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a b s t r a c t

In this paper, non-equilibrium molecular dynamics is used to simulate the flow of a dilute solution of lin-
ear molecules (Boger fluid) and a simple fluid (Lennard-Jones) through axisymmetric and planar contrac-
tion–expansion geometries. The pressure flow condition is generated by adding an external force field Fe

to the equation of motion for the velocity, which is coupled to Nose–Hoover dynamics to keep the tem-
perature constant. According to the monomer-spring model of Kremer and Grest, linear molecules are
represented; and the simple fluid consists of spherical particles, which interact by means of a Lennard-
Jones potential. The rheological response of the fluids indicates that the Boger fluid and the simple fluid
exhibit constant viscosity in the interval (0:002 6 _c 6 0:5); additionally, the Boger fluid presents elastic
effects under shear (first normal stress difference, N1) which are quadratic at low shear rates. In pressure
flow through the expansion–contraction, results indicate that when both fluids have the same viscosity,
pressure profiles P(x1) in the axisymmetric geometry reveal a higher pressure drop (DP) in the Boger
fluid, while in the planar geometry DP was the same for both fluids. Results also reveal that DP is closely
related to the extensional strain rate ( _e) experienced by the fluid at the contraction entrance. The pres-
sure drop is higher in the axisymmetric geometry because the change in the molecular conformation,
as measured by the mean-square mass distribution tensor hI2

2i, is 80% higher than in the planar case,
resulting in an increase in the energy required to deform the molecule and the loss of mechanical energy.
In the planar geometry, under the same extensional strain rate, the conformational change of the mole-
cules in the Boger fluid at the contraction is then lower than in the axisymmetric geometry.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

This research work examines one of the benchmark problems in
rheology, namely, the prediction of the excess pressure drop in the
flow of non-Newtonian fluids through contraction–expansion
geometries. Experimental studies show that polymer solutions of
the Boger type exhibit a larger pressure drop than its Newtonian
counterpart, both of the same viscosity, in axisymmetric but not
in planar geometries. As discussed below, experimental evidence
on the flow in micro-devices contraction–expansion suggests that
at very high strain rates that are achieved in these devices, such
excess pressure drop could also be observed in a planar
configuration.

Nigen and Walters [1] performed experiments to reproduce the
flow of two polymer solutions of constant viscosity, Boger fluid
type, through axisymmetric and planar contractions; experiments
were also replicated using Newtonian fluids with the same viscos-
ity of the Boger fluid. In the axisymmetric configuration, results
indicated that the Boger fluid exhibits larger pressure loss than
the Newtonian fluid, and that this loss depends on the viscosity
of the fluid and the vortex formation at the input of the contrac-
tion. Surprisingly, in the planar configuration, the Boger fluid
exhibited the same pressure loss as the Newtonian liquid with
absence of vortices at the input of the contraction. It is noteworthy
that the experiments developed by Nigen and Walters [1] consid-
ered a wide range of contraction ratios (2 6 b̂ 6 40) and to achieve
planar flow conditions in the rectangular configuration, the length
of the contraction in the neutral direction L3 was considerably lar-
ger than that in the flow direction L1 and that of the gradient L2.
Finally, the authors conclude that the extensional strain rate is
similar both in planar and in the axisymmetric configuration. A fur-
ther study [2] confirms the relationship between the formation of
vortices and excess pressure drop. In a work parallel to that of
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Nigen and Walters [1], Rothstein and McKinley [3] performed
experiments to reproduce the flow of a solution of polystyrene
Boger type through an axisymmetric expansion–contraction, with
a contraction ratio of 4:1:4, where the Boger fluid and Newtonian
viscosities were similar. Their results indicate the existence of an
extra pressure drop in the Boger fluid above the one observed in
the Newtonian liquid at the same flow rate, which increases mono-
tonically with the Deborah number. They state that this extra pres-
sure drop is associated with cycles of stress-conformation
hysteresis and dissipation processes, such that the stress and
end-to-end distance of the polymer molecules follow a path at
the contraction entrance and they return to equilibrium through
a different trajectory.

Apparently, the occurrence of hysteresis cycles and their rela-
tionship with viscous dissipation, as well as the extensional strain
rate experienced by the fluid entering through the contraction are
related to the existence of epd (excess pressure drop) in axisym-
metric configurations. The existence of these hysteresis cycles
has been experimentally and numerically predicted (at different
length scales) [4–7]. Using non-equilibrium molecular dynamics,
it has been established that in the flow of polymer solutions
through the contraction–expansion geometries, the largest pres-
sure loss occurs at the entrance of the contraction, and in this area
of the flow domain a maximum in the viscous dissipation and
extensional strain rate are revealed [7].

Apparently, the absence of the excess pressure drop in planar
configurations is due to the low elastic response that the fluid
exhibits in this geometry [2]. In this regard, it has been found that
the extensional strain rate ð _eÞ experienced by the fluid depends on
the geometry and contraction ratio ðb̂Þ. In the axisymmetric geom-
etry the extensional strain rate scales with the square of the con-
traction ratio ð _e � b̂2Þ while in the planar case the variation is
linear ð _e � b̂Þ [8–10]. Genieser et al. [11] states that the planar
extensional flow through a slot induces a non-linear viscoelastic
response of the fluid, and that this response cannot be substantially
modified by changing the contraction ratio ðb̂Þ. Recently, Castillo-
Tejas et al. [7] simulated the flow of a solution of linear molecules
and that of a single fluid, Lennard-Jones type, through an expan-
sion–contraction planar configuration 2:1:2, using the molecular
dynamics technique. The density of both fluids was chosen such
that the fluids exhibit the same shear viscosity in the first Newto-
nian region of the flow curve (g versus _c). It was found that the
ratio Lc1/Lc2 (the length of the contraction in the flow direction
(x1) and in the gradient direction (x2), respectively) affects substan-
tially the pressure drop. When the ratio Lc1/Lc2 is equal to one, both
fluids exhibit the same pressure drop, viscous dissipation and
extensional strain rate; however, by increasing the ratio Lc1/Lc2

in the Boger fluid, larger pressure drops are predicted than those
of the simple fluid (or Lennard-Jones fluid) with Lc1/Lc2 = 1.0. With
values of the ratio Lc1/Lc2 larger than one, the Boger fluids experi-
ences higher extensional strain rate and larger area of stress-con-
formation hysteresis. The strain rate ð _eÞ and hence the
extensional stress are related to conformational changes of the
fluid molecules through the contraction, and therefore, the molec-
ular conformation along the flow path is different in axisymmetric
and planar geometries.

The number of works using micro-devices to characterize and
study the response of polymer solutions in extensional flow has
increased. Recently, cross-slot micro-devices have been used to
reproduce the extensional flow of diluted and semi-diluted solu-
tions, obtaining information on stagnation points from measure-
ments of pressure drop and birefringence [12–15]. Rodd et al.
[16] used a 16:1 planar micro-contraction to study the flow field
and the pressure drop of a polyethylene oxide solution, and found
that there are significant extensional effects due to the very small
length scales and to the associated high extensional strain. Addi-
tionally, the authors identified four flow regimes in the pressure
drop measurements; elsewhere, similar conclusions were obtained
[17,10,18–20].

Large extensional strain rates reached in micro-devices may
enable elastic fluids to generate larger pressure drops than their
Newtonian counterpart in planar geometries. Campo-Deaño et al.
[21] reproduced the flow of a low viscosity Boger fluid through a
planar hyperbolic micro-contraction (the fluids were prepared
with aqueous polyacrylamide solutions of different concentrations
to which sodium chloride is added). The rheological response of the
solutions indicated that the addition of salt to the solution pro-
duces a viscosity decrease, such that at low concentrations the
fluid exhibits a constant viscosity range similar to that of a Boger
fluid. Results indicate that the pressure drop is larger in the Boger
fluid than in the Newtonian liquid (water). However, it is impor-
tant to note that the Boger fluid viscosity (aqueous solution of
polyacrylamide) was larger than that of the Newtonian fluid
(water), and that this difference in viscosity may be responsible
for the larger pressure drop in the Boger fluid. The same issue
should be considered in the pressure drop results of planar
micro-contractions [16,22], and in previous works with molecular
dynamics [6]. It is important to note that the epd reported by Nigen
and Walters [1], and Rothstein and McKinley [3,8] in axisymmetric
configurations considered that the viscosity of Boger fluid is similar
to that of its Newtonian counterpart. In the present paper, predic-
tions of the excess pressure drop are made taking care that the vis-
cosity of the fluids in question is the same.

Presently, there are numerous numerical simulations at the
continuum mechanics level oriented to predict the epd, as well as
the number of constitutive equations used to reproduce the kine-
matics and dynamics of flow see [23–28]. In most works, shear
thinning polymer solutions or Boger fluids are used, where predic-
tions of the pressure drop are below the value exhibited by the
Newtonian fluid (i.e., epd < 1). For example, Szabo et al. [23] use
a FENE-CR model to simulate the flow of a Boger fluid through a
4:1:4 axisymmetric contraction–expansion. Their results indicate
that at low Deborah numbers, the epd is less than one and depends
on the extensibility parameter of the model (maximum extension
of the polymer molecules). There are recent works [29,30] which
state that the failure of the Oldroyd-B model in predicting the
epd is associated with a strong dependence of the first normal
stress difference N1 respect to shear rate _c (quadratic for all shear
rates). For axisymmetric configurations, it is shown that the pre-
diction of epd depends on a balance between extensional viscosity
gE and N1. The results are consistent with previous works estab-
lishing the importance of extensional stress in the flow through
contraction geometries [31–34].

A review of experimental works and numerical studies reach
the following conclusions: (1) when the viscosity of Newtonian
and non-Newtonian fluid is similar, epd has been observed in axi-
symmetric but not in planar macro geometries; (2) epd is appar-
ently related to the formation of vortices at the entrance of the
contraction, hysteresis cycles, viscous dissipation and extensional
strain rate; (3) the use of constitutive equations and continuous
models has been partially successful in predicting the epd, and
the success depends on a balance between the extensional viscos-
ity (gE) and the first normal stress difference (N1); (4) and finally,
an important issue is the extensional strain rate experienced by
the fluid which again depends on the particular geometry. Based
on the above conclusions, the objective of this work is to simulate
the flow of two liquids (one Newtonian as a Lennard-Jones Fluid
and a Boger fluid) of the same viscosity through contraction–
expansion geometries both axisymmetric and planar. Simulations
calculate the pressure field, velocity and molecular conformation
along the central line of confinement. The analysis of these predic-
tions aim to reveal important features on the origin of the epd.
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The manuscript is organized as follows. Section 2 presents the
simulation method. Sections 3 and 4 deal with the construction
of the simulation region and calculation of the rheological proper-
ties. Section 5 includes the rheological response of fluids under
simple shear flow. Section 6 analyzes the effect of molecular struc-
ture on the extensional rheology and excess pressure drop in pla-
nar and axisymmetric geometries. Finally, in Section 7 a
discussion and the main conclusions are presented.
Fig. 1. Schematic representation of fluids under study.

Table 2
Information on number of sites per system and configuration; and dimensionless
lengths of the simulation regions.

Axisymmetric Planar

2:1:2 4:1:4 2:1:2

Particles in the system
L-J Fluid

S 75,440 74,120 15,000

Solution of linear molecules
M 368 362 75
S 66,240 65,060 13,500

Dimensions of each region
L1 163.24 163.24 192.92
Lc1 14.84 14.84 14.84
L2 – – 29.69
Lc2 – – 14.84
L3 – – 3.22

3.12 (L-J)
D1 14.28 7.14 –
D2 28.56 28.56 –
2. Theory and simulation method

2.1. Units system

In real units, the molecular dynamics technique involves the
use of length and time scales of the order of 10�9 m and 10�12 s,
respectively, such that carrying out simulations with these numer-
ical values can lead to overflow or underflow problems as a result
of floating point operations. Therefore, it is a common practice to
simulate the flow using reduced (or dimensionless) units. In this
paper we use the Lennard-Jones potential to reproduce a portion
of the interactions between components of fluid under consider-
ation, such that their energy parameter (e) and length (r), together
with the mass of the particle (mi) are selected to reduce all vari-
ables associated with the simulation. Table 1 shows the relation-
ship between the parameters e, r and mi used to express, in
dimensionless form, the relevant variables.

2.2. Systems under study

Fluids considered (see Fig. 1) include a solution of linear mole-
cules, a Boger fluid (q = 0.84) and a simple fluid or L-J Fluid
(q = 0.87) constituted by spherical particles; both fluids at a reduced
temperature of 3.0. As shown in Fig. 1, the Boger fluid includes M lin-
ear molecules, each one with twenty linked sites, immersed in S
spherical particles (the solvent). The simple fluid is made of S spher-
ical particles. Based on Fig. 1, the molecules of the Boger fluid are
represented according to the monomer-spring model of Kremer
and Grest [35]. This model considers that the molecular chain is rep-
resented by a spring and the mass is concentrated in a monomer or
site. A molecule as a collection of sites connected through non-har-
monic springs is then envisaged. In Table 2, the total number of sites
(N) used in the simulations is included, for both fluids and flow con-
figurations. In the planar configuration, N is equal to 15,000 sites that
in the case of the solution, involves 75 (M) molecules and 13,500 (S)
solvent particles. In axisymmetric configurations, N is fixed depend-
ing on contraction ratio, for example, the solution consists of 362
molecules and 65,060 solvent particles at a b̂ ¼ 4.

In molecular dynamics formulations, the motion of particles in
the system is described by classical mechanics including particle-
particle interactions. The detailed interaction among particles is
given by summation of the overall pair-pair contributions accord-
ing to UðrNÞ ¼

P
i

P
j>iUðrijÞ, where UðrNÞ is the potential energy of
Table 1
Some quantities expressed in Lennard-Jones reduced units.

Physical quantity LJ unit

Length r
Mass m
Energy e
Number density 1/r3

Temperature e/kB

Time (mr2/e)1/2

Volume flow rate (er4/m)1/2

Stress e/r3

Viscosity (me)1/2/r2

Shear rate (e/mr2)1/2
the configuration, U(rij) is the energy between pairs of particles,
and rij is the scalar distance between i and j particles, respectively.

The functional form of the intermolecular potential for these
fluids has already been detailed in a previous work [7] and involves
the use of non-linear finite-extensible elastic potential (FENE) [36]
and the Lennard-Jones potential, the latter truncated and shifted at
a cutting distance rc = 21/6r.

2.3. Equations of motion

A Poiseuille flow is generated through an axisymmetric (or
cylindrical) and rectangular (or planar) contraction–expansion
geometry. The essence of molecular dynamics is the motion esti-
mation of a set of particles that obey the laws of classical mechan-
ics by solving the equations of motion. In the case of Poiseuille
flow, the equations used include an additional term (external field
of force Fe) to produce the flow [37,38] and are given by:

dri

dt
¼ vi ð1Þ

dvi

dt
¼ Fi

mi
þ Fe

mi
e1 � Vnmi ð2Þ



4 J. Castillo-Tejas et al. / Journal of Non-Newtonian Fluid Mechanics 210 (2014) 1–11
dVn

dt
¼ 1

Q

XN

i¼1

miv2
i �

Ls

b

" #
ð3Þ

where mi and Fi are mass and force associated with particle i,
whereas the force on particle i is the result of its interaction with
other system components, ri is the position vector of particle i
and vi represents its velocity with respect to the laboratory frame
of reference (i.e., the sum of the peculiar and streaming compo-
nents). The peculiar velocity is the rate of change of the position
of the particle under equilibrium conditions, i.e., in absence of
external perturbations. The fluid motion is generated by an external
force field Fe in Eq. (2), where the unit vector e1 indicates the direc-
tion (x1) in which Fe is applied, such that, Fe = 0 for v2 and v3 com-
ponents of Eq. (2). It is noteworthy that Fe is only applied to the
input of the simulation region. Viscous heating is generated by fluid
motion, which needs to be removed from the system to keep the
temperature constant, and in so doing, the Nose–Hoover thermostat
[39] is coupled to the equations of motion. As shown in Eq. (2), the
thermostat controls the temperature of the system by scaling the
velocity of each particle with a dynamic variable – Vn. The thermo-
stat is only applied to the v2 and v3 components of Eq. (2), and as a
result the fluid develops a streaming velocity in the x1-direction and
a peculiar velocity along the x2 and x3 directions. In all the simula-
tion work, it is verified that v1 is a streaming velocity, and v2 and v3

are peculiar velocities. This consideration modifies the calculation
of the degrees of freedom of the thermostat (Ls) and the term
sumN

i¼1miv2
i in Eq. (3). Finally, in Eq. (3), Q is the associated mass

of thermostat and b is the reciprocal of the reduced temperature.
Although v2 and v3 components of velocity vector are peculiar

velocities, the flow dynamics is consistent with local secondary
flows that are observed in contraction–expansion geometries. In
these geometries a two-directional flow exists just before the fluid
enters the contraction, such that, v1 = v1(x1, x2) – 0 and v2 = v2(x1,
x2) – 0 and additionally, vortex formation at the contraction exit
is present. The predictions of vortex formation [6] and a two-
directional flow at the contraction entrance [40] implies a
momentum flux of near zero in these regions of geometry, which
is consistent with the definition of peculiar velocity. In molecular
dynamics simulations of the flow through contraction–expansion
geometries [6,7], it has been shown that the rate of energy
removed by thermostat is equivalent, as a first approximation, to
the rate of energy dissipation. Such equivalence allows justifying
the application of the thermostat in a consistent manner with flow
dynamics.

3. Geometry and simulation method

Fig. 2 presents the simulation region for the two geometries,
and in both the solution of the equations of motion is performed
considering a Cartesian coordinate system, with origin at the cen-
ter of contraction. It is noteworthy that with the forces and posi-
tion coordinates in x2 and x3 directions of each particle, its radial
and angular coordinate in cylindrical region are obtained as well
as the force in the radial direction. As shown in Fig. 2, in the cylin-
drical region there is a total confinement in the radial direction, so
that periodic boundary conditions and minimum image condition
are applied in the flow direction. With regard to the confinement,
in previous studies of molecular dynamics [6,40,7] stochastic walls
have been used to simulate flow of complex fluids through con-
traction–expansion in a planar configuration. However, this meth-
odology was not implemented in both geometries used in this
work, and a repulsive potential instead is used to describe the sur-
face and prevent the particles to cross the walls.

With respect to the rectangular geometry, the confinement is
normal to the direction of the gradient x2, and the periodic bound-
ary conditions and minimum image criteria are applied in the flow
direction x1 and neutral direction x3. Table 2 lists the dimensions of
simulation regions expressed in dimensionless units, estimated
from the definition of reduced density per site and the number of
molecules for each system. In both geometries the contraction
ratio was fixed to b̂ ¼ 2, and in the case of the axisymmetric geom-
etry, b̂ ¼ 4 was also included. For the cylindrical geometry, the
dimensions of the simulation region are the same for the Boger
and LJ fluids; therefore, the total number of particles is set accord-
ing to the fluid density. In the rectangular geometry the particle
number is set to 15,000, such that taking into account the dimen-
sions of the region of simulation in directions x1 and x2, and the
density of each fluid, the length of the simulation region in neutral
direction (x3) can be calculated.

In a recent work [7] it has been shown that the ratio Lc1/Lc2 or
Lc1/D1 in the planar and cylindrical geometries, respectively, are
important parameters in predicting the rheological response of
the fluids through the contraction. For the cylindrical geometry,
Lc1/D1 has a value of 1.04 and 2.08 for b̂ equal to 2 and 4, respec-
tively. For the 2:1:2 rectangular geometry, Lc1/Lc2 is maintained
at a value of 1.0.

The non-equilibrium simulations carried out to reproduce the
flow condition require an initial configuration, which it is obtained
from equilibrium molecular dynamics. The generation of this ini-
tial configuration was different for each type of geometry. For
the rectangular region, the position vectors rN

i (t = 0) for the
15,000 sites are located on a lattice in the whole simulation
domain, which, in addition to the velocity vector vN

i (t = 0) and
force FN

i (t = 0), are used as an initial condition to obtain the
dynamics of the system in the absence of external perturbations.
However, in the cylindrical geometry it was not possible to equil-
ibrate the systems (mainly because of bond ruptures near the con-
traction) when the vectors rN

i (t = 0) were assigned in the whole
simulation domain. A strategy was developed performing equilib-
rium molecular dynamics simulations in cylindrical channels with
the same dimensions of the contraction and expansion. For exam-
ple, to obtain the initial configuration of the molecules solution in
the cylindrical geometry with b̂ ¼ 2, initially two configurations
were generated in cylinders with dimensions of length and diam-
eter of 14.84r by 14.84r, and 74.2r by 28.56r, respectively. The
resulting configurations are subsequently coupled with equilib-
rium dynamics to generate the vectors rN

i (t = 0) and vN
i (t = 0) used

as an initial conditions in the flow dynamics calculations.
To generate the pressure flow condition, in some studies of

molecular dynamics an external force field (Fe) is used, which rep-
resents an additional term in the equations of motion and affects
all particles in the simulation domain [37,41]. However, in this
study it is considered that Fe only affects the particles at the begin-
ning of the simulation region. The Fe enforcement interval is given
by m1 6 x1 6 m2, where m1 = �0.5L1 and m2 = �0.5L1 + L1/Nr with
Nr equal to 11 and 13 for the cylindrical and rectangular geome-
tries, respectively. Note that the measurement region, i.e., that por-
tion of the geometry in which averages of properties of interest are
gathered, is limited to the range �0:25L1 6 x1 6 0:25L1 and there-
fore it is not affected by the application of the external force field.
For both geometries, the magnitude of Fe remained in the range of
0 to 3:3er�1, with increasing 0:3er�1, where the maximum value
assigned to Fe was the one that develops the flow condition in
the cylindrical geometry with b̂ ¼ 4, i.e., without breaking the
bonds of the chain molecules.

Once the systems were equilibrated in the absence of external
disturbances, the duration of non-equilibrium simulations was
two million of integration steps (Dt = 0.001) for both geometries,
of which the first million is used to ensure that the flow reaches
the stable state, and the second million is used in the gathering
of properties for the averages estimations. To verify that the sys-
tem reaches the steady state, from the beginning of the simulation



Fig. 2. Schematic representation of cylindrical and rectangular simulation regions.
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the velocity profile at the centerline of confinement is monitored,
such that in all simulations the stability of the profile was obtained
even before the first million of integration steps were reached.

It is noteworthy that for the velocity field that develops in the
cylindrical geometry, the type of motion is axisymmetric, where,
v1 and v2 are different from zero. In the rectangular geometry,
the components of the velocity vector v1 and v2 are nonzero, so,
the type of motion is planar; further, it is important to note that
the application of periodic boundary conditions and minimum
image in x3-direction ensures that v3 = 0 with no x3-dependence.

4. Calculation of molecular properties

4.1. Radius of gyration hR2
gi

Conformations of linear molecules in solution for the two geom-
etries were analyzed. The mean-squared radius of gyration hR2

gi
was obtained by summing the three eigenvalues (hI2

1i; hI
2
2i; hI

2
3i) rep-

resenting the three main axes of the ellipsoid (containing the seg-
ment distribution in the three directions) of the mass distribution
tensor G [42].

4.2. Stress tensor

In this work, the plane method for non-homogeneous flow [37]
is used to calculate the pressure tensor in the fluid, according to the
following expression:

ruaðuÞ ¼
1
A

XN

i¼1

paipui

mi

* +
þ 1

2A

XN

i¼1

Faisgnðui �uÞ
* +

ð4Þ

where rua is the stress tensor component acting along direction a
through a plane normal to the u axis. A is the area of the plane nor-
mal to the u axis, sgn(ui � u) is equal to one if sgn(ui � u) > 0 and
to -1 if sgn(ui � u) < 0. Furthermore, Fai the a -component of the
force acting on particle i, and pai and pui are the a and u compo-
nents of the momentum of particle i, respectively. The stress tensor
r is related to the non-equilibrium components of the pressure ten-
sor such that r = �P. The total stress r implies the contribution of
the pressure and that of the viscous stress, such that r = �pI + s.
In molecular dynamics the total normal stress contains the non-
separable contributions from the viscous stress s and pressure pI.
The plane method allows for the calculation the stress components
r11 and r22 for planar and axisymmetric geometries. It is important
to mention that in recent works using molecular dynamics [43,44],
it has been found that normal stress differences depend strongly on
the internal energy (kinetic or configurational). Independently of
the thermostat used, the results show an underestimate in the value
of N1, which is smaller than that using a kinetic thermostat.

In the flow through a contraction–expansion, the fluid experi-
ences shear stresses at the walls of the geometry. In this regard,
previous works with molecular dynamics [45,46] indicated that
predictions of shear stresses are different when the thermostat is
applied to each molecular site (atomic thermostat) instead of a
molecular thermostat applied to the center of mass of the mole-
cules. Travis et al. [45] simulated a simple shear flow of a liquid
using a rigid molecular model, where results indicate that the
transport properties computed using an atomic thermostat are
identical to those obtained with a molecular thermostat at the
reduced shear rate of 2.0. Besides the fact that the thermostat is
applied to velocity components normal to the flow direction, in
this investigation a more flexible model is used and the reduced
shear rates achieved in the contraction region were not larger than
0.7.
5. Simple shear flow

In the introduction section, the experiments conducted by
Nigen and Walters [1] reveal that the excess pressure drop occurs
in axisymmetric but not in planar contraction–expansion geome-
tries, when the viscosity of the fluid non-Newtonian is similar to
its Newtonian counterpart. On the other hand, there is experimen-
tal evidence that in planar contraction–expansion micro-geome-
tries, the non-Newtonian fluid exhibits a higher-pressure drop
than that of the solvent used in the solution, because the viscosity
of the non-Newtonian fluid is larger than that of the solvent. Pre-
sumably, the difference in viscosities may be responsible for the
observed higher-pressure drop.

In this work, the densities of the Boger and L-J fluids are fixed at
0.84 and 0.87, respectively, ensuring that fluids exhibit the same
viscosity in the Newtonian low shear rate region of the flow curve
(g versus _c). A Boger fluid with concentration per site (/) expressed
as site number fraction equal to 0.10 was considered for the pres-
sure drop simulations. Here, the site number fraction is the ratio of
the solute number of sites and the total number of sites (solute and
solvent). This concentration is the same to that used elsewhere
[7,40] and it was selected to ensure a dilute regime according to
the value of the critical concentration (c*). In reduced units, c⁄ is
given by c� ¼ 3El=4pR3

g where Rg is the radius of gyration obtained
from equilibrium molecular dynamics (with a value of 2.25). It is
worth mentioning that the relaxation time of the Boger fluid is



Fig. 3. Reduced shear viscosity (g), shear stress (s21) and first normal stress
difference (N1) versus shear rate ( _c) for the Boger and L-J fluids.
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estimated (7.9) from the Rouse expression, k ¼ 6½g�Elgs=p2qT ,
where, [g] is the intrinsic viscosity and gs is the solvent viscosity.

Although molecular size and shape obtained from the radius of
gyration and its eigenvalues depend on the selected model, the
ratio of the eigenvalues ½I2

1=I2
3 : I2

2=I2
3 : I2

3=I2
3� is known to be indepen-

dent of this choice. For polymeric solutions this ratio is
[14.8:3.06:1.0], predicted by the ‘‘self avoiding random-walk’’
model [47]. The Boger fluid has an eigenvalue ratio of
[15.0:3.09:1.0].

The fluids were subjected to simple shear flow (Couette type) at
the same conditions of temperature and density used in the con-
traction–expansion geometries. Simple shear flow was simulated
using the SLLOD method [38], where the temperature was kept
constant by coupling the equations of motion to the Nose–Hoover
thermostat. Because of this characterization, Fig. 3 shows the var-
iation of the shear viscosity (g) as a function of shear rate ð _cÞ for
both fluids. Additionally, the first normal stress difference N1 and
shear stress s21 are also shown for the Boger fluid. N1 is quadratic
at low shear rates, but with a weaker dependence for increasing
shear rates. Notice that the Boger fluid possesses low elasticity,
since N1 shows values lower than those of the corresponding shear
stress s21. Fig. 3 exhibits that the viscosity of the L-J fluid is almost
constant, around a value of 2.5, in the range of simulated shear
rates ð0:002 6 _c 6 0:5Þ and N1 is zero, which is a good approxima-
tion to a Newtonian fluid. The viscosity of the Boger fluid is slightly
larger than that of the L-J fluid in the range 0:002 6 _c 6 0:02, but
past _c ¼ 0:02, the viscosity of both fluids is the same. As men-
tioned, the reduced density of the solution (q = 0.84) and L-J fluid
(q = 0.87) was selected to ensure that both fluids exhibit the same
shear viscosity, allowing a univocal analysis of the elastic response
of the fluids under extensional flow conditions.
6. Results

In this section, we present results of the pressure drop, exten-
sional strain rate and molecular conformations that the fluids exhi-
bit through the geometries already detailed. These variables were
chosen on the basis that in previous works [39,30,7], where, it
has been shown that the pressure drop is closely related to the
extensional viscosity, or the resistance to extensional flow.

Results were obtained for a number of time-averaged fluid
properties. To determine an average property, we divide the test
region into a sufficient number of slices (for velocity, radius of
gyration) or planes (for stress profiles). Then, we calculate the
time-averaged property for each slice or plane. For example, we
add the x1-component of the particle velocities in each slice and
then we average over the number of particles in that slice at each
time step. Finally, the velocity profile is obtained by computing the
time average velocity for each slice during the simulation. Similar
considerations for the stress profiles are made.

6.1. Prediction of the excess pressure drop (epd)

In this work we use the planes method to estimate the r11 and
r22 components, corresponding to the flow and gradient direc-
tions, respectively. Elsewhere [40,7] we have already detailed the
calculation of the stress components in rectangular geometries,
so now we focus on explaining this calculation in the cylindrical
geometry. For this sake, a cylinder with a length of 0.5L1 and a
diameter of Dp = 1r is placed in the measurement region along
the centerline of confinement, which is divided into Np1 (=50) cross
sections. Because of these cuts, a Np1 � 1 rings and circles perpen-
dicular to the radial and axial direction are available, respectively.
The rings, with Dp diameter are used to estimate the stress tensor
component r22, considering that each one forms a normal plane to
the radial coordinate with an area equal to 0.5pDpL1/(Np1 � 1).
According to the planes method, the estimate of r22 involves calcu-
lating the force in the radial direction that a particle i experiences
when interacting with a particle j, and the line of interaction
crosses the plane whose radial coordinate is rp = 0.5r. As already
mentioned, the radial force of the particle i is obtained by knowing
its angular coordinate and scalar components of the force in the x2

and x3 directions. Calculation of the extensional stress r11 involves
circular planes normal to flow direction with an area of 0:25pD2

p .
With the planes method, the profiles of the r11(x1) and r22(x1)

components of the stress tensor for planar and axisymmetric
geometries are estimated, respectively, within the simulation
region and in the flow direction. With r22(x1), pressure profiles
P(x1) are obtained, where each profile corresponds to a given volu-
metric flow (Q), where Q is obtained by multiplying the average
velocity hvi by the flow area Af, both measured at the beginning
of the measurement region. The average velocity is the mean value
of the velocity evaluated in the central line of confinement (x2 = 0).
Af is equal L2L3 and 0:25pD2

2 in the planar and axisymmetric geom-
etries, respectively.

In a 2:1:2 planar geometry, Castillo-Tejas et al. [7] simulated the
flow of L-J and Boger fluids but at a slightly larger density. Results
reveal that the pressure drop is the same in both fluids. This equal-
ity arises from the pressure variation in the flow direction (x1),
which was similar for a given Q. Now, Fig. 4 shows the pressure
as a function of axial coordinate for the axisymmetric geometry
with b̂ ¼ 2 and a flow rate of 230; in the inset the planar geometry
with the same b̂ is shown with Q = 106. First, in the planar config-
uration we observe that the pressure profile is similar in both flu-
ids, even though the L-J fluid pressure is slightly larger than in the
Boger fluid. Prior the contraction, the pressure has a value of 19
and 16.6 for L-J fluid and Boger fluid, respectively; and the largest
loss occurring at the entrance of the contraction (x1 = �7.42).
Within the contraction, pressure continues decreasing down to a
minimum prior to a recovery at x1 = 20.0. The range of flow rates
achieved in the simulations for the planar configuration was
0 6 Q 6 187:0. The important issue here is that the pressure drop
is the same for both fluids.

A very important result is that, in contrast, we observe a higher-
pressure drop in the axisymmetric geometry. The pressure at the
beginning of the measurement region (x1 = �40.0) is 27.35 and
23.60 for the Boger and L-J fluids, respectively, demonstrating that
prior to the entry region the pressure is higher in the Boger fluid, in
contrast to the behavior observed in the planar configuration. In
both geometries, the highest-pressure loss occurs when the fluid
enters the contraction (x1 = - 7.42), and when the fluid leaves it,



Fig. 4. Variation of the reduced normal stress (r22) (or pressure) evaluated at the
central line of confinement as a function of the axial coordinate (x1) in the
axisymmetric geometry for both fluids. In the inset, the planar geometry results are
included.
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the pressure is higher in the L-J fluid. In both configurations a
repulsive potential was used to simulate the wall effect such that
with varying force of attraction to the walls, the fluid may slip at
the surfaces [48], reducing the friction between layers of fluid,
and therefore, less dissipation leads to a small reduction in the
pressure prior to contraction.

The total pressure drop, DP = P0 � P1 is obtained from pressure
the profiles P(x1), where P0 and P1 are the pressures at the begin-
ning and end of the measurement region, corresponding to the
planes located at x1 = � 0.25L1. Fig. 5 shows DP as a function of
flow rate Q for both configurations with b̂ ¼ 2, and in the inset,
DP is also shown for the cylindrical geometry for b̂ ¼ 4. Although
the maximum value of Fe in the simulations was 3.3er�1, the max-
imum flow rate reached was 181.0 in the planar 2:1:2 geometry,
268.0 in the 2:1:2 cylindrical geometry and 50.0 in the 4:1:4 axi-
symmetric geometry, indicating that upon increasing b̂ the limiting
flow rate decreases.

Fig. 5 shows that when the fluids have the same shear viscosity,
DP is the same for both fluids in the planar geometry, which is
consistent with the results obtained by Nigen and Walters [1]. Note
that the variation of DP with Q is linear (with a slope proportional
to the viscosity of the system) up to a flow rate of 126.0, and there-
Fig. 5. Reduced pressure drop (DP) as a function of the flow rate (Q), for the Boger
and L-J fluids in both geometries. In the inset, the 4:1:4 axisymmetric geometry
results are shown.
after is non-linear. This slope change reveals the strain hardening
of the viscosity under extensional strain, and it is observable in
the L-J fluid. Notice that the L-J fluid with constant viscosity may
exhibit non-Newtonian behavior that strictly does not correspond
to a Newtonian fluid. Non-Newtonian effects in L-J fluids have
already been reported previously [49,50].

In the axisymmetric 2:1:2 geometry, the variation of DP(Q) is
linear up to a flow rate of 143.0 and 180.0 in Boger and L-J fluids,
respectively, and thereafter, DP increases with Q with a steeper
slope (0.25). At flow rates lower than 143.0, DP is the same in both
fluids, and for larger flow rates, DP is higher in the Boger fluid than
that of the L-J fluid for the same Q, predicting values of the excess
in pressure drop (epd) larger than one. This excess pressure drop
appears at the onset for slope change in the DP(Q) curve. The inset
in Fig. 5 shows that upon increasing the contraction ratio (b̂) the
pressure excess in the Boger fluid appears at Q values five times
lower than for b̂ ¼ 2, indicating that the reduction in the flow area
increases the dissipation under extensional flow. If we assume that
the product DPQ is proportional to the dissipation, for a given flow
rate the 4:1:4 geometry produces higher dissipation.

For a contraction ratio of two, Fig. 5 shows that the total pres-
sure drop in the planar configuration is larger than that in the axi-
symmetric case; this result is not consistent with experimental
measurements [1]. As mentioned in the beginning of this section,
the estimation of stress is performed with the method of planes,
such that 49 rings perpendicular to the radial direction are consid-
ered. Each ring has a diameter of one and is located on the center-
line of confinement (x2 = 0). Under Poiseuille flow through a
circular conduit for the Boger fluid (at same density, q = 0.84, used
here) we obtained the variation of reduced density (q) as a func-
tion of radial coordinate (r). Results show that the fluid is ordered
in layers at the immediate vicinity of the tube wall, which disap-
pear toward the centerline of confinement. However, in the range
0 6 r 6 0:5 the density is about 0.65, which is lower than 0.84.
Since the rings to measure r22 are located at this portion of the
measurement region, perhaps this is the reason by which the total
pressure drop in the axisymmetric configuration is smaller than in
the planar one. It is noteworthy that this decrease in density when
r tends to zero disappears with increasing density of the system,
and it is not present in rectangular geometries [48]. We are cur-
rently giving attention to these issues to identify the causes of this
particular behavior.

In a previous work [7] it was predicted that for a planar geom-
etry, the pressure drop of a Boger fluid and the L-J fluid is similar
for a given volume flow rate, provided that both have the same
shear viscosity. This equality of pressure drop is related to similar
pressure profiles, extensional strain rate and viscous dissipation.
To corroborate this, in Fig. 6, the extensional strain rate ( _e) is plot-
ted as a function of the axial coordinate (x1) for Boger and L-J fluids
in the axisymmetric 4:1:4 (Q = 38) and planar 2:1:2 (Q = 106) con-
traction–expansion geometries. The figure shows that in the planar
configuration, _e is the same throughout the simulation region for
both fluids, which is consistent with pressure drop shown in the
Fig. 5 and with previously reported results [7]. In contrast to the
planar case, at the contraction entry length x1 = �7.42 (point of
maximum pressure drop) of the axisymmetric 4:1:4 geometry,
the extensional strain rate is larger in the Boger fluid than in the
L-J fluid, which is consistent with the larger DP exhibited by the
Boger fluid in Fig. 5. Extensional strain rate _e goes through a max-
imum of 0.52 and 0.72 in the L-J and Boger fluids, respectively, and
at the contraction exit length 13:0 6 x1 6 20, both fluids go
through a minimum of _e with an approximate value of 0.34. The
maximum and minimum in extensional strain rate is associated
to the increase and decrease in velocity (v1) that the fluids exhibit
in the contraction; and _e hovers around zero in those portions of
the measurement region where the velocity remains constant.



Fig. 6. Variation of reduced extensional strain rate ( _e ¼ Dv1=Dx1) as a function of
the axial coordinate (x1) in the axisymmetric geometry (4:1:4) for both fluids is
compared to predictions in the planar geometry.
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In Fig. 5, an excess pressure drop for the Boger fluid in axisym-
metric configurations is predicted, but not in the planar geometry.
This excess pressure drop is usually presented as the extra pressure
drop lost by the reduction in fluid flow area ðDPEntryÞ, given by:

DPEntry ¼ DP � DP0 � DP1 ð5Þ

where DP is the total pressure drop shown in Fig. 5, DP0 and DP1 are
the pressure drops at developed flow conditions, before and after
contraction. As shown in Fig. 4, the pressure loss before and after
the contraction is practically negligible, so that DP represents a
direct measurement of the pressure loss caused by the reduction
in flow area, such that, DPEntry � DP. Based on the above, the dimen-
sionless pressure drop (DPAdim) may be defined as follows:

DPAdim ¼ DPEntryðDe;QÞ=DPEntry�LJðDe ¼ 0;QÞ ð6Þ

where DPEntryðDe;QÞ is the pressure drop experienced by the mole-
cules of the Boger fluid at a given volume flow rate, and
DPEntry�LJðDe ¼ 0;QÞ is the pressure drop experienced by L-J fluid,
at the same conditions.

In Fig. 7 we show a remarkable prediction: the excess pressure
drop (epd) for the three geometries is plotted with Deborah num-
ber ðDe ¼ k _cAppÞ, where, k is the relaxation time and _cApp as the
apparent shear rate. The latter is hvci=H, where hvic is the mean
velocity of fluid in contraction and H is 0.5Lc2 and 0.5D1 for planar
Fig. 7. Dimensionless pressure drop DPAdim ¼ DPEntryðDe;QÞ=DPEntry�LJðDe ¼ 0;QÞ as
a function of Deborah number De for the Boger fluid in the three geometries.
and axisymmetric configurations, respectively. In the planar geom-
etry, the dimensionless pressure drop DPAdim reaches values lower
than those of the L-J fluid throughout the range of Deborah num-
bers, except De equal to 0.5 and 3.0. In the 2:1:2 axisymmetric con-
traction–expansion DPAdim decreases below one slightly at
1:0 6 De 6 1:5 but rises to levels near 40% at De = 3.13. More dras-
tic is the rise observed in the 4:1:4 axisymmetric geometry, where,
increases over 150% are predicted even for low values of Deborah
number.

In a recent paper [51], numerical predictions of the excess pres-
sure drop for the flow of FENE-CR fluids through a 4:1:4 contrac-
tion–expansion geometry are exposed. Various forms of this
model possessing first normal stress differences weaker than qua-
dratic and high levels of extensional viscosity are able to predict
enhanced epd, up to values around 28%, which are quite small to
those observed experimentally. This value of the epd corresponds
to a Deborah number of 70, while in the range 0 6 De 6 4, authors
predict an epd value lower than 5%. In this investigation and for a
De = 3.2, a value in epd of 40% and 60% for planar and axisymmetric
configurations are predicted, respectively. Experimentally, Roth-
stein and McKinley [3] reported an increase of approximately
60% at a Deborah number of 3.2 in the flow of a Boger fluid through
a 4:1:4 axisymmetric configuration.

To assess the inertial effects, the maximum Reynolds number
achieved in the simulations was 11.3 and 6.6 for 2:1:2 planar
and axisymmetric configurations, respectively. With b̂ ¼ 4:0, a
Reynolds number of 2.21 in the axisymmetric configuration was
reached. As shown in Fig. 3 for the Boger fluid, the first normal
stress difference N1 exhibits a weaker-than-quadratic dependence
for increasing shear rates, and therefore, Boger fluid possesses low
elasticity; and hence, moderate to low Reynolds numbers are
achieved in the simulations. It is important to mention that inertial
or elastic effects on pressure drop depend on type of contraction–
expansion configuration. Perera and Walters [52] found that the
pressure drop is five orders larger upon increasing inertia (in terms
of the Reynolds number) than that attained with increasing
elasticity.

Finally, experimental studies have reported vortex formation at
the exit of the contraction with Reynolds numbers of 0.1, whose
evolution is qualitatively different in the axisymmetric or planar
configurations [2,8]. In this work, simulations were not intended
to identify the vortex formation; however, in a previous study of
molecular dynamics [6], we have predicted vortices at the outlet
of a 4:1:4 planar contraction–expansion.

6.2. Boger fluid: a comparative between 2:1:2 planar and
axisymmetric geometries

It is apparent that the fluid response to extensional strain for a
given volume flow rate is responsible for the observed pressure
drop. It is now important to analyze the cause of different
responses exhibited by the Boger fluid in 2:1:2 axisymmetric and
planar geometries. According with the results shown in Fig. 7, we
choose a De � 3:0 and Re � 6:6 to analyze the molecular configura-
tion and extensional strain rate of the Boger fluid in both geome-
tries, taking care that the inertial and elastic effects are similar in
the comparisons. First, respect to the final configuration, Fig. 8a
shows the side view of the molecular conformations of the Boger
fluid, corresponding to the axisymmetric contraction–expansion.
When the molecules enter the contraction, they experience an
elongation in the direction of flow, and at the contraction exit, they
have a more coiled conformation than that prior to the contraction.
As in the planar configuration (not shown), the molecules undergo
extensional flow when they enter the axisymmetric contraction,
and there are almost no differences in molecular conformation in
regions distant from the contraction. In the axisymmetric case,



Fig. 8. (a) Lateral and, (b) transversal view of the position vector rN
i ðtÞ for the Boger fluid in the 2:1:2 geometry.
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the molecules fill the whole domain of simulation in the gradient
direction (x2) (see Fig. 8b).

It is likely that differences in extensional strain rate exhibited
by Boger fluid in both configurations are related to conformation
of their molecules. Fig. 9 presents the variation of mean-square
mass distribution tensor eigenvalue hI2

2i of molecules in the Boger
fluid as a function of the axial coordinate x1, in both geometries at
the same Deborah number. The magnitude of the eigenvalue
defines the distribution of molecule monomers in the gradient
direction x2. The first interesting observation is that at the begin-
ning and end of the measurement region, the size of the molecule
in the gradient direction is the same in both configurations, with
an approximate value from 0.24 to 0.26. To enter the contraction,
the molecules experience a compression in the gradient direction,
which is manifested by a minimum in hI2

2i. This corresponds to a
minimum value of 0.19 and 0.11 in planar and axisymmetric con-
figurations, respectively. The important result is that a larger
Fig. 9. Variation of mean-square mass distribution tensor eigenvalue hI2
2i as a

function of the axial coordinate x1 for the Boger fluid in the 2:1:2 geometry and
e = 3.0. In the inset, the conformational change DhI2

2i with De is included.
change in molecular conformation is then observed in the axisym-
metric geometry.

The variation in the molecular conformation in both geometries
reflects the larger pressure drop predicted in the axisymmetric
geometry. In the inset of Fig. 9, the variation of DhI2

2i is presented
as a function of the Deborah number for both geometries, where
DhI2

2i ¼ hI
2
2i0 � hI

2
2ic is the difference between the mean-square

mass distribution eigenvalue evaluated at the beginning of the
measurement region ðhI2

2i0Þ and that evaluated at the entrance of
the contraction ðhI2

2icÞ. In the inset is shown that DhI2
2i is positive,

increasing almost linearly with the Deborah number in both geom-
etries. The average of DhI2

2i reveals a value of 80% higher in the axi-
symmetric case respect to the planar geometry.

The magnitude of the change in molecular conformation along
the flow trajectory is then the important factor. Rothstein and
McKinley [3,8] mentioned that the pressure drop in the axisym-
metric case is associated with the stress-conformation hysteresis
cycles whose areas represent the work required to deform the mol-
ecule. In Fig. 10, a stress-conformation hysteresis cycle for mole-
cules of solution in two configurations is predicted. The cycle is
expressed in terms of first normal stress difference N1 and the
mean-squared radius of gyration R2

g . At a Deborah number of 3,
the total pressure drop is 5.5 and 19.9 for planar and axisymmetric
configurations, respectively, such that, the largest area enclosed in
the hysteresis loop corresponding to that configuration with the
highest pressure drop predicted. Results shown in Fig. 10 indicate
the work required to deform the molecules, and that this state of
strain is responsible for the dissipation or pressure drop.

Fig. 11 show the variation of the extensional strain rate _e and
velocity v1 (see inset) as functions of the axial coordinate in both
geometries for the Boger fluid. The velocity v1 is larger in the axi-
symmetric case than in the planar geometry along the entire flow
domain. The strain rate goes through a maximum with larger mag-
nitude in the axisymmetric case ð _e ¼ 0:57Þ than in the planar
geometry ð _e ¼ 0:19Þ. The peak in the strain rate coincides with
the minimum in the mean-square mass distribution tensor eigen-
value I2

2 observed in Fig. 9. The extensional flow causes the change
in molecular conformation that is reflected in the larger pressure



Fig. 10. Mean-square radius of gyration hR2
g i as a function of normal stress

difference r11 � r22 , at Deborah number of 3.0.

Fig. 11. Variation of reduced extensional strain rate _e for the Boger fluid as a
function of the axial coordinate x1 in both geometries with 2:1:2 contraction ratio at
De � 3:0 . In the inset, the velocity field under same conditions is included.

Fig. 12. Variation of the difference of velocities hvim � hvi as a function of the axial
coordinate x1 for the Boger fluid in both geometries with 2:1:2 contraction ratio at
De � 3:0.
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drop predicted in the axisymmetric case for the Boger fluid with
respect to the L-J fluid.

7. Discussion and concluding remarks

In this work, molecular dynamics simulations are carried out to
describe the rheological behavior of Boger and Lennard-Jones fluids
through axisymmetric and planar contraction–expansion geome-
tries, where, both fluids exhibit the same shear viscosity. To pro-
duce the flow, an external force term is included to represent the
pressure gradient in the equations of motion, which are coupled
to Nose–Hoover dynamics to keep the constant temperature in
the simulations. The boundaries in gradient direction in the planar
and axisymmetric geometries are simulated with a repulsive
potential.

Results predict larger pressure drop DP in the Boger fluid than
that in the L-J fluid in the axisymmetric geometry, while in the pla-
nar case, the pressure drop that both fluids exhibit reaches same
values. In the axisymmetric geometry the excess pressure drop
(ratio of the pressure drop of the Boger fluid to that of the L-J fluid)
reaches values larger than 1 when a change in the slope in the
DP(Q) curve from linear to non-linear is apparent. The upward
change of the pressure profiles is thereby related to the strain
hardening of the resistance to extensional deformation (exten-
sional viscosity).
The excess pressure drop (epd) depends on the changes in con-
formation of the molecules, and hence on the elasticity of the mol-
ecule, and how the onset of elastic effects are induced or delayed
by the specific geometry. Fig. 12 shows the difference in velocities
hvim � hvi (where hvim is the mean velocity of the monomers of
molecules and hvi is mean velocity of fluid) for the Boger fluid as
a function of axial coordinate x1 in both geometries. Larson [53]
has pointed out that this difference in velocities (which is a kind
of non-affine motion) is a measure of additional drag forces
(hydrodynamic interactions) between the molecules and the sol-
vent in dilute solutions. In the axisymmetric and planar cases,
hvim � hvi is zero in regions far from the contraction since the
velocity of the chains and that of the solution is the same, and
hence, hydrodynamic interactions do not affect the molecular con-
formation. However, in both configurations, hvim � hvi is larger
than zero at input and exit of the contraction, indicating the pres-
ence of additional drag forces caused by the non-affine motion
through hydrodynamic interactions with the solvent. In the planar
case, hvim � hvi is 0.88 and 1.37 at the entry and exit of the con-
traction, respectively, which contrasts with values of 1.8 and 3.12
of the axisymmetric geometry. Furthermore, in the axisymmetric
case, as soon as the fluid enters the contraction hvim � hvi is nega-
tive, revealing differences in the motion of the molecules with
respect to that of the solution. This non-affine motion is presum-
ably responsible for the increased extension in the molecular con-
formation. In the planar contraction–expansion, non-affine motion
is reduced with respect to the axisymmetric case, where there is a
larger change in molecular conformation. The work necessary to
deform the molecules causes larger dissipation and hence larger
pressure losses in the axisymmetric contraction–expansion
geometry.

Finally, a remarkable prediction of the present work is the large
increases in epd in the 4:1:4 contraction–expansion geometry,
even with low values of N1. The predicted values amount to more
than 150%, which are right steps in the direction of predicting the
large epd levels found experimentally for Boger fluids.
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