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Abstract Among quantum phenomena in solids at low temperatures, the supercon-
ductivity and Bose–Einstein condensation (BEC) are representatives of arising from
coherent macroscopic quantum states. In this article, we discuss possible correlations
between these two phenomena. It is well known that the Cooper pairs are not true
bosons and then, we introduce the concept of collective electron pairs (CEP) through
a unitary transformation of electron pairs. The CEP accomplish bosonic commutation
relations at the dilute limit, being able to accumulate many of them at a single quan-
tum state, in contrast to the standard Cooper pairs. An exact solution of all single CEP
eigenstates is found by means of the Richardson’s equation within a multishell model.
The obtained energy spectrum is used to determine the BEC temperature of CEP. In
addition, we present an alternative approach to calculate the superconducting critical
temperature by using the BEC formalism for a system composed by ground-state CEP,
excited pairs and unpaired electrons.
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1 Introduction

The viewpoint of superconductivity as a Bose–Einstein condensation (BEC) has
renewed interests since the discovery of high-temperature superconductors [1] and
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the finding of BEC in a wide range of systems, such as 4He superfluid [2], atomic
gases of rubidium [3], sodium [4] and lithium [5], as well as exciton-polaritons in
microcavities [6,7]. However, the Cooper pairs are not true bosons, as pointed out
by J. Bardeen, L.N. Cooper and J.R. Schrieffer (BCS) in 1957 [8]. In fact, Cooper
pair creation (b̂†

k ≡ ĉ†
k↑ĉ†

−k↓) and annihilation (b̂k ≡ ĉ−k↓ĉk↑) operators have the
following commutation relations,

⎧
⎪⎨

⎪⎩

[
b̂†

k, b̂†
k′

]
≡ b̂†

kb̂†
k′ − b̂†

k′ b̂
†
k = 0,

[
b̂k, b̂k′

]
= 0

[
b̂k, b̂†

k′
]

= (1 − n̂−k↓ − n̂k↑)δkk′
, (1)

where n̂kσ = ĉ†
kσ ĉkσ is the number operator of electrons, ĉ†

kσ and ĉkσ are the creation
and annihilation operators of a single electron with linear momentum k and spin σ ,
respectively. Moreover, it is easy to prove that b̂†

kb̂†
k = b̂kb̂k = 0, which avoids to

place more than one Cooper pair on any quantum state, making impossible a BEC of
Cooper pairs.

Recently, we have shown [9] that linear combinations of Cooper pairs, named in
this paper collective electron pairs (CEP), could have bosonic nature at the dilute
limit, due to their diffuse character over the Cooper pairs allowing the accumulation
of many of them at a single quantum state. The creation operator of such CEP (â†

α)

can be obtained as a unitary transformation of Cooper pairs [10]

â†
α ≡

M∑

l=1

Aα(l) b̂†
kl

= 1√
M

M∑

l=1

exp

(
i2πlα

M

)

b̂†
kl

, (2)

where α = 0 for ground-state CEP and α = 1, 2, · · · , M − 1 for excited pairs, being
M the total number of available pairing states.

2 BEC in an Ideal Gas of Collective Electron Pairs

Let us start from the BCS Hamiltonian [8],

ĤBC S =
∑

k,σ

ε(k)ĉ†
k,σ ĉk,σ − V

∑

k,k′
b̂†

kb̂k′ (3)

where ε(k) is the single electron energy and V > 0 is the electron–electron interaction
potential constant. The single pair energies (Eν) of this Hamiltonian can be obtaining
by solving the Richardson’s equation [11]

∑

k

1

2ε(k) − Eν

= 1

V
, (4)
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and the corresponding eigenfunctions can be written as

|ν〉 ≡
{

∑

k

1

[2ε(k) − Eν]2

}−1/2
∑

k

1

2ε(k) − Eν

b̂†
k |0〉 . (5)

It is well known [11] that if ε(k) is non-degenerate such that ε(kν) < ε(kν+1) for
ν = 1, 2, · · · , M , there is one and only one solution of Eq. (4) with

2ε(kν) < Eν < 2ε(kν+1) (6)

and its ground-state energy (E0) located at

E0 < 2ε(k1). (7)

For systems with degenerate ε(k), we use a multishell model in k space, in which each
shell s has Ms available pairing k-states with the same energy εs . From Eq. (6) we can
conclude that in each shell s there are Ms − 1 eigenstates (|s, ν〉) of Hamiltonian (3)
with the same energy Es,ν = 2εs for ν = 1, 2, · · · , Ms − 1, whose eigenfunctions
are

|s, ν〉 = â†
s,ν |0〉 = 1√

Ms

Ms∑

l=1

exp

(
i2πlν

Ms

)

b̂†
kl

|0〉 , (8)

where kl ∈ �s ≡ {k |ε(k) = εs}. For a system with NS shells, the rest NS energies
(Es,0) can be determined by solving Eq. (4) rewritten as

NS∑

s′=1

Ms′

2εs′ − Es,0
= 1

V
(9)

with eigenfunctions given by Eq. (5). It is important to stress that states (5) and (8)
are CEP and they are bosons at the dilute limit [10].

Within the formalism of grand canonical ensembles, the average number of bosons
in an ideal system is N = ∑

E [eβ(E−μ) − 1]−1, where β ≡ 1/kB T , the chemical
potential μ < min (E) and the summation is carried over all single boson energies.
For a multishell model of CEP, this average number can be expressed as a summation
of the average ground-state occupation number (N0) plus the excited one (Nexc),
i.e.,

N = N0 + Nexc = 1

eβ(E1,0−μ) − 1
+

Ns∑

s=2

1

eβ(Es,0−μ) − 1
+

Ns∑

s=1

Ms − 1

eβ(2εs−μ) − 1
,

(10)
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Fig. 1 (a) Ground state occupation number (N0) and (b) the chemical potential (µ) as function of the
temperature (T ) for a system with N = 104 bosons, NS = 103 shells, Ms = 103 available pairing states
in each shell and εs uniformly distributed in [0.99EF , 1.01EF ]. The gray line indicates N0 for an ideal
gas of 3D free bosons, rescaling its BEC critical temperature and the total number of bosons. Inset (b′)
Bose–Einstein condensation temperature (TB EC ) as a function of the number of shells (NS) for the same
system with MV = 0.01EF (Color figure online)

where μ < E1,0. The BEC consists of a macroscopic occupation of the ground state
[12], which starts when T = TB EC , μ = E1,0 and N = Nexc. In Fig. 1(a) N0 and
(b) μ are plotted as functions of temperature (T ) by using Eq. (10) for a system with
N = 104 bosons, NS = 103 shells, Ms = 103 available pairing states in each shell,
M = NS Ms = 106 total pairing states, εs uniformly distributed in [0.99EF , 1.01EF ]
and four values of interaction constant V . In inset 1(b′), asymptotical variation of the
BEC temperature (TB EC ) is illustrated when Ns increases and then, Ns = 103 is taken
for the calculations of Fig. 1. Observe in Fig. 1(a) that almost all CEP are accumulated
on the ground state at finite temperatures, when μ approaches to the ground-state
energies as shown in Fig. 1(b). Notice also that Fig. 1(a, b) are signatures of a BEC
[13], which suggests that CEP are able to condensate at the dilute limit. Nevertheless,
in contrast to the standard BEC of 3D free bosons [12], whose ground-state population
(N0) is illustrated by a gray line in Fig. 1(a), the N0 of CEP is almost a constant for
temperatures below the half of the critical temperature.

It is worth to emphasize that in the dilute limit the CEP wavefunctions have a
minimum overlap, which can be visualized as a non-interacting system of molecular
bosons, corresponding to the BEC side of the BCS-BEC crossover. In the next section,
the possibility of breaking these electron pairs will be included in an analytical study
of a single-shell system, which would approach the BCS side.
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3 BEC Formalism of Superconductivity

In this section, we consider a system with a single shell of energy ε and M available
pairing states, containing U unpaired electrons, P pairs at the ground state, and X
pairs on excited states. The Hamiltonian of such system is given by Eq. (3) and its
energy spectrum can be analytically calculated as following.

3.1 Energy Spectrum

The presence of U unpaired electrons contributes to (a) reducing the number of avail-
able pairing states to M̃ ≡ M −U , known as the blocking effect, (b) adding an energy
of Uε to the total one, and (c) increasing the number of configurations by a factor of

DU = 2U M !
U !(M − U )! , (11)

since U unpaired electrons may be placed in Mpossible states. In Eq. (11), 2U comes
from the spin degree of freedom.

In general, the eigenfunction of W pairs can be written as

|W 〉 ≡
∑

k1,··· ,kW ∈ �̃

A(k1, · · · , kW ) b̂†
k1

· · · b̂†
kW

∣
∣
∣0̃

〉
, (12)

where �̃ is the set of M̃ available pairing states and |0̃〉 is the empty state of pairs.
Given that the second term of Hamiltonian (3) has null effects on the energy of a single
excited pair as discussed in section two, this fact persists for the case of X purely excited
pairs (|X〉), which is a subset of (12). In other words, we have

∑
k,k′∈�̃ b̂†

kb̂k′ |X〉 =
â†

0 â0 |X〉 = 0, where â†
0 ≡ ∑

k∈�̃ b̂†
k is the creation operator of a ground-state pair.

Hence,

ĤBC S |X〉 = 2Xε |X〉 . (13)

Given that |X〉 has no ground-state pair, it leads to â0 |X〉 = 0, which implies

∑

kX 	=k1,··· ,kX−1

A(k1, · · · , kX ) = 0. (14)

Equation (14) represents a system of linear equations of variables A(k1, · · · , kX ). The
number of equations and the number of variables are respectively equal to the number
of ways to build sets {k1, · · · , kX−1} ⊂ �̃ and {k1, · · · , kX } ⊂ �̃. Thus, the number
of different linearly independent solutions of (14) is the difference of the number of
variables and the number of equations, and it is given by
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DX = M̃ !
X ! (M̃ − X)! − M̃ !

(X − 1)! (M̃ − X + 1)!
= M̃ !

X ! (M̃ − X + 1)! (M̃ − 2X + 1). (15)

In Eq. (15), the conditions of DX > 0 and M̃ !
X ! (M̃−X+1)! > 0 imply

2X ≤ M̃ . (16)

In general, the states (12) accomplish

ĤBC S |W 〉 = E |W 〉 , (17)

and it can be shown by straightforward calculation that

ĤBC Sâ†
0 |W 〉 = [E + 2ε − V (M̃ − 2W )] â†

0 |W 〉 . (18)

Equations (17) and (18) prove that if |W 〉 is an eigenfunction of Hamiltonian (3), |W 〉
plus a ground-state pair is also an eigenfunction. From Eqs. (13) and (18), it can be
proven by mathematical induction that state |P, X〉 with P ground-state pairs and X
excited pairs is also an eigenfunction of Hamiltonian (3) with energy

EP,X = (2P + 2X)ε − P(M̃ − 2X − P + 1)V, (19)

and condition (16) becomes

2X ≤ M̃ − P, (20)

because the ground-state pairs reduce the available space for the excited pairs.
In summary, we have found that a system with U unpaired electrons, P ground-state

pairs and X excited pairs has energy of

EU,P,X = (2P + 2X + U )ε − P(M − U − 2X − P + 1)V, (21)

with a constriction of 2X ≤ M − U − P . The different solutions of excited pairs and
different ways to place the unpaired electrons, makes energy (21) to have a degeneracy
of

DU,P,X = DU DX = 2U M !(M − U − 2X + 1)

U !X !(M − U − X + 1)! , (22)

according to Eqs. (11) and (15). Notice that the energies given by Eq. (21) have been
firstly obtained by reference [11] and together with the degeneracy (22) are necessary
for the statistical analysis, as carried out in the next subsection.
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3.2 Grand-Canonical Treatment

In order to achieve the problem solved by BCS [8], let us consider a single shell with
a single electron energy ε = μ and the grand-canonical partition function (
) can be
written from Eqs. (20) to (22) as [12]


 =
M∑

U=0

M−U∑

P=0

(M−P−U )/2∑

X=0

�(U, P, X), (23)

where

�(U, P, X) = 2U M !(M − U − 2X + 1)

U ! X ! (M − U − X + 1)! eβ (M−U−2X−P+1)PV . (24)

Because �(U, P, X) ≥ 0 and 
 contains the term of max [�(U, P, X)], hence

max [�(U, P, X)] ≤ 
 ≤ (M + 1)3 max [�(U, P, X)] . (25)

By taking the logarithm of inequalities (25) and ln M 
 ln {max [�(U, P, X)]} as
occurs in the two-dimensional Ising model [14], we have

ln 
 ≈ max [ln �(U, P, X)] = ln �(U0, P0, X0), (26)

where U0, P0 and X0 are the corresponding occupation numbers at the equilibrium
state and maximize �(U, P, X). In general, the thermodynamic properties of a system
can be derived from the logarithm of 
, which is obtained by maximizing �(U, P, X)

as a function of temperature from Eq. (24). Following the standard derivative procedure
of maximization, we obtain that these equilibrium occupation numbers satisfy the
following equations

P0(T ) = M − U0(T ) − 2X0(T ) + 1

2
(27)

U0(T ) = 2
[√

X0(T )(M + 1) − X0(T )
]

(28)

and

kB T = V P0(T )

ln
[

M+2P0(T )
M−2P0(T )

] . (29)

In particular, at zero temperature these occupation numbers become P0(0) =
M/2, X0(0) = U0(0) = 0, i.e., the system is uniquely composed by ground-state
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pairs. From Eq. (29) the BEC temperature (TB EC ), above which the number of ground-
state pairs becomes negligible [12], can be determined by

kB TB EC = lim
P0→0

V P0

ln
(

M+2P0
M−2P0

) = MV

4
, (30)

where the L’Hôpital’s rule has been used.

3.3 From BEC to BCS Results

The superconducting energy gap (2�) at zero temperature is defined as the energy
difference between the superconducting ground state and the lowest excited state [8]
and it can be calculated as the energy required to break a ground-state pair and form
two unpaired electrons, i.e.,

2�(T ) ≡ EU0+2,P0−1,X0 − EU0,P0,X0

2
= [M − U0(T ) − 2X0(T )] V ≈ 2P0(T ) V,

(31)

where M � 1 is considered and Eqs. (21) and (27) are used. From Eqs. (29) and (31),
�(T ) can be determined by

kB T = �(T )

ln
(

�(0)+�(T )
�(0)−�(T )

) . (32)

where �(0) = P0(0)V = MV /2. According to the BCS theory, the superconducting
critical temperature (Tc) is reached when �(T ) approaches to zero. In addition, Eq.
(31) ensures that P0(T ) and �(T ) becomes zero at the same temperature. Therefore
Tc = TB EC . In Fig. 2, the number of ground-state pairs (P0) and the superconducting
gap (�) as a function of temperature is shown by using Eqs. (29) and (32). The
populations of unpaired electrons (U0) and excited pairs (X0) versus the temperature
(T ) are respectively shown in insets 2(a) and 2(b) obtained from Eqs. (27) and (28). It
is worth to mention that the gap Eq. (32) can alternatively be obtained from the BCS
theory [8] by taking N (ε) = Mδ(ε) instead of N (ε) = N (0), since a single shell
model is used in this analysis. Finally, from �(0) = MV /2 and Eq. (30) we obtain
2�(0) = 4kB TC , which is close to the BCS result of 2�(0) = 3.5kB TC [8].

4 Conclusions

In this article, an alternative viewpoint of the superconductivity based on the BEC is
discussed. Firstly, we proven that a dilute ideal gas of CEP can condensate at a finite
temperature, due to the bosonic nature of CEP and the existence of an energy gap
between the ground state and the first exited one. We further extended the analysis
beyond the single-pair approximation to determine the energy spectrum and included
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Fig. 2 Number of ground-state pairs (P0) and superconducting gap (�) are plotted as a single function of
temperature (T ) normalized by the critical temperature (Tc = TB EC ). Insets Populations of (a) unpaired
electrons (U0) and (b) excited pairs (X0) versus the temperature (T ) (Color figure online)

also unpaired electrons to quantify the grand canonical partition function as well as
the BEC temperature. Moreover, based on the concept of superconducting energy gap
we found that the superconducting critical temperature of BCS is equal to the BEC
temperature, since this analysis is developed beyond the BEC of ideal gases allowing
the overlap of Cooper wavefunctions as in the BCS theory. Within the crossover
scheme [15], the BEC of CEP at the dilute limit based on single CEP energy spectra
is situated in the BEC side, while the BEC analysis including ground-state pairs,
excited pairs and unpaired electrons, in parallel to the BCS original approach [8],
allows to address the superconductivity at the BCS side. In addition, the temperature
dependence of the CEP ground-state population (N0) in Sect. 2 shows its difference
from the well-known BEC of 3D free bosons due to the presence of a constant energy
gap between the ground state and the first excited one. Actually, such gap varies
with the temperature as in a superconductor, which leads to a qualitatively different
behavior around the critical temperature as shown in Fig. 2. This gap variation is
originated from the many-pair solution including the blocking effect. Finally, it is
worth mentioning that the present study was developed in an essentially analytic form
and a further numerical study could include an anisotropic interaction potential in a
multishell model to address the d-wave superconductivity observed in cuprate ceramic
superconductors.
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