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The effects of vorticity and poor conductivity boundaries on the non-linear long wavelength instability of
an Oldroyd fluid layer heated from below is investigated. It is found a set of two coupled non-linear evo-
lution equations with viscoelastic coefficients. A multiple scales approximation leads to a non-linear
Ginzburg–Landau equation which has viscoelastic effects only when the Oldroyd model is corotational
and not codeformational. The equation shows an important limitation in the magnitude of the nondimen-
sional relaxation and retardation times. That is, for certain magnitudes of these times, the flow shows no
saturation at all. For other magnitudes, the pattern selection is discussed by means of the viscoelastic
Ginzburg–Landau equation.
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1. Introduction

Non-linear convection in viscoelastic fluids have been studied
in the past decades for fluid layers confined between two perfectly
conducting walls [1–8]. In the present paper new results are
reported on the non-linear thermoconvection of a viscoelastic fluid
layer between poorly conducting walls. The aim of the present
investigation is to clarify the role that inertial effects play in the
non-linear instability of a viscoelastic fluid layer. To the authors
best knowledge, no research on this important subject has been
published in the open literature for Oldroyd viscoelastic fluids.
These thermal conditions are relevant in the study of the formation
and evolution of convective patterns. Here, it is of interest to make
a general analysis of a viscoelastic fluid which includes the upper
convected, the lower convected and the corotational Oldroyd fluid
models. The non-linear instability of such fluids finds important
applications in experimental set-ups, in materials processing and
in the food and chemical industries [9–13]. The non-linear stability
of a viscoelastic Oldroyd (A, B and corotational) fluid layer between
two perfectly conducting walls heated from below has already
been reported [3]. Non-linear convection of a second order fluid
layer between two insulating walls was investigated previously
[14]. More recently, some researchers [4,5,7] have performed
calculations on the linear and non-linear convection of binary vis-
coelastic fluids confined between two perfectly conducting walls.
Notice that a review of recent research on viscoelastic natural con-
vection is presented in the paper [15].

All these papers do not include the effects of vorticity which may
alter the pattern near the onset of convection through a non-
potential term. Therefore, the goal of the present paper is to analyse
the role played by vorticity in natural convection of a viscoelastic
fluid layer confined between two poorly conducting walls. This
problem has already been investigated for Newtonian fluids as can
be seen in [16–23]. Here, the goal too is to investigate the pattern
formation resulting from the roll-square competition in a square
domain and the roll-hexagon competition in a hexagonal domain.

The results of Martínez-Mardones et al. [3] are related to the
ideal stress free perfectly conducting walls. In the present investi-
gation the case of rigid poorly thermal conducting walls is ad-
dressed. Therefore, the results shown here lead us to understand
the behavior of natural convection in an Oldroyd viscoelastic fluid
from another standpoint. In their paper Martínez-Mardones et al.
[3] studied the problem of stability and pattern selection for the
case of oscillatory convection. An interesting finding of that re-
search is that the convective patterns may be modified by small
variations in the viscoelastic properties. In their analysis of pattern
selection, the patterns only correspond to standing waves. Also,
they calculate a Ginzburg–Landau equation for the stationary case,
similar in structure to that reported here. However, an important
feature of the Ginzburg–Landau equation found in the present
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paper is that it shows explicitly the parameters dependence of all
the coefficients.

The organization of the paper is as follows. In Section 2 the
governing equations and their boundary conditions are outlined
as well as a review of the mathematical treatment of the problem.
The linear problem is briefly exposed in Section 3. In Section 4 the
weakly non-linear analysis is discussed. The patterns stability
results are given in Sections 5–7 for rolls, squares and hexagons,
respectively. Finally, a discussion is given in Section 8.

2. Formulation of the problem

An incompressible viscoelastic fluid layer heated from below, is
confined between two infinite horizontal walls perpendicular to
gravity which is parallel to the z�-axis. Here, the convective stabil-
ity of the Oldroyd-A, Oldroyd-B and Oldroyd corotational visco-
elastic fluid models is investigated. The first two fluid models are
called codeformational, lower convected and upper convected,
respectively. The problem assumes that the bounding walls are
very poor thermal conductors [24] so that very small but finite Biot
numbers take into account the wall to fluid relative thermal
conductivities. This situation is different to that of the ideal cases
of perfect thermal conducting and thermal insulating walls since
a small quantity of heat flux is allowed through the walls. This
assumption is used in the thermal boundary conditions. In the case
of poorly thermal conducting walls the smallness of the Biot
numbers allows to use the shallow water theory approximation
[24–26]. The lower and upper walls have temperatures T�L and
T�U , respectively, where T�U < T�L . Thus, the governing equations for
this problem are the heat equation, the balance of momentum
equations and the continuity equation, coupled with the viscoelastic
Oldroyd fluid constitutive equations which in dimensional form are

@T�

@t�
þ ~u� � rð ÞT� ¼ jr2T� ð1Þ

q0
@~u�

@t�
þ ~u� � rð Þ~u�

� �
¼ �rp� þ r � s� þ q0 1� b T� � T�L

� �� �
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1þ k1
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Dt
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s� ¼ 2g0 1þ k2

D

Dt

� ��� 	
e� ð4Þ

The symbol � indicates dimensional variables. In Eqs. (1)–(4), T� is
the fluid temperature, ~u� ¼ ðu�;v�;w�Þ is the fluid velocity, p� is
the pressure, s� is the stress tensor, e� is the shear rate tensor
defined below in Eq. (15), k1 is the relaxation time, k2 is the retarda-
tion time of the stress, q0 is the fluid density, g0 is the fluid dynamic
viscosity, j is the thermal diffusivity and t� is the time. ðD=DtÞ� is a
non-linear operator standing for lower convective, upper convective
and corotational derivatives defined below in this section. In the
investigation of the non-linear hydrodynamic stability problem
the dependent variables are subjected to finite perturbations.
Therefore, the following set of perturbations are considered,

~u� ¼~u�0 þ~u�1
T� ¼ T�0 þ T�1
p� ¼ p�0 þ p�1 ð5Þ

where the subscripts 0 and 1 stand for the basic and perturbed
states, respectively. In the basic state of the present situation the
fluid is at rest, the heat is transferred by conduction and the vari-
ables depend on z� only. In this way ~u�0 ¼ 0 and it can be easily
shown that T�0 ¼ T�L þ DT�z�=H. The hydrostatic pressure is
p�0 ¼ q0z� 1� bDT�z�=2H½ �g þ p�r with p�r being a reference pressure.
The perturbed governing equations are the heat equation, the
balance of momentum equations and the continuity equation
coupled with the Oldroyd constitutive equations satisfied by the
six elements of the shear stress tensor, respectively. These are,
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The set of Eqs. (6)–(9) shall be made dimensionless by choosing
j=H;H;H2=j;qmj=H2 and DT� as the scalings for velocity, length,
time, pressure and temperature, respectively. Thus, in nondimen-
sional form the perturbed governing equations are
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where the superscript � and the subscripts 1 have been dropped out
from the perturbed dimensionless variables. w is the vertical com-
ponent of the velocity ~u. The fluid velocity is assumed of the form

~u ¼ r� w~k

 �

þr�r� v~k

 �

, which satisfies Eq. (12). Here, ~k is

a unit vertical vector, and w and v are the toroidal and poloidal
potentials. F ¼ k1j=H2 and E ¼ k2=k1 are the nondimensional relax-
ation time (the Weissenberg number) and the ratio of retardation
and relaxation times, whose magnitudes ranges are 0 6 E 6 0:1
and 0 6 F <1, respectively. Also, Pr ¼ m=j is the Prandtl number
and R ¼ gbDT�H3=jm is the Rayleigh number. The operator D=Dt

on a tensor G is defined as

DG

Dt
¼ @G

@t
þ~u � rG

� �
þx � G� G �x� a e � Gþ G � eð Þ ð14Þ

and it represents the corotational (a ¼ 0), the lower convected
(a ¼ �1) and the upper convected (a ¼ 1) time derivatives. Here e

and x are the shear rate and the rotation rate tensors defined as
the symmetric and antisymmetric parts of the tensor r~u,

r~u ¼ eþx ¼ 1
2
r~uþ r~uð ÞTr
h i

þ 1
2
r~u� r~uð ÞTr
h i

ð15Þ

where the superscript Tr stands for the transpose of the tensor. It is
important to point out that the definition Eq. (14) only describes
the three models time derivatives. Some models allow for the contin-
uous variation of the parameter a in a positive range 0 6 a 6 1, like in
the Johnson–Segalman model [27]. However, in the results given
presently, this parameter appears in the expression 1� a2. This only
modifies the limiting magnitudes of the Weissenberg number F (ex-
cept when a ¼ �1) where the theory is valid but not the patterns of
the convection cells. Therefore, in this paper the values of a are limited
to the three cases presented above. The above definition for~u is now
used in the system of Eqs. (10)–(13). Next, the operator curl curl is ap-
plied to Eq. (11), splitting the velocity and tensor fields leading to
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where primes mean derivatives with respect to z. Here, r? ¼
ð@=@x; @=@yÞ is a horizontal vector operator. T1

NL and T2
NL correspond

to advective non-linear terms which can be found in Appendix A.
Eqs. (16)–(18) are coupled to Eq. (13) which represent the govern-
ing equations. The bounding walls are solid so that the boundary
conditions for the velocity are translated into those of v and w as

v ¼ v0 ¼ w ¼ 0 at z ¼ 0;1 ð19Þ

The thermal boundary conditions are those for lower and upper
poorly thermal conducting walls. These are given in terms of the
Biot number as follows,

T 0 � BLT ¼ 0 at z ¼ 0
T 0 þ BUT ¼ 0 at z ¼ 1 ð20Þ

where BL and BU are the Biot numbers which account for the heat
exchange at the lower and upper walls, respectively.

2.1. Evolution equations

As pointed out, here the bounding walls are considered as
poorly thermal conductors and in this particular case the Biot
numbers BL and BU are very small. This means that the ratio of ther-
mal conductivities of the fluid to those of the walls is large and the
critical wavenumber for the onset of convection approaches to zero
(for more details see Refs. [28,29]). In this case convective motions
are slow and take place in a large scale when the heat flux exceeds
its critical value. Therefore, the scales in the vertical z-axis are
smaller than those in the horizontal x and y-axes. Thus, based on
this discrepancy, a long wavelength approximation [14,18] is per-
formed in order to obtain the non-linear equations to describe the
evolution of long-wave planforms. Lets consider �� 1 as an
expansion parameter which is related to the small quantity of heat
flux passing through the walls, physically accounting for the al-
most insulating characteristic of the walls. A further consequence
of this is that BL;U ¼ Oð�2Þ or in other words, that BL;U ¼ �2BL;U .
Due to the large scale and slowness of the flow, the horizontal
coordinates are rescaled by the factor �1=2 [18] and the time by
the factor �2. In the same way, the variables are expanded as
follows

v ¼ v0 þ �v1 þ �2w2 þ � � � ð21Þ
w ¼ w0 þ �w1 þ �2w2 þ � � � ð22Þ
T ¼ h0 þ �h1 þ �2h2 þ � � � ð23Þ
R ¼ R0 þ �R1 þ �2R2 ð24Þ
sxx ¼ � sð0Þxx þ �sð1Þxx þ �2sð2Þxx þ � � �

� �
ð25Þ
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 �
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 �
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sxz ¼ �1=2 sð0Þxz þ �sð1Þxz þ �2sð2Þxz þ � � �
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ð29Þ

syz ¼ �1=2 sð0Þyz þ �sð1Þyz þ �2sð2Þyz þ � � �

 �

ð30Þ
After a proper rescaling and substitution of the expansion
scheme Eqs. (21)–(30) into Eqs. (13)–(20), a system of differential
equations is obtained at each different order of �, subjected to their
corresponding boundary conditions at the same order. The
resulting systems of differential equations are large. For the sake
of clarity they are listed in Appendix B. Some analytical solutions
are given below. Thus, at Oð1Þ, Eq. (B.3) is subjected to boundary
conditions Eq. (B.10) with the solution

h0 ¼ Uðx; y;�tÞ ð31Þ

Next, the velocity component v0 can be obtained as follows:
Eqs. (B.6) and (B.8) are operated with @ 00=@x and @ 00=@y and
substituted into Eq. (B.1). Then, v0 can be calculated subjected to
boundary conditions Eq. (B.11) to give,

v0 ¼
R0

24
z2 z� 1ð Þ2Uðx; y;�tÞ ð32Þ

On the other hand, for the other potential the solution is w0 ¼ 0.
A similar process as that followed for v0 was used in combination
with Eq. (B.2) and boundary conditions Eq. (B.12). The same proce-
dure used above was repeated at Oð�Þ to calculate h1;v1 and w1,
whose expressions are very large and are not presented here. At
Oð�Þ a solvability condition obtained from the temperature Eq.
(B.15) should be satisfied. Then, after integration of Eq. (B.15) with
respect to z across the fluid layer, the result is R0 ¼ 720.

Later in the solution process [18] at Oð�2Þ a second solvability
condition should be satisfied too. This one is calculated from
Eqs (B.25) and boundary conditions Eqs. (B.26) and (B.27). As be-
fore, Eq. (B.25) is integrated across the fluid layer and the Biot
numbers are then included by using Eqs. (B.26) and (B.27). There-
fore, the following set of evolution equations are found for the
three Oldroyd fluid models,

@U
@t
¼ � BU þ BLð ÞUþ 1� R

720

� �
r2
?U�

17
462
r4
?U

þ 10
7

1� 1080F2 1� Eð Þ 1� a2
� �h i

�r? r?Uð Þ r?U � r?Uð Þ½ �

þ 15
7

Pr�1 � F 1� Eð Þ 540
7
þ 60a

� �� 	
�r?U ^ r?W ð33Þ

r2
?W ¼ r?U ^ r? r2

?U
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ð34Þ

The vector product ^ is defined by r?f ðx; yÞ ^ r?gðx; yÞ =
ð@f=@yÞð@g=@xÞ - ð@f=@xÞð@g=@yÞ. In Eqs. (33) and (34) the function
W represents effects of vorticity since the last non-linear terms in
Eq. (33) are a direct contribution of the solution w1, obtained at
Oð�Þ. In the literature these terms are referred to as non-potential
terms accounting for inertial effects and for a mean drift flow. No-
tice that Eq. (33) reduces to that for the Newtonian fluid [18] when
the viscoelastic effects are zero (F ¼ 0). Moreover, note that the
influence of viscoelasticity only appears in the non-linear terms.
This means that, under the present approximation, the Rayleigh
number obtained from the linear theory does not depend on E
and the Weissenberg number F. This is due to the small time var-
iation of the flow when the Biot numbers are small. Under these
conditions, the convective cells are extremely large and the flow
is nearly parallel in the center of the cells. It is clear in the evolu-
tion Eq. (33) that when a ¼ �1 the influence of viscoelasticity only
appears in the last term coupled with vorticity. Then, for the three
fluid models, the condition 15=ð7PrÞ � F 1� Eð Þ 540=7þ 60að Þ–0
must be satisfied to have the vorticity effects acting on viscoelastic
convection. If this coefficient is assumed positive, its magnitude
would be larger for the lower convected fluid (a ¼ �1), next for
the corotational fluid (a ¼ 0) and finally, the smallest magnitude
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Fig. 1. Convection cells. (a) For Biot numbers BU ¼ BL ¼ 0:001 the critical wave-
number and Rayleigh number are kc ¼ 0:48 and Rc ¼ 732:35, respectively. (b) For
Biot numbers BU ¼ BL ¼ 0:0001 the critical wavenumber and Rayleigh number are
kc ¼ 0:27 and Rc ¼ 723:91, respectively.
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would correspond to the upper convected fluid (a ¼ 1). Therefore,
the interaction with vorticity decreases, in the same order, for each
Oldroyd fluid model. On the other hand, for the corotational
Oldroyd fluid (a ¼ 0), the coefficient of the first non-linear term
of Eq. (33), that is 1� 1080F2 1� Eð Þ (independent of Pr), will play
an important role on the stability, as will be shown presently. This
coefficient can become zero and even change sign depending on
the magnitudes of the Weissenberg number F and E. For example,
if E ¼ 0:1 that coefficient becomes zero at the small value of
F = 0.032. The changes of sign will be interpreted below from the
point of view of nonlinear stability.

3. The linear problem

We consider the linear stability of natural convection between
poorly conducting horizontal boundaries with respect to distur-
bances which are proportional to exp i kxxþ kyy

� �
þ rt

� �
, where kx

and ky are the x and y-components of the wavenumber vector with

magnitude k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. r is a complex parameter whose real rR

and imaginary rI parts are the growth rate and the frequency of
oscillation, respectively. It has been found that, under the present
approximation, the frequency of oscillation is zero and that conse-
quently the linear behavior of the fluid is Newtonian. Thus,
Eqs. (35) and (36) agree with the results reported by Pismen [18]
after taking into account that BU ;BL ¼ ��=2 in that paper. The critical
Rayleigh number and wavenumber of stationary convection are:

Rc ¼ 720
34 BU þ BLð Þ

231

� �1=2

þ 1

" #
ð35Þ

kc ¼
462 BU þ BLð Þ

17

� �1=4

ð36Þ

where BU and BL are the Biot numbers at the lower and upper walls.
Notice that Eqs. (35) and (36) correspond to the classical result of
insulating walls when BU ;BL ¼ 0. That is, Rc ¼ 720 and kc ¼ 0. There-
fore, Eqs. (35) and (36) show the corrections when the approxima-
tion agrees with small but finite Biot numbers. In Fig. 1 two samples
of convection cells at criticality are plotted for two different Biot
numbers assuming that the upper and lower walls have the same
thermal properties. Notice the large contrast between the scales
of vertical and horizontal axes. Moreover, note that the number of
convection cells is larger in Fig. 1a in comparison with Fig. 1b, as ex-
pected for long wavelength convection.

4. Weakly non-linear theory

Here, we investigate the weakly non-linear behavior of the solu-
tions to Eqs. (33) and (34) for the three fluid models mentioned
above. We consider that R is close to Rc so that R ¼ Rc þ d2R, where
Rc is defined in Eq. (35) and d is a small parameter related to the
separation from criticality ðR� RcÞ=R. The procedure followed here
in the weakly non-linear analysis has been used before by other
authors [19,30–32]. It is considered that the functions in
Eqs. (33) and (34) have an asymptotic behavior. The functions
are expanded in power series as U = dU1 þ d2U2 þ � � � and W =
dW1 þ d2W2 þ � � � and they are substituted into Eqs. (33) and (34).
Then, for slow spatial and temporal modulations the following
expansions for ðx; y; tÞ are used
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@�t
þ d3 @

@�t2
ð37Þ
where X;X2, Y;Y2;�t;�t2 are slow spatial and temporal variables. The
procedure follows the method of Newell–Whitehead–Segel [33,34].
It is well known that the convection flow is very slow when the Biot
numbers are small. Therefore, it is assumed that the time variation
of the flow is also small and the expansion of the time derivatives
start with d2.
5. Steady roll patterns

The solution at O dð Þ is assumed to be of the form

U1 ¼ A X;Y;�tð Þ exp ikcxð Þ þ c:c: ð38Þ

where c.c. stands for complex conjugate. At O d2� �
it is found that

U2 ¼ 0. At O d3� �
the evolution equation of A is found as the corre-

sponding solvability condition. Therefore, A satisfies
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k4

c AjAj2 ð39Þ

By using suitable scalings on A;X and Y we arrive at the canon-
ical form for the amplitude equation

@A
@�t
¼ rAþ @

@X
� i

@2

@Y2

 !2

A� AjAj2 ð40Þ

where r ¼ Rk2
c=720. Eq. (40) is the same as that derived first by

Newell–Segel–Whitehead [33,34] which corresponds to convective
rolls oriented on the y axis. Care must be taken here, because in the
viscoelastic case the coefficient 1� 1080F2 1� Eð Þ 1� a2

� �
can be

zero and it is not possible to obtain this canonical form. In case that
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this coefficient is negative the equation differs from that of
Newell–Whitehead–Segel [33,34]. Notice that there is a supercriti-
cal bifurcation when the coefficient 1� 1080F2 1� Eð Þ 1� a2

� �
> 0

in Eq. (39). When a ¼ �1 the condition is readily satisfied and the
equation is the same as the Newtonian one. For the corotational
Oldroyd fluid, with a ¼ 0, the condition for supercritical bifurcation
changes into F2 < 1=1080ð1� EÞ. Here, the magnitude of E cannot
be one. In fact, its value must be E 6 0:1. As explained above, the
largest possible value of the Weissenberg number F is smaller than
0:032 if E ¼ 0:1. Conversely, if 1� 1080F2 1� Eð Þ < 0 the bifurcation
is subcritical and no saturation occurs. Then, the amplitude jAj in-
creases with time without limit. There is no saturation too when
the equality holds because the non-linear term is zero. Similar find-
ings have been reported [3] for the case of convection in a viscoelas-
tic fluid confined between two perfectly conducting walls.

In this way, under the present small wavenumber approxima-
tion and close to the point of criticality, the amplitude equation
for convective rolls has a structure similar to that of the Newtonian
fluid. The difference appears in the coefficient of the non-linear
term which only depends on viscoelasticity when the Oldroyd fluid
is corotational. This certainly will be reflected in the non-linear
growth rate of rolls. In view of the canonical form of Eq. (40) the
stability analysis for rolls is the same as that already reported
[35–38]. This result was unexpected due to the presence of the Biot
number which sets the system a little far from the ideal situation of
insulating walls, already studied for example, in the convection of a
second order fluid [14].

6. Roll and square patterns in a square lattice

Rolls and squares may arise in a square lattice and compete be-
tween each other. Thus, the following solution at O dð Þ for two sets
of rolls at right angles is assumed

U1 ¼ A X;Y;�tð Þ exp ikcxð Þ þ B X;Y;�tð Þ exp ikcyð Þ þ c:c: ð41Þ

The process is the same as before and the following amplitude
equations for the two sets of rolls are obtained

@A
@�t
¼ R

720
k2

c Aþ 34
231

k2
c
@2A

@X2 �
30
7

1� 1080F2 1� Eð Þ 1� a2� �h i

� k4
c A jAj2 þ 2

3
jBj2

� �
ð42Þ

@B
@�t
¼ R

720
k2

c Bþ 34
231

k2
c
@2B

@Y2 �
30
7

1� 1080F2 1� Eð Þ 1� a2� �h i

� k4
c B jBj2 þ 2

3
jAj2

� �
ð43Þ

The amplitude Eqs. (42) and (43) show explicitly the presence
of the viscoelastic effects contributed by the three models men-
tioned above. Notice that the viscoelastic parameters can be factor-
ized in the crossed cubic terms which establish the interaction
between A and B rolls. In this case, roll and square patterns are able
to appear and they have the following steady solutions.

	 A rolls:
A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

720 k2
c

30
7 1� 1080F2 1� Eð Þ 1� a2ð Þ
h i

k4
c

vuuut ð44Þ

B0 ¼ 0
	 squares

Fig. 2. Bifurcation diagram of rolls and squares in a square domain. The dashed line
means instability of the labeled structure while the solid line indicates stable
patterns, respectively. The subscript R; S was added to the amplitude steady
solution to point out that it has been divided by ð10=7Þ 1� 1080F2

h
1� Eð Þ 1� a2

� �
�k4

c .
A0 ¼ B0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

720 k2
c

50
7 1� 1080F2 1� Eð Þ 1� a2ð Þ
h i

k4
c

vuuut ð45Þ
where no spatial modulation was taken into account. The bifurca-
tion theory on a square lattice [35,37] gives interesting results on
the stability of rolls and squares. The result is that the rolls are
unstable, while the square patterns always are stable. This is due
to the factor 2/3 appearing in the cross terms of the amplitude
Eqs. (42) and (43). This also means that the interaction between
the two rolls is not influenced by viscoelastic effects. The result is
obtained applying a small perturbation to the square solutions. It
is found that for stability, the coefficient of the A cubic term in
Eq. (42) should be greater than that of the quadratic crossed term
AB. The same is valid for Eq. (43). This agrees with previous results
[35–38]. In those papers it is shown that when the magnitude of the
coefficient of the quadratic crossed term AB is less that 1, the
squares are preferred over rolls close to the onset. Here, this term
is zero and does not appear. Therefore, the condition for stable
squares reduces to
R
720

k2
c > 0 ð46Þ

The bifurcation diagram for this case is shown in Fig. 2 and it
summarizes the results discussed previously. As in the preceding
section for rolls, the viscoelastic properties of the fluid only survive
in Eqs. (42) and (43) when a ¼ 0 for the Oldroyd corotational fluid.
Viscoelasticity has influence on the size of the patterns but not on
the stability, except when the coefficient of the cubic terms is zero
or negative.

7. Roll and hexagon patterns in a hexagonal lattice

Hexagonal cells and rolls may also exist near the onset of con-
vection. Therefore, a hexagonal lattice is considered to investigate
the stability of these patterns. The form of the solution at O dð Þ for
the set of three rolls, at an angle of 60� to each other, is the
following
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U1 ¼ A X;Y;�tð Þ exp ikcxð Þ þ B X;Y;�tð Þ exp
ikc

2
�xþ

ffiffiffi
3
p

y

 �� 	

þ C X;Y;�tð Þ exp � ikc

2
xþ

ffiffiffi
3
p

y

 �� 	

þ c:c: ð47Þ

The same process is followed as before to obtain the amplitude
equations

@A
@�t
¼ R

720
k2

c Aþ 34
231

k2
c
@2A

@X2 �
30
7

1� 1080F2 1� Eð Þ 1� a2
� �h i

� k4
c A jAj2 þ jBj2 þ jCj2

 �

ð48Þ

@B
@�t
¼ R

720
k2

c Bþ 34
231

k2
c
@2B

@n2 �
30
7

1� 1080F2 1� Eð Þ 1� a2� �h i
� k4

c B jAj2 þ jBj2 þ jCj2

 �

ð49Þ

@C
@�t
¼ R

720
k2

c C þ 34
231

k2
c
@2C
@g2 �

30
7

1� 1080F2 1� Eð Þ 1� a2� �h i
� k4

c C jAj2 þ jBj2 þ jCj2

 �

ð50Þ

where n ¼ �Xþ
ffiffiffi
3
p

Y

 �

=2 and g ¼ �X�
ffiffiffi
3
p

Y

 �

=2. Observe that as

in the square lattice case, the viscoelastic parameters only appear as
a non-linear effect and they can be factorized in front of the cubic
terms. It is important to notice that the non-linear interactions in
all the cubic terms have the same weight for the set of three rolls.
This characteristic of Eqs. (48)–(50) is a result of the symmetry im-
posed by the rigid–rigid boundary conditions considered here. For
the asymmetric rigid-free boundary conditions the coefficients are
different in the coupling of the non-linear terms [30,35–38]. Similar
findings to those reported here have been published in [30].

When modulations are neglected, Eqs. (48)–(50) have the fol-
lowing steady equilibrium solutions for rolls and hexagons.

	 A rolls
A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

720 k2
c

30
7 1� 1080F2 1� Eð Þ 1� a2ð Þ
h i

k4
c

vuuut ð51Þ

B0 ¼ C0 ¼ 0
	 hexagons
A0 ¼ B0 ¼ C0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

720 k2
c

90
7 1� 1080F2 1� Eð Þ 1� a2ð Þ
h i

k4
c

vuuut ð52Þ
Notice that the roll solution Eq. (51) is the same as Eq. (44)
found in the square lattice analysis. Therefore, roll patterns are
possible in both the square and the hexagonal lattices. Thus, it is
reasonable to obtain the same solution in both cases. Again, the
viscoelastic properties only appear for the Oldroyd corotational
fluid (a ¼ 0) and these influence the size of the patterns.

Considering that the system of Eqs. (48)–(50) can be rewritten
in a canonical form as in the case of rolls, it follows that the coef-
ficient of the cubic terms has no influence on the pattern stability,
except when it is zero or negative. In other words, the pattern
selection problem in a hexagonal lattice is similar to that found
in the stability of a Newtonian fluid layer. A complete analysis on
the stability of hexagons and rolls in a hexagonal lattice is provided
by Fujimura and Yamada [39]. Thus, the solution of the present
problem shall be undertaken with the help of their results. It is
found that, in the absence of quadratic coupling terms, only rolls
are stable in a hexagonal lattice near criticality. However, hexagons
and rolls are simultaneously stable for magnitudes of Rk2

c =720 a lit-
tle far from criticality.

Two notable features of the amplitude Eqs. (48)–(50) are there-
fore the absence of a quadratic coupling term and the identical
coefficients in the cubic terms. It is pointed out here that the struc-
ture of that set of amplitude equations in this case does not allow
the applicability of the method used before [35]. This is mainly due
to the symmetry of the problem and to the Boussinesq
approximations.
8. Discussion

The main result of this paper is the calculation of the evolution
Eqs. (33) and (34) which include inertial effects through a coupling
non-linear term for the corotational, upper and lower convected
Oldroyd fluids. This term makes the evolution equations more gen-
eral than those reported before [18,19,24]. As found for the Newto-
nian case [18], the so called mean drift flow is very weak near the
instability threshold, and thus it has no influence in the convective
pattern selection. It is important to note that, under the present
approximation, the linear stability is not influenced by viscoelas-
ticity and that the onset of convection is stationary. A similar result
has been found for the linear thermoconvective stability of a visco-
elastic Maxwell fluid layer heated from below [28]. There, it is
shown that a codimension-two point exists separating stationary
and oscillatory convection which depends on the magnitude of
the Prandtl and Biot numbers. In the present paper, it is found that
the bifurcation is supercritical for any of the three viscoelastic flu-
ids considered if 1� 1080F2 1� Eð Þ > 0 which is the coefficient of
the cubical term of Eq. (39). Subcriticality occurs when it is nega-
tive. It is clear that the stability of the Newtonian fluid always is
supercritical and the solution always attains saturation. This satu-
ration condition limits the magnitude of the Weissenberg number
F and E of the corotational Oldroyd fluid. The problem is that the
magnitudes of the Weissenberg number are restricted to a very
small range of values. From the multiple scales approximation, it
is clear that the inertial effects of vorticity do not appear in the
Ginzburg–Landau equations. The scaling assumed for the variables
in the derivation of the amplitude equation shows that one of the
roles of viscoelasticity is to modify the amplitude and size of the
convection patterns. Moreover, due to the rigid–rigid boundary
conditions assumed from the beginning, viscoelasticity will also
change the shear stresses at the walls. The pattern selection stud-
ied from the geometrical point of view in a squared domain shows
that squares are stable and rolls unstable. As before, viscoelasticity
is only important for the corotational fluid. For the situation in a
hexagonal domain, the stability of rolls and hexagons is investi-
gated using the results of Fujimura and Yamada [39]. It is found
that (see [39]), in the absence of quadratic coupling terms, only
rolls are stable near criticality. A further increase of Rk2

c =720 leads
to the simultaneous stability of rolls and hexagons in a hexagonal
lattice. Based on the results of Ref. [39] it is important to point out
that the set of amplitude equations studied here may be consid-
ered as an Oð1Þ approximation to the small quadratic and cubic
coupling terms in a more general set of amplitude equations [35].
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Appendix A. Convective non-linear terms

This appendix gives the large non-linear terms T1
NL and T2

NL

appearing in Eqs. (17) and (18). They are:

T1
NL ¼ �r? r2

?v

 �

^ r?v00 þ r? r2
?v


 �
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� r? r2
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Appendix B. Systems of equations

This Appendix presents the systems of equations used to com-
pute the final evolution equations given in Section 2.1. The follow-
ing expressions correspond to Oð1Þ. From Eq. (18):

0 ¼ @s
ð0Þ00
xz

@x
þ @s

ð0Þ00
yz

@y
� R0r2

?h0 ðB:1Þ

From Eq. (17):

0 ¼ @s
ð0Þ0
yz

@x
� @s

ð0Þ0
xz

@y
ðB:2Þ

From Eq. (13) for the temperature:

0 ¼ @
2h0

@z2 ðB:3Þ

The expressions for sð0Þxx ; sð0Þxy , sð0Þxz ; sð0Þyy ; sð0Þyz and sð0Þzz are,

0 ¼ sð0Þxx þ ð1þ aÞF @w00
@y
þ @v

00
0

@x

� �
E
@w00
@y
þ @v

00
0

@x

� �
� sð0Þxz

� 	

� 2
@2w0

@x@y
þ @

2v0

@x2

 !
ðB:4Þ

0 ¼ sð0Þxy þ
F
2
ð1þ aÞ sð0Þxz

@w00
@x
� @v

00
0

@y

� ��

� sð0Þyz
@w00
@y
þ @v

00
0

@x

� �	
FEð1þ aÞ @w00

@x
� @v

00
0

@y

� �
@w00
@y
þ @v

00
0

@x

� �

� @
2w0

@y2 þ
@2w0

@x2 � 2
@2v0

@x@y
ðB:5Þ

0 ¼ sð0Þxz �
@w00
@y
� @v

00
0

@x
ðB:6Þ

0 ¼sð0Þyy þ Fð1þ aÞ @w00
@x
� @v

00
0

@y

� �
E
@w00
@x
� @v

00
0

@y

� �
þ sð0Þyz

� 	

þ 2
@2w0

@x@y
� 2

@1v00
@y2

ðB:7Þ
0 ¼ sð0Þyz þ
@w00
@x
� @v

00
0

@y
ðB:8Þ

0 ¼ sð0Þzz � FEð1� aÞ @w00
@x
� @v

00
0

@y

� �2

þ @w00
@y
þ @v

00
0

@x

� �2
" #

� Fð1

� aÞ sð0Þyz
@w00
@x
� @v

00
0

@y

� �
� sð0Þxz

@w00
@y
þ @v

00
0

@x

� �� 	
þ 2r2

?v00 ðB:9Þ

At this order the proper boundary conditions are,

@h0

@z
¼ 0 at z ¼ 0;1 ðB:10Þ

@v0

@z
¼ v0 ¼ 0 at z ¼ 0;1 ðB:11Þ

w0 ¼ 0 at z ¼ 0;1 ðB:12Þ

From Eqs. (B.3), (B.6) and (B.8) together with the boundary
condition Eq. (B.12), it is found that w0 ¼ 0. With this the
equations at Oð�Þ are simplified. Further simplifications can
also be made with the solution to Eq. (B.3) subjected to bound-
ary condition Eq. (B.10). This leads to the result that
h0ðx; y; z; tÞ ¼ Uðx; y; tÞ, is independent of z. Then, from Eq. (18):
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From Eq. (17):
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From the temperature Eq. (13):
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Next, the expressions for sð1Þxx ; sð1Þxy ; sð1Þxz , sð1Þyy ; sð1Þyz and sð1Þzz are,
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At the order of approximation the corresponding boundary condi-
tions are,

@h1

@z
¼ 0 at z ¼ 0;1 ðB:22Þ

@v1

@z
¼ v1 ¼ 0 at z ¼ 0;1 ðB:23Þ

w1 ¼ 0 at z ¼ 0;1 ðB:24Þ

Finally, at Oð�2Þ only the equation for temperature is needed.
From this equation the second solvability condition is obtained.
Thus,
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subjected to the following boundary conditions,
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@h2

@z
¼ BLh0 at z ¼ 0 ðB:26Þ

@h2

@z
¼ �BUh0 at z ¼ 1 ðB:27Þ
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