wave-like gaps, the
result being sensitive to the magnitude the value of nB at which BEC occurs.

Lastly, the present model clarifies the possible coexistence of the pseudogap and of
superconductivity. A natural explanation for different, and at first glance incompatible,
aspects of cuprates offers important evidence for the preformed-pair scenario in HTSC
physics.
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