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The structural parameters, elastic and electronic properties of Nb2AC (A = S and In) phases were investi-
gated under pressure using first-principles plane-wave pseudopotential density functional theory within
the generalized gradient approximation. We find that the effect of pressure on the crystal structure
reflects in a compression of the unit cell-volume, mainly along the c-axis. On the other hand, the elastic
constants, elastic modulus and the Debye temperature hD increase monotonically as the pressure
increases. The relationship between brittleness and ductility shows that Nb2AC are brittle at 0 GPa and
only the Nb2SC phase tended to be ductile under pressure from 4 GPa to 10 GPa. Finally, we find that
the density of states at the Fermi level decrease in the Nb2InC phase and increase in Nb2SC phase under
pressure.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Ternary carbides and nitrides with the chemical formula Mn+1-

AXn present a new class of solids [1]. MAX phases are made up
of an early transition metal (M), an A-group element of the periodic
table, and either carbon or nitrogen (X), the subscript in changing
from 1 to 3 [1]. Most of these phases were synthesized by Nowotny
and co-workers in the sixties [2]. For these last years, the efforts of
characterization of MAX phases, have shown interesting and unu-
sual set of properties of these materials [3–5]; generally they pres-
ent a good thermal and electrical conductivity, machinable, with
exceptional resistance to thermal shock, are good oxidation resis-
tant, quite stiff and relatively light [1,3–5].

In the family of carbines, only seven low-temperature super-
conducting materials have been discovered: Mo2GaC (Tc = 4 K
[6]), Nb2SC (Tc = 5 K [7]), Nb2SnC (Tc = 7.8 K [8]), Nb2AsC (Tc = 2 K
[9]), Ti2InC (Tc = 3 K [10]), Nb2InC (Tc = 7.5 K [11]) and Ti2GeC
(Tc = 9.5 K [12]). Let us note that for the majority of the other
MAX phases experimental or theoretical researches of their super-
conductivity are still absent.

Few experimental and theoretical works have been done to
investigate the structural, elastic and electronic properties of
Nb2AC with A = S and In under pressure. Recent studies on Nb2SnC
under pressure [13] shows that the structural parameter (z) shifts
with pressure and thus presents a different variation mechanism
from that of the other hexagonal lattice with a similar structure.
The shift of the Nb atom along the c-axis might also contribute
to the stiffness of the c-axis. On the other hand, it also shows that
the density of states (DOS) at the Fermi level decreases with
increasing pressure, due to the decrease of the contribution of Nb
4d states at the Fermi level.

In the present paper, we would like to deepen our understand-
ing of this system Nb2AC (A = S and In) under pressure by the
determination of their structural, elastic, electronic properties,
using first-principles plane-wave pseudopotential density func-
tional theory within the generalized gradient approximation
(GGA).
2. Methods of calculation

In this work we have carried out a serie of calculations based on
the CASTEP (Cambridge Serial Total Energy Package) code [14,15],
which built on the density functional theory (DFT) [16], the inter-
action between valence electron and core electron was treated
under the pseudopotential approximation and the plan wave ap-
proach (PP-PW) [17]. Exchange–correlation energy was estimated
within Perdew–Wang functional (PW91) [18]. First-principles elec-
tronic structure calculations may be performed with sufficient
accuracy to resolve energy differences as small as a few meV per
atom. Total energy is the main quantity in first principal calcula-
tions [14], we have used the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) algorithm [19] to find the lowest energy of the crystal
with an energy tolerance of 10�6 eV/atom. First Brillouin zone
was sampling on 9 � 9 � 8 irreducible k points [20]. We employ
the norm conserving pseudopotential model [21], with a cut off en-
ergy 360 eV. Careful convergence tests show that with these
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Table 1
Summary of calculated structural parameters (a, c, c/a, z and V) phases at zero pressure for the Nb2AC (A = S and In), compared with available previous experiment and other
theoretical results.

Phase Methods a (Å) c (Å) c/a z V (Å3) Reference

Nb2SC GGA PW91 3.307 11.642 3.521 0.0949 110.25 This work
Exp. 3.294 11.553 3.507 0.0964 108.56 [7]
FLAPW-GGA 3.3204 11.7093 3.527 0.0952 111.80 [22]
FLAPW-GGA 3.2942 11.7835 3.577 0.096 [23]
GGA-PBE 3.290 11.670 3.550 0.0956 [24]
GGA-PW91 3.312 11.65 3.517 [27]

Nb2InC GGA-PW91 3.185 14.546 4.567 0.0822 127.79 This work
Exp. 3.172 14.37 4.530 [11]
FLAPW-GGA 3.1933 14.4952 4.5392 0.0821 128.01 [22]
GGA-PW91 3.1889 14.4703 4.537 0.0827 [25]
LDA CA-PZ 3.137 14.280 4.552 0.0830 [26]
GGA-PW91 3.196 14.47 4.527 [27]

(a) (b)

Fig. 1. (a) The normalized a/a0, c/c0 and volume V/V0 as a function of pressure at T = 0. (b) Variation of the normalized bond lengths between the atoms with pressure.
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parameters, the convergence of the total energy calculations is
guaranteed. The convergence tolerances were set as follows:
0.002 eV/Å for the maximum force on atoms, 10�4 Å for the maxi-
mum atomic displacement, and 0.003 for the maximum strain
amplitude.
3. Geometry and structure optimization

The considered superconducting Nb2AC (A = S and In) phases
possess the hexagonal structure with a space group P63/mmc
(No. 194), where blocks of transition metal carbides [NbC] (formed
by edge-shared Nb6C octahedron) are sandwiched with A atomic
sheets. The Wyckoff positions of atoms are C: 2a (0, 0, 0), A: 2d
(1/3, 2/3, 3/4), and Nb atoms: 4f (1/3, 2/3, z), where z is 0.09493
and 0.0807 for A = S [7] and In [11], respectively.

Firstly, all the structures Nb2AC (A = S and In) were optimized for
each pressure value up to 10 GPa, with respect to internal parame-
ters z, energy, force, stress, and displacement (see Table 1). In
Fig. 1a, we exhibit the pressure dependence of the normalized lat-
tice parameters a/a0, c/c0 and volume V/V0 (where a0, c0, and V0

are the structural parameters at 0 GPa). The normalized bond
lengths r1/r10 and r2/r20 (where r10 and r20 are the bond lengths of
Nb–A = S, In and Nb–C at 0 GPa, respectively) are shown in Fig. 1b.

We notice in Fig. 1a that, when pressure increases from 0 to
10 GPa, the compressibility along the c-axis increase from S to
In; as a consequence, the curve of r1/r10 becomes steeper than
the corresponding one of the r2/r20, indicating that the direction
along Nb–A (A = S and In) is more easily compressed. Moreover,
according to Fig. 1b, we can also observe that the stiffness of Nb–
C bonds essentially unchanged for A = S and In. Therefore, the
atoms in the interlayers become closer, and the interactions be-
tween them become stronger; contractions of Nb–A and Nb–C
bond lengths under pressure result in the change of bonding
anisotropy of Nb2AC structure, which induces the variety of elec-
tronic structure.
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4. Elastic stiffness tensor calculation

Several methods are available for computation of elastic con-
stants, but currently the finite strain method seems to be most
commonly used, and this one is used in the present work. In this
approach, the ground-state structure is strained according to sym-
metry-dependent strain patterns with varying amplitudes and a
subsequent computing of the stress tensor after a reoptimization
of the internal structure parameters, i.e., after a geometry optimi-
zation with fixed cell parameters. The elastic constants are then
the proportionality coefficients relating the applied strain to the
computed stress, r = Cijej.

From the optimized structure of the Nb2AC (A = S and In) phases
under pressure we have calculated the fifth independent elastic
constants C11, C12, C13, C33, C44, which allowed us to obtain the bulk
K and shear G moduli (see Fig. 2a). Usually, for such calculations,
two main approximations are used, namely the Voigt (V) [28]
and Reuss (R) [29] schemes.

Thus, in terms of the Voigt approximation, these moduli are:

GV ¼
1

30
ðC11 þ C12 þ 2C33 � 4C13 þ 12C44 þ 12C66Þ ð1Þ

KV ¼
1
9
½2ðC11 þ C12Þ þ C33 þ 4C13�: ð2Þ

In terms of the Reuss approximation:

GR ¼
5
2 fC44C66½C33ðC11 þ C12Þ � 2C2

13�g
3KV C44C66 þ ðC44 þ C66Þ½C33ðC11 þ C12Þ � 2C2

13�
ð3Þ

KR ¼
C33ðC11 þ C12Þ � 2C2

13

C11 þ C12 þ 2C33 � 4C13
: ð4Þ

For estimations of elastic parameters for polycrystalline materi-
als, Hill’s approximation [30] is widely used, where the actual
effective moduli for polycrystals are expressed as the arithmetic
mean of the two above-mentioned limits – Voigt and Reuss:
G ¼ 1

2(GR + GV) for shear moduli and K ¼ 1
2(KR + KV) for bulk moduli,

(see Fig. 2b).
Using these values, Young’s modulus (E) and Poisson’s ratio (m),

can be obtained by
(a)

Fig. 2. (a) Elastic constants and (b) variation of the G/K and Poisson ra
E ¼ 9KG
3K þ G

ð5Þ

and

m ¼ 3K � 2G
2ð3K þ GÞ : ð6Þ

To evaluate the mechanical anisotropy we using the bulk
modulus along the a and c-axes (Ka and Kc), respectively as [31].

Ka ¼
K

2þ a
ð7Þ

Kc ¼
K

2aþ a2 ð8Þ

K ¼ 2ðC11 þ C12Þ þ 4C13aþ C33a2 ð9Þ

a ¼ C11 þ C12 � 2C13

C33 � C13
: ð10Þ

On the other hand, we calculate its anisotropies in compression
and shear,[32] respectively, as

Acomp ¼ 100
KV � KR

KV þ KR
ð11Þ

and

Ashear ¼ 100
GV � GR

GV þ GR
ð12Þ

The above elastic parameters presented in Table 2 allow us to
make the following conclusions: (i) The Cij constants for Nb2AC
phases are positive and increase monotonically under pressure;
and satisfy the generalized criteria [33] for mechanically stable
crystals: C44 > 0, C11 > jC12j, and (C11 + C12) C33 > 2C2

13. (ii). From Ta-
ble 2 is observed that the Nb2SC phase (200.1 GPa) has a bulk mod-
ulus (K) higher than the Nb2InC phase (156.4 GPa); in turn, in both
phases the shear moduli (G) are similar: 100.3 for Nb2SC and 101.1
for Nb2InC. Thus, for the considered phases K > G; this implies that
the parameter limiting the mechanical stability of these materials
is the shear modulus. (iii). According to Pugh’s criteria [34], a mate-
rial should behave in a ductile manner if G/K < 0.5, otherwise it
should be brittle. For 0 GPa, (Nb2SC)G/K = 0.50 < (Nb2InC)G/K = 0.65;
(b)

tio (m) for the Nb2AC (A = S and In) phases in function of pressure.



Table 2
Elastic constants (Cij), bulk modulus (K, in GPa), shear modulus (G, in GPa), Young modulus (E, in GPa) and Poisson’s ratio (m) of Nb2AC (A = S, In) at 0 GPa.

Phase C11 C12 C13 C33 C44 K G E m Reference

Nb2SC 309.9 116.9 154.0 340.5 115.8 200.1 100.3 257.9 0.285 This work
303.6 116.9 155.1 315.7 88.1 220.9 88.6 234.5 0.323 [22]
320.1 100.8 152.5 327.2 125.2 196.8 107.7 273.2 0.270 [24]
309.0 106.0 159.0 310.0 118.0 197.0 101.0 258.0 [27]

Nb2InC 302.5 76.3 98.8 256.3 100.1 156.4 101.1 249.6 0.234 This work
291.0 77.0 118.0 289.0 57.0 182.4 79.6 208.5 0.309 [22]
286.9 74.1 107.3 265.1 104.0 [25]
363.0 103.0 131.0 306.0 148.0 187.0 [26]
291.0 76.0 108.0 267.0 102.0 159.0 99.0 247.0 [27]

Table 3
Mechanical anisotropy (Ka, Kc) and anisotropies in compression and shear (Acomp,
Ashear) of Nb2AC (A = S, In) at 0 GPa.

Phase Ka Kc Acomp Ashear Reference

Nb2SC 524.9 824.0 0.52 0.97 This work
527.0 767.4 [22]
522.1 786.9 [24]
517.1 805.0 [27]

Nb2InC 492.5 428.0 0.08 0.67 This work
459.1 594.7 [22]
460.5 496.4 [25]
469.6 494.4 [27]

Table 4
Debye temperature (hD), Grüneisen constant (c) and unit cell-volume (Å3) of Nb2SC
and Nb2InC phases at 0 GPa.

Phase hD c V (Å3) Reference

Nb2SC 502.7 1.82 110.30 This work
540.0 109.39 [24]

Nb2InC 454.8 1.61 127.40 This work
457.1 1.64 127.44 [25]
515.0 121.70 [26]
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i.e. according to this indicator the Nb2AC phases will behave in a
brittle manner; however, when the pressure increases from 4 to
10 GPa, the Nb2SC phase tended to be ductile (see Fig. 2b). (See
Tables 3 and 4)

An additional argument for the variation in the brittle/ductile
behavior of Nb2AC phases follow from the Poisson ratio m. Indeed,
for brittle materials, these values are small enough, whereas for
ductile metallic materials, m is typically 0.33. In this work, the Pois-
son ratio m calculated from 0 GPa to 10 GPa behaves as: (Nb2-

SC)m = (0.285–0.288) > (Nb2InC)m = (0.234–0.249); for the pressure
range studied, the Nb2AC phases will behave in a brittle manner
(see Fig. 2b).

On the other hand, for determine the types of chemical bond,
we using the typical relation between bulk and shear modulus
(G/K): for covalent and ionic materials, the values are G/K � 1.1 K
and G/K � 0.6 K, respectively. In our cases, G/K values change from
0.50 to 0.49 for Nb2SC and from 0.64 to 0.60 for Nb2InC. The previ-
ous results suggest that the ionic bonding is important in the
Nb2AC compounds.

Fig. 3a shows the mechanical anisotropy Ka and Kc values
against pressure. We observed clearly that Ka and Kc increased lin-
early in the pressure range studied. In the Nb2SC phase, Kc > Ka

from 0 GPa to 10 GPa; whereas for the Nb2InC phase Ka > Kc for
pressures lower than 5 GPa and Kc > Ka for pressures higher than
5 GPa. The larger Kc at high pressure is consistent with the stiffness
of c-axis. Fig. 3b shows the elastic anisotropy, it is observed that
while the value of Acomp decrease in both phases; the value of Ashear

increases in the Nb2SC phase and decrease in Nb2InC under pres-
sure. Obviously, the Nb2AC phases are isotropic in compression
and in shear, but the degree of isotropy decreases with pressure.

As an important fundamental parameter, the Debye tempera-
ture (hD) is closely related to many physical properties of solids
such as the specific heat and the melting temperature. One of the
standard methods to calculate the Debye temperature is from elas-
tic constants data, since hD may be estimated from the average
sound velocity (vm), by the following equation [35],

hD ¼
h
k

3n
4p

NAq
M

� �� �1=3

vm; ð13Þ

where h is Plank’s constant, k is Boltzmann’s constant, NA is Avoga-
dro’s number, q is the density, M is the molecular weight and n is
the number of atoms in the molecule. The average sound velocity
vm is given by

vm ¼
1
3

2
v3

t
þ 1

v3
l

� �� ��1=3

; ð14Þ

where vl and vt are the longitudinal and transverse elastic wave
velocities, respectively, which are obtained from Navier’s equations
as follows [36]:

v l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K þ 4G

3q

s
ð15Þ

and

v t ¼

ffiffiffiffi
G
q

s
; ð16Þ

where q is the density, K is the bulk modulus and G is the shear
modulus.

Application of the hydrostatic pressure not only decreases the
interatomic distances in a solid. Since the force constants of the
crystal lattice modes are also changed with pressure, the corre-
sponding phonon frequencies will be modified as well. This effect
can be quantified by the so-called Grüneisen constant c, which
shows how the phonon frequencies (and, eventually, Debye tem-
perature (hD)) vary with volume V of the crystal; it is defined as fol-
lows [37].

c ¼ � dlnhD

dlnV
: ð17Þ

As Eq. (17) implies, estimations of the (hD) values require the
knowledge of the volume dependence of the Debye temperature,
which can be easily obtained from the results of the crystal lattice
optimization and elastic constants calculations under pressure.

Fig. 4a shows that the Debye temperature increases linearly
with pressure; the pressure coefficient of 3.61 and 4.41 K/GPa for
Nb2SC and Nb2InC, respectively. The volume-coefficients of the



(a) (b)

Fig. 3. (a) Variation of the bulk modulus Ka and Kc along the a- and c-axis and (b) variation of the anisotropies in compression and shear with pressure.

(a)

(b)

Fig. 4. (a) Debye temperature hD – unit cell volume and (b) Grü neisen parameter
(c) of the Nb2AC compounds under pressure.
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Debye temperature estimated from the linear approximation of
data in Fig. 4a are �7.36 (Nb2SC) and �6.44 K/Å3 (Nb2InC). These
values, together with the calculated values of the Debye tempera-
ture and volume, were used in Eq. (17). The calculated values of the
Grüneisen parameter vs pressure are given in Fig. 4b. At the ambi-
ent pressure c = 1.61 (Nb2SC) and 1.82 (Nb2InC); with increasing
pressure c decreases non-linearly, as shown in the same figure.
Such a decrease of c can be related to increased values of the elastic
constants with pressure and somewhat weakened dependence of
the vibrational frequencies on volume (or pressure); all these fac-
tors arise from the anharmonic effects.
5. Electronic and bonding properties under pressure

Finally, the effects of pressure on the density of states (DOS) of
Nb2AC (A = S and In) are examined, for pressures varying within
the range from zero to 10 GPa. Fig. 5a displays the pressure depen-
dence at P = 0 and 10 GPa of the total (DOS) and partial density of
states (PDOS) of Nb2AC phases near the Fermi level, (vertical line is
the Fermi level (EF)). The calculated equilibrium density of states at
the Fermi level (EF) at 0 GPa were 3.29 and 3.42 electrons/eV for
Nb2SC and Nb2InC, respectively. The comparison of the density of
states at the Fermi level (EF) at 0 GPa of Nb2SC with those reported
by others, show us that our value is similar to the calculated by Na-
sir and Islam (3.54 states/eV) [24], while the of Nb2InC is close to
obtain by Shein and Ivanovskii (3.62 states/eV)[38].

The local feature of the DOS curve around the Fermi-level (EF) is
a reasonable indicator of the intrinsic stability of a crystal. A local
minimum at EF implies higher structural stability because it signi-
fies a barrier for electrons below the EF (E < 0 eV) to move into
unoccupied empty states (E > 0 eV); whereas a local maximum at
EF is usually a sign of structural instability. This semi-quantitative
criterion works reasonably well for the results of Fig. 5a. Nb2SC and
Nb2InC have a local minimum at EF, suggesting a higher level of
stability. These facts correlate quite well with the observation that
these phases are easier to synthesize.

From Fig. 5a we observed that at 0 GPa, the Nb 4d states dom-
inate at Fermi level and should contribute to the conduction in the
Nb2AC phases. The contributions between �8.0 to �3.0 and �7.0 to
�3.0 eV can be associate to the C 2p states of the Nb2SC and Nb2InC
phases, respectively. We observed that the C 2p states had the
same shape as the 4d electronic states of Nb atoms located be-
tween C layers. It is indicative of a hybridization between Nb 4d
and C 2p states and thus of a covalent interaction.

On the other hand, is observed that the In 5p states and the S 3p
interact with the Nb 4d states within the energy range from �4.0
to �1.0 and from �8.0 to �5.0, respectively. Since the In 5p–Nb
4d hybrids are lower in energy that the S 3p–Nb 4d hybrid’s ones
suggesting that Nb–S bonds are stronger than Nb–In bonds (see
Fig. 1a). Comparing the previous hybrid’s with the C 2p–Nb 4d



(a) (b)

Fig. 5. (a) The total and the partial DOS of Nb2AC at 0 GPa (continuous line) and 10 GPa (line + symbol) and (b) zoom from �0.50 to 0.50 eV.
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hybrids, we observed that the Nb–C bonds are stronger than Nb–In
or Nb–S bonds (see Fig. 1b). It is this strong C 2p–Nb 4d hybridiza-
tion, which stabilizes the structure of Nb2AC (A = S and In) a gen-
eral trend in MAX phases. In addition, the above mentioned
covalent Nb–C and Nb–A bonds, the metallic-like Nb–Nb bonding
occurs owing to the overlap of the near Fermi level Nd 4d states;
whereas the ionic contribution is due to the difference in electro-
negativity between the compressing elements: Nb (1.60), C
(2.55), S (2.58) and In (1.78).

In Fig. 5b, we observed in the Nb2InC phase a decrease in the
DOS NNb(EF) and the DOS NC(EF) associated with the niobium and
carbon states at the Fermi level, respectively as pressure increases.
Whereas in the Nb2SC phase is observed only an increase in the
DOS NC(EF) associated to carbon states at the Fermi level. The rest
of contributions remains virtually unchanged. As a consequence, at
10 GPa the density of states at the Fermi level EF decreases in the
Nb2InC phase, similar to one observed in Nb2SnC and MgB2

[13,39] and increases in the Nb2SC phase. The DOS at the Fermi le-
vel is an important parameter known to affect the superconducting
transition temperature Tc. Judging from Bardeen–Cooper–Schrief-
fer superconducting theory, the reduction of the density of states
at the Fermi level shows that the transition temperature Tc de-
crease as pressure increases [40].
6. Conclusions

In summary, the structural, elastic and electronic properties of
the Nb2AC (A = S and In) phases under pressure have been investi-
gated using planewave pseudopotential density functional theory
within the generalized gradient approximation (GGA). We find that
the effect of pressure on the crystal structure reflects in a compres-
sion of the unit cell-volume, more easily along the c-axis than on
the a-axis. We also observed that the elastic constants and elastic
modulus increase monotonically. As a consequence, the hardness
and the compression of the phases increase under pressure. Debye
temperature hD was calculated and found that it increases under
pressure. According to the results of our calculations, an increase
in the pressure would lead to a decrease in the density of states
(DOS) of Nb2InC phase due, mainly to the decrease of the DOS
NNb(EF) and the DOS NC(EF) associated with the niobium and car-
bon states at the Fermi level, respectively; and increase in Nb2SC
phase due, mainly to the increase of the DOS NC(EF) associated to
carbon states at the Fermi level.
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