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Abstract
Fluid-suspended microorganisms have evolved different swimming and feeding strategies in
order to cope with an environment dominated by viscous effects. For instance, ciliated
organisms rely on the collective motion of flexible appendages to move and feed. By
performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or
pump fluid, in the absence of inertia. Inspired by such a fundamental concept, we propose a
strategy to produce macroscopic pumping and mixing in creeping flow. We measured
experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion
of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is
made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of
this pumping strategy and show that optimal pumping is achieved when the length of the
flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss
the possible applications of flexible impellers in mixing operations at low Reynolds numbers.

Keywords: low Reynolds, mixing, biofluids

(Some figures may appear in colour only in the online journal)

1. Introduction

Fluid transport at high Reynolds numbers is a process
particularly common in our daily experience. For example,
dispersion of a solute in water does not demand long times or
large amounts of power per unit volume and effective mixing
can be achieved by the simple reciprocal (time-reversible)
motion of a rigid impeller such as a spoon. Even though the
impeller may have a small contact area compared with the
volume of fluid requiring stirring, mixing is greatly enhanced
by the large-scale, convective motion resulting from inertial
effects in the flow. In particular, such motion can be observed
in the residual flow after agitation has stopped. In the case
of highly viscous fluids, on the other hand, the fluid motion
is promptly arrested by viscous dissipative forces and fluid
mixing by a spoon is inefficient. Note, however, that mixing
can still be achieved if the spoon were to perform an elaborated
oscillating motion [1]. Without the proper selection of the

impeller and characterization of the flow patterns it creates for
a given configuration, pumping and mixing at low Reynolds
numbers can become very expensive in terms of time or power
consumption. Furthermore, the resulting flow will often have
regions of poor fluid transport or even stagnant zones [2–5].

In Nature, there are many instances which involve flow
without inertia. Many micron-size organisms need to move
and feed in an environment at low Reynolds number [6]. Due
to the time-reversibility of the Stokes equations governing
the fluid motion at low Reynolds number, the only way a
microorganism can produce net propulsion is by exerting a
swimming stroke which is not identical under a time-reversal
operation, i.e. which does not follow the same sequence of
strokes when the time runs forward or backward—the so-
called scallop theorem [6]. The propagation of waves is the
typical non-reciprocal motion and is the mechanism many
microorganisms use to swim [7–10]. Traveling waves can be
produced either by rotating a relatively stiff helical-shaped
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Figure 1. Different strategies to actively transport fluid at low Reynolds number. Four main classes have been recognized in the literature:
transport assisted by a helix, peristaltic motion, flexible impellers (also found in positive displacement pumps), and chaotic-advection mixers.
This classification is not unique and there are other ways to transport fluid, including active and passive geometries, in microfluidic devices,
see for example [24]. All images were reproduced with permission: helical ribbon impeller figure courtesy of Fusion Fluid Equipment,
www.fusionfluid.com; peristaltic micropump figure courtesy of Teymoori and Abbaspour-Sani [15]. Copyright 2005 Elsevier; staggered
herringbone mixer courtesy of Stroock et al [18]. Reprinted with permission from AAAS; eccentric cylinders mixer figure courtesy of
Rodrigo et al [14]. Copyright 2003, AIP Publishing LLC; rotated arc mixer figure courtesy of Metcalfe et al [23]. Copyright 2005 Wiley.

filament or by passing bending waves along a flexible flagella
in a time periodic fashion [8, 10].

Swimming and pumping are two inter-related phenomena
and in general a swimmer held in place will exert a net force
on the fluid and pump it [11]. Inspired by locomotion due to
flexible flagella, in this study we investigate experimentally the
pumping capacity of a simple impeller consisting in a flexible
elastic flapper that oscillates in a highly viscous Newtonian
fluid. We start below by presenting a short literature review
of the different strategies that have been employed to pump
or mix liquids at low Reynolds numbers in order to put in
perspective the particular strategy proposed in our paper.

2. Background and structure of the paper

Fluid transport at low Reynolds numbers has received
considerable attention due to the demand for effective pumping
and mixing operations assigned to process polymeric fluids,
as is in the case of the food, pharmaceutical, or cosmetic
industries [12–14]. Recently, the development of microfluidic
devices and microelectromechanical systems has brought
renewed interest to the field [15–17, 19]. We show in figure 1
some examples of natural and man-made actuators that pump,
mix or propel in a fluid at low Reynolds numbers. The use
of rotating rigid helices is common. Prokaryotic cells use this
type of actuation in order to swim [10], and if bacteria are
artificially tethered on a surface they are able to pump fluid

[20]. Helices are further used in extruders to transport viscous
fluids [12], and finally in mixers, either mobile [4] or static
[13]. Flexible actuators are used by eukaryotic cells (such
as spermatozoa) to swim and also to pump biological fluids
as is in the case of the collective motion of cilia found in
many superior animals [21]. Flexible impellers have also been
employed in the design of positive displacement pumps used
in the industry3. The flexible impeller studied in this paper
represents a kind of ‘elastic oar’ [6].

Machin [25] conducted a pioneering investigation to study
the balance between elastic and viscous forces acting on a
flagellum. He modeled the physical balance between elastic
forces and viscous drag proposing a elasto-hydrodynamic
model [26]. For weak viscous forces the filament is stiff
and its motion is nearly reciprocal, producing no net motion.
On the other hand, when the bending forces are weak, the
viscous stresses prevent the formation of a bending wave on
all of the flagellum but close to the actuation region, and
therefore, an optimum stiffness/drag balance is expected to
occur when both effects are of comparable magnitude. For a
periodic actuation at frequency ω, this balance is quantified
by an elastohydrodynamic penetration length, �, defined as
[26, 27]

� =
(

EI

ωζ⊥

)1/4

, (1)

3 See, for example, the positive displacement pumps shown in
www.johnson-pump.com.
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Figure 2. Schematic representation of the flapper and the particle image velocimetry setup.

where EI is the filament bending stiffness and ζ⊥ is the
viscous drag coefficient that acts normal to the local velocity
on the flagellum. The length � should then be compared
with the total length of the filament, L. A dimensionless
number, L/�, compare the two—it is colloquially known
as the Sperm number, Sp [28]. In several experimental
and computational studies, a maximum swimming speed, or
pumping performance, has been obtained for 1 � Sp � 4
[26–33].

The idea of our paper is to use this concept of optimal
balance between viscous forces and bending resistance to
produce non-reciprocal deformation of a flexible flapper and
thus pumping in creeping flow. The paper is organized as
follows. We first describe in section 3 the fluid used in the
investigation and describe the flapper actuation and properties.
We then present the flow measurements and the quantification
of pumping in section 4. Our experimental results are discussed
in section 5. In this section, an analysis and discussion of the
pumping capacity for different values of L/� is also presented.
The conclusions are presented in section 6.

3. Experimental setup

The experiments were conducted in a rectangular tank, shown
schematically in figure 2, filled with a highly viscous fluid.
A rectangular flapper was placed in the middle of the tank,
attached to shaft driven by a step motor. The tank dimensions
(length 35 cm, height 24 cm, and width 15 cm) and the
arrangement of the flapper allowed to produce a nearly two-
dimensional flow in the measurement zone (middle of the
container). A lid was placed to keep the tank closed and
prevent glucose crystallization and deformation of the fluid
surface due to the flapper motion [34]. Flappers with different
levels of flexibility were fabricated by cutting an elastic sheet
into a rectangular shape with fixed width, (w =10 cm). The
length of the flappers was L = 5 cm in most cases and a few
tests with shorter, stiffer flappers were conducted to validate
the scallop theorem. The properties of all flappers used in our
experiments are shown in table 1. The flexibility was varied
by selecting materials with different elastic rigidity and also
by varying the thickness, t, of the sheet.

A highly viscous Newtonian fluid was prepared by adding
6% of water to glucose (◦Bé = 45, 3000 Pas at 23◦C). The

Table 1. Physical properties of the flappers used in this study. For all
flappers, the width is w = 100 mm, t is the flapper thickness, L its
length and E is the Young modulus. Denoting I the second moment
of inertia, I = wt3/12, we have EI as the bending rigidity.

Flapper t, mm L, mm E, MPa EI, Pa m4

Aluminum (Al) 6.1 28.5 7000.0 132.42
Acrylic (Ac), • 8.5 50 2240.0 11.4637
Neoprene (N1), 6.4 50 2.73 5.96 ×10−3

Neoprene (N2), 3.2 50 2.73 7.45 ×10−4

Neoprene (N3), 1.2 50 2.73 3.93 ×10−5

Silicon rubber (SR), 0.8 50 2.15 9.17 ×10−6

fluid was mixed for 48 h at very low speeds and let to rest
for three days to ensure homogenization. The liquid viscosity
was measured to be 63 Pas with an Anton Paar Physica MCR
101 rheometer, and a density of 1540 kg m−3 was measured
with a pycnometer (25 ml). The high viscosity ensured that all
experiments remained in the low Reynolds number regime. To
ensure that the liquid was Newtonian, oscillatory rheological
tests were conducted (not shown) and for the range of shear
rates in which the pumping experiments were conducted,
the storage modulus was negligible compared with the loss
modulus.

The oscillatory motion of the flapper was generated using
a stepper motor (UE73PP) of four phases, placed outside the
tank and connected to the rotation axis of the flapper through
a wall connector. The oscillatory amplitude was fixed at ±30
degrees from the vertical. The angular velocity was varied
using a motion controller (Newport MM4006) operated with
the software LabView 8.1. The motion of the flapper is depicted
schematically in figure 3(a).

For each flapper, three different velocities were tested. The
velocity of the flapper is characterized by Vtip = ωL, where
ω is the angular velocity of the flapper and L is its length.
Considering these speeds and fluid properties, the Reynolds
number, Re = VtipLρ/μ, was smaller than 0.05 in all cases.
Lowering the Reynolds number even further was not possible
without increasing the power of the step motor used in the
arrangement.

A standard particle image velocimetry (PIV) technique
was used to obtain the velocity field generated in the
liquid, also shown schematically in figure 2. A Nd:YAG
laser system generates a 50 mJ energy 532 nm laser beam
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Figure 3. (a) Schematic description of one oscillation period of the flapper; (b) typical snapshot obtained from the PIV system; (c) typical
instantaneous velocity field and iso-velocity contour (normalized by the velocity of the flapper tip).

which was converted to a laser sheet using optics. The
laser sheet illuminated a vertical slice at the center of
the tank. A CCD camera was positioned to record images
illuminated by the laser sheet. The resolution of the camera
was 1008×1016 pixels and the typical measurement area was
121 × 122 mm2. Silver-coated glass spheres with an average
diameter 10 ± 5 μm were used as particle tracers. A typical
image of the seeded flow is shown in figure 3(b). The velocity
field consisted of 62×62 vectors using an interrogation area of
32 × 32 pixels and an overlap of 50%. The spatial resolution
was 2.24 × 2.24 mm2 for most of the experiments. For all
cases, considering our setup, the displacement never exceeded
7 pixels/cycle. Standard filtering and validation of the velocity
fields were applied to all measurements.

Clearly, due to the effect of containing walls and finite
size of the flapper, some slight deviations from a pure
two-dimensional flow could be expected. To evaluate how
close our measurements are from being two-dimensional
we can calculate the two-dimensional divergence of the
flow everywhere in the measurement area: D = ∂u/∂x +
∂v/∂y. Small values of D would indicate that the gradient
of the velocity component perpendicular to the measuring
plane is small. To estimate the order of magnitude of the
velocity in that direction we can calculate DWlaser, where
Wlaser(≈ 0.8 mm) is the thickness of the laser plane. For the
typical measurements show in figure 4, the average value of
DWlaser/Vtip is 1.7 × 10−4 in the region where the pumping

occurs. The measurements presented here are therefore very
close to being two-dimensional.

4. Flow and pumping measurements

The fluid motion resulting from the oscillation of the flapper
was quantified in two different ways. The first one inferred
the flow velocity field from images obtained from the seeded
fluid in closely spaced time instants. This is the typical
PIV measurement and it allowed to obtain the instantaneous
velocity field around the flapper. An example of such
measurement is shown in figure 3(c), for the particular instant
in which the flapper is in its vertical position and is moving in
the clockwise direction.

However, this particular determination of the flow field
does not provide a measure of the net fluid motion produced in
each cycle, since most of the fluid transported during one half
of the cycle is expected to be transported the other way during
the second half. Specifically, if the flapper is rigid, and the flow
is for Re � 1, the flow field at the instant where the flapper is
vertical and moves in the counter-clockwise will be the exact
mirror image of the one shown in figure 3(c). Therefore, in
order to determine the net fluid motion induced by the flapper
over an entire oscillation cycle, a different strategy has to be
used.

To address this issue, we took images of the tracer
particles only when the flapper hinge passed through the
vertical position in the clockwise direction. In other words,
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Figure 4. Mean velocity fields produced after one flapping period. The colors indicate the magnitude of the vertical velocity, normalized by
Vtip. The flexible and rigid flappers correspond to cases (N2) and (Al), as described in table 1.

an image was obtained only once during the entire oscillating
cycle, separated by the oscillation period (denoted T ). By
applying the cross-correlation algorithm to pairs of images
obtained a time T apart, the net fluid motion per oscillation
cycle was obtained. An example of the measured velocity
field resulting from this technique is shown in figure 4.
For all experiments conducted in this investigation, 100
realizations (oscillation periods) were considered in order to
obtain statistically converged measurements of the velocity
field. The uncertainty of the measurement was determined
from the standard deviation of the data set for each condition.

In order to quantify the amount of liquid set in motion by
the flapping impeller, the net flow rate was calculated. Since the
time-averaged velocity field is known, we define the pumping
capacity as the integral

Qv =
∫ x2

x1

v dx, (2)

where v is the vertical velocity component of the cycle-
averaged velocity field and x is the horizontal coordinate (along
the bottom of the tank and perpendicular to the average flapper
orientation). The quantity Qv measures the flow rate in the
vertical direction, and its value depends on the values of the
bounds of the integral, x1 and x2, and also on the vertical
position, y, at which it is evaluated. If the measurement was
conducted along the entire horizontal length of the container
(x2 − x1 = Lc, where Lc is the container length), the result
would be Qv = 0 since the upward current induced by
the flapper would be balanced by the returning fluid going
downwards. In order to account solely for the net flapper-
induced current, we chose x1 and x2 to coincide with the
extremities of the region where the vertical velocity has a
positive value, i.e. we only account for the upward pumping.
We show in figures 5(a) and (b) typical velocity profiles for
the vertical velocity as a function of the horizontal coordinate,
at different distances, y, above the tip of the flapper. The
flexible flapper (figure 5(b)) generates a vertical upward jet
of a flow rate measured thus by Qv . The region where the
measurement is taken extends from x1 ≈ −L to x2 ≈ L for
all cases (recall that L is the flapper length). In figure 5(c)
we then plot the value of Qv measured at different vertical

distances, y, above the flapper tip. The net flow rate in the
upward jet reaches a maximum value right above the flapper
and it then slowly decreases away from the jet. That decrease
results from the increase in the width of the induced jet beyond
the measurement region. We use, as a measure of the pumping
capacity for each flapper, the maximum vertical value for Qv .

It is important to note that our measurements are affected
by the sedimentation of the tracers. Since sedimentation acts
in a direction opposite to that achieved by flexible flapping,
the measurements are slightly smaller than what they should
be. To estimate the effect of sedimentation, we can simply
add the two vector fields (figures 4(a) and (b)). We must note
that this procedure is not strictly correct since the velocity
fields are time averages; also, the position of the flapper in
both cases is not exactly the same. Nevertheless, by adding
the fields we can estimate an order of magnitude of the error
that results from neglecting the effect of tracer sedimentation.
The dashed line in figure 5 (c) shows the flow rate calculated
from the ‘corrected’ velocity field (considering the same
experimental conditions as the continuous line). The trend of
the measurement is not affected significantly but the magnitude
is slightly increased. By adding the effect of sedimentation
the flow rate in the region where the measurement is taken
(y/L ≈ 1.2) increases by about 4.3%. Therefore, we can expect
our pumping measurements to be underestimated by a few
per cent.

5. Results and discussion

The goal of our paper is to demonstrate that when the flapper is
made of a flexible material, a net flow is induced by the periodic
motion. Below we first discuss the nature of the induced flow,
and then show how the pumping capacity changes with the
flapper tip speed and rigidity.

5.1. Rigid versus flexible

We display in figures 5(a) and (b) the typical profiles of
the net fluid velocity field during an oscillation cycle for
two distinctively different flappers, rigid (a) and flexible
(b). In the rigid case we observed no upward flow but a
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Figure 5. (a)–(b): typical vertical velocity profiles for different vertical distances above the flapper tip. These profiles correspond to the
fields shown in figure 4 for rigid (Al) and flexible (N2) flappers ((a) and (b), respectively). (c) Measured net flow rate, Qv , as a function of
dimensionless vertical distance, y/L, as calculated by integrating the data from (b). The dashed line shows the value of Qv when the effect of
sedimentation is considered.

small downward flow resulting from the slow sedimentation
of the tracer particles used for the PIV measurements. We
conducted an additional experiment in which we left the
flapper fixed and obtained PIV measurements of the flow field,
and obtained results identical to that in figure 5(a). Our rigid
results validate therefore experimentally the scallop theorem:
the reciprocating motion of a rigid flapper in creeping flow
should not induce any pumping.

The vertical flow field induced from a typical flexible
flapper is shown in figure 5(b). Clearly, in this case, there is a
significant amount of fluid moving upwards on average. Notice
that in the figure, the velocity field is slightly slanted to the left.
Our flow measurements are computed from images obtained
when the flapper is in its vertical position and moving in the
clockwise direction. However, since the flapper is flexible,
when the base of the flapper is indeed positioned at zero
degrees, its tip is lagging behind and curved to the left. That
delay of the tip with respect to the base is in fact what induces

the net vertical fluid motion, and it is responsible for the slight
asymmetry observed.

5.2. Understanding flexible pumping

In order to further understand the process that produces the
vertical flux, we analyze the instantaneous velocity fields
shown in figure 3(c) for two specific flappers. In figure 6 we
plot the instantaneous streamlines formed by the rigid flapper
(case Ac in table 1, streamlines in figure 6(a)) and the flexible
N2 flapper (figure 6(b)) at the moment where the base of both
flappers is oriented vertically, either in the clockwise (black
lines) or counterclockwise (red lines) directions.

A large vortical structure can be observed above the tip
of the flapper. In the case of the rigid flapper (figure 6(a)),
the vortice centers are located nearly at the same position
for both rotation directions and the corresponding streamlines
essentially overlap each other. On average, the flows cancel

6
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(a) Rigid flapper (Ac) (b) Flexible flapper, (N2)

Figure 6. Instantaneous streamlines formed in the fluid with the rigid flapper (Ac in table 1) and flexible flapper (N2 in table 1). In both
cases the tip speed is Vtip = 5.48 mm s−1. Black lines: streamlines formed during the clockwise rotation; red lines: streamlines formed during
the counterclockwise rotation.

each other resulting in zero net transport of the fluid over a
period of oscillation.

On the other hand, in the case of a flexible flapper, a
strong asymmetry in the two vortices is apparent. This is
because the tip of the flapper lags behind the actuation point
in every oscillation. As a consequence, the vortical structure
induced when the flapper is moving in the clockwise direction
is shifted to the left. Conversely, when the flapper is moving
in the counter-clockwise direction, the center of the vortex
is displaced to the right. These two velocity fields do not
cancel each other out over a single oscillation period, which
results in a net vertical motion. In the region immediately
above the flapper tip, the streamlines of the velocity fields for
both directions of oscillation have the same direction and point
vertically away from the flapper, explaining the direction of
the jet. Note that there is a slight asymmetry in the position of
the two vortices, which most likely results from the back-slash
of the motor. Despite this asymmetry, the effect is very clear.

5.3. Parametric dependence on frequency and flapper
properties

With the goal of devising the optimal pump, we now study how
the strength of this jet depends on the flapping frequency and
the properties of the flapper. As the flapper rigidity decreases,
it should be expected that the pumping capacity will increase
as a consequence of an increased asymmetry between the two
vortices in figure 6. The difference will also be influenced by
the oscillating speed of the flapper. However, if the flapper
becomes too flexible, it will no longer be able to overcome
the viscous stresses on its surface and, will thus not be able to
instantaneously move the fluid in the first place. There must
therefore be an optimal combination of flapper rigidity and
speed to produce the maximum amount of pumping.

In figure 7(a) we plot the pumping capacity, Qv , as a
function of the tip flapper speed, Vtip, for the five flappers tested
in this study. For the flapper with the highest rigidity (Ac, filled
black circles), the induced pumping is essentially zero. As
the rigidity of the flapper is reduced (N1, filled blue squares,

and N2, empty red circles), we observe that the pumping
capacity increases monotonically with flapper tip speed, in
the range of velocities tested. For even smaller rigidity (N3,
red asterisks), the pumping capacity first increases with tip
speed but decreases at high speed.

We then plot in figure 7(b) the pumping capacity as a
function of flapper rigidity, keeping the tip speed constant.
Data for a tip speed of 26.18 mm s−1 are shown as filled blue
triangles while those with 9.82 mm s−1 are in empty down-
triangles. For both data sets, we see that the pumping capacity
is small in both limits of very flexible or very rigid flapper, and
a maximum is reached at an intermediate value.

5.4. Optimal flexible pumping

Having demonstrated that it is possible to break the scallop
theorem by using the flapper flexibility, we now recast our
experimental results in a dimensionless manner in order to
optimize pumping.

The pumping flow rate of the flapper can first be made
dimensionless by using the flapper size and its tip velocity as

Q∗
v = Qv

VtipL
, (3)

where Q∗
v is now the dimensionless pumping capacity. In order

to describe the physical interplay between bending resistance
and viscous forces, we also define a dimensionless number
using the viscous penetration length from equation (1). This
dimensionless group, denoted F here and termed a flapping
number, physically measures the ratio of the flapper size, L, to
�, and is thus defined as

F ≡ L

(
V tipμ

LEI

)1/4

, (4)

where μ is the shear viscosity of the fluid. This flapping number
is essentially the sperm number defined in the introduction
and first proposed by Machin [25], and we use a different
denomination here because our flapper is not a slender body.
It is interesting to re-write this dimensionless group as

F =
(

L

I1/4

) (
Vtipμ

LE

)1/4

, (5)
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Figure 7. Pumping capacity as a function of the flapper tip speed (a) and flapper rigidity (b). In all cases, the properties of the flappers are
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in table 1.

and give interpretation for each term in equation (5). The
dimensionless geometrical prefactor, L/I1/4, is apparent. That
constant measures compares the length of the flapper with
its moment of inertia and is this a measure of the flapper
slenderness. For long, thin flappers, this quantity is always
larger than 1. For the type of flappers considered in our
experiments, we have 6 < L/I1/4 < 35. The dimensionless
number in the second parenthesis of equation (5) is a pseudo-
Weissenberg number comparing the viscous stresses in the
fluid with the elastic stresses in the beam. For all the flappers
and tip speeds consider in our study, Vtipμ/(LE ) is always
smaller than 10−4. The combination of values of these two
dimensionless groups results in F being of O(1).

In figure 8 we plot the dimensionless pumping capacity,
Q∗

v , as a function of F for all our experiments. All data collapse
on a single master curve showing a maximum dimensionless
pumping for F ≈ 1, similarly to what has been observed in
the case of flexible filaments actuated by an external force or

moments [26, 28–32]. No net flow is being pumped in the limit
of very rigid or small flapper (F � 1) nor in the very long
or flexible limit (F � 1). It is notable that, under the optimal
pumping conditions, the dimensionless pumping capacity is
close to 1/2. The net flow pumped during each period of
oscillation is therefore about half of the flow periodically
transported from one side of the tank to the next and indicates a
high kinematic efficiency of the vertical pump proposed here.

6. Conclusion

Inspired by flexible actuators evolved by Nature in the case of
swimming microorganisms, we have studied experimentally
the flow induced by a flexible flapper actuated periodically.
The breaking of shape symmetry induced by the elasticity in
the flapper allowed the creation of non-reciprocal kinematics,
and a net time-averaged flow. We carried out detailed
measurements to understand the physical origin of the net flow
and showed that flexibility induces a right–left asymmetry in
the main vortical structure induced by flapping, resulting in
a net upward fluid jet. Our measurements also allowed us
to demonstrate that the pumping capacity of the flapper was
maximum when the flapper length was on the same order as
the elastohydrodynamic penetration length. Our setup could be
used as a new mixing strategy in a viscous environment without
the need of elaborate geometries or oscillating strategies.
Specifically, the recirculation loops induced by our flapper
would allow stirring of different layers of fluids aligned in
the direction perpendicular to the flapper. However, a more
in depth study is needed to assess the mixing capacity of the
flow produced by the flexible flapper. In particular, some of the
ideas discussed in the mixing literature by laminar jets (see for
instance [35]) could be used to evaluate the mixing potential
of the current setup. We hope that the proof-of-principle study
carried out in this paper will encourage further work in this
direction.
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