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We studied the terminal velocity of a packed array of bubbles, a bubble cluster, rising
in different fluids: a Newtonian fluid, an elastic fluid with nearly constant viscosity
(Boger fluid), and a viscoelastic fluid with a shear dependent viscosity, for small but
finite Reynolds numbers (1 × 10−4 < Re < 4). In all three cases, the cluster velocity
increased with the total volume, following the same trend as single bubbles. For the
case of clusters in elastic fluids, interestingly, the so-called velocity discontinuity was
not observed, unlike the single bubble case. In addition to the absence of jump velocity,
the clusters did not show the typical teardrop shape of large bubbles in viscoelastic
fluids and the strength of the negative wake is much weaker than the one observed
behind single bubbles. Dimensional analysis of the volume-velocity plots allowed us
to show that, while the equivalent diameter (obtained from the total cluster volume) is
the appropriate length to determine buoyancy forces and characteristic shear rates, the
individual bubble size is the appropriate scale to account for surface forces. C© 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4874630]

I. INTRODUCTION

The rigid character of solid particles has allowed fluid dynamic researchers to find analytical
solutions for the motion and interaction of particles in different media.1–3 Bodies that allow continuity
of the velocity at the interface but without retaining stresses on it (vanishing normal and tangential
stresses), also constitute classical systems with analytical solutions.1–3 The complexity of such
systems increases if surface deformations are considered, i.e., if normal and tangential stresses are
developed at the interfaces. In general, we can expect that interfacial deformability will make bodies
behave differently with respect to rigid particles or particles with zero stresses at the surface. For
example, Manga and Stone4 observed that the rate of coalescence in dilute bubble suspensions
increases with the Bond number, Bo = �ρgr2/σ , where �ρ is the density difference, g the gravity,
r the bubble radius, and σ the surface tension. The Bond number compares buoyancy and surface
forces and constitutes a common indicator of surface deformability. It is also thought that interfacial
deformability plays a crucial role in the velocity-discontinuity observed in viscoelastic fluids, where
the bubble undergoes a change in shape for narrow diameter changes.5–15

While single bubbles have been the central model to study the interplay between driving
(buoyancy) and restoring (surface tension) forces, little is known regarding the behavior of a group
of bubbles rising in a compact array (bubble clusters) with touching interfaces. The motion of
particle clusters, in which different interfaces are separated just by a thin liquid film, constitutes a
particular case of the general dynamic problem of a group of bodies traveling in a medium having
an arbitrary distance between their centers.1, 4, 16–22 It is commonly accepted that two particles or
bubbles touching each other behave as a single body when moving in a Newtonian fluid. Consider,
for example, the velocity relation between a particle with radius r and a particle pair in contact,
having the same radius. If we use the convention of defining the equivalent diameter, or radius,
of the cluster as the one obtained by summing the individual volumes, considering the pair as
a single bigger particle, we can compute the terminal velocity of the pair by equating buoyancy
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and drag forces, i.e., 2(4/3πr3g�ρ) = 6πμUI I
3
√

2r , where UII is the velocity of the particle pair
and μ is the liquid viscosity. Comparing with the velocity UI of a single particle, we obtain that
UI /UI I = 3

√
2/2 = 0.63. As expected, the pair travels faster than the individual particle.21 Analytical

solutions for the settling velocity of two particles at low Reynolds numbers having a distance δ =
l/2r between centers are well known in the literature.1, 23 For the case when δ = 1, i.e., touching
spheres, Stimson and Jeffery23 predicted a value of UI/UII = 0.645 for two particles traveling in-line,
and a UI/UII = 0.707 was predicted for the case when the particles travel side-by-side.1 Therefore,
in the case where the detailed geometry of the pair and incurrence of relative motion between
particles constitute minor effects in the steady velocity, the dynamics of a packed array of particles
(cluster) becomes trivial and its solution is equal to the single particle case considering the equivalent
diameter deq.

The main objective of the present work is to investigate if a packed array of bubbles, having
any number of bubbles N , obeys, or not, the equivalent diameter rule. Another question that we
would like to answer is if bubble clusters in non-Newtonian fluids present the velocity-jump and,
ultimately, what is the effect of the buoyancy and surface forces. In order to achieve generality in our
results, three different fluids were considered: a Newtonian fluid, an elastic fluid with nearly constant
viscosity, and an elastic fluid with a shear-dependent viscosity. Section II presents the experimental
setup and the rheological properties of the fluids. Next, the volume-velocity curves are presented
in Sec. III together with images of single bubbles and bubble clusters obtained in the experiments.
In Sec. IV, we analyze the results considering a dimensionless parameter used as a velocity jump
criteria. In Sec. V, the negative wake structure left by a single bubble and a bubble cluster are shown
and discussed. Some conclusions are outlined in Sec. VI.

II. EXPERIMENTAL SETUP

A. Bubble column and image processing

Single bubbles and bubble clusters were released in a cylindrical glass tube having an inner
diameter of D = 90 mm and a length of 75 cm. The ratio of the equivalent diameter of the bubbles (or
clusters) with D was in the range of 0.01 < deq/D < 0.08 with a mean of 0.043 ± 0.017. As shown
in Figure 1, the column is equipped with optic rectifiers, filled with the working fluid, and a bubble
dispenser located at the base. This bubble dispenser consist of two concentric glass cylinders with
holes at the sidewalls (Figure 1). By moving a flexible straw up and down from the bottom of the
column, it is possible to rotate the inner cylinder in order to trap bubbles, feeded by an external tube,
or release bubbles inside the column. It is important to note that the bubbles have to be collected
and put into contact to conform the cluster before opening the container. If the bubbles are released
without previous clustering, they may separate due to the repulsive interaction forces (lubrication
forces may also be responsible in preventing bubble separation). Note also that the design of the
bubble dispenser allows to form clusters having any bubble size. In principle, we wanted to form
clusters with bubbles having a diameter lower than the critical one, Vc, at which the velocity jump
occurs. In most of the cases, we succeeded in forming bubbles with nearly the same size, i.e., the
total volume of the cluster is proportional to the number of bubbles in it. However, for the cases
when the clusters had different bubbles sizes, we calculate the total volume by adding the individual
volumes.

Videos of the rising bubbles were taken with a high speed camera (MotionPro X4) placed 40 cm
from the column base; diffuse illumination was provided by an array of LEDs (Studio LED Light).
The vertical steady velocity (no lateral displacements were observed) was obtained directly from the
image acquisition software package (Motion Studio 2.07.20). The equivalent diameter of spherical
or ellipsoidal bubbles, including the ones embedded in the clusters, were calculated according to the
maximum and minimum diameters formula deq = (d2

max dmin)
1/3

. For teardrop shaped bubbles, the
second centroid theorem of Pappus was used to compute the volume V

V = 2Aπrcentroid , (1)
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FIG. 1. Experimental setup. Left image: diagram of the bubble dispenser used to collect or release bubbles. A mobile straw
is moved up and down from the bottom in order to rotate a glass tube placed inside another cylinder and sealed at the axial
sides. Matching the lateral holes between both cylinders allows either bubble trapping or bubble release inside the column.
Right image: dimensions of the bubble column. The high speed camera or PIV focusing lenses were placed 40 cm from the
bottom facing the front walls of the optic rectifiers.

where A is the half of the projected area of the bubble, considering its axis of symmetry, and rcentroid

is the length between the axis of symmetry and the centroid of A. The equivalent diameter deq of the
bubbles was then estimated using Eq. (1) and the sphere volume πd3

eq/6. The image analysis was
done with Matlab C©.

B. Working fluids

In order to form a packed array of bubbles, it is imperative to avoid the rupture of the film
separating the individual bubbles, i.e., avoid bubble coalescence. Therefore, all the fluids need to
have a viscosity such that the thin film separating the bubbles becomes stable at least during the rising
time of the bubbles in the column. Taking into account this consideration, for the Newtonian fluid
we used pure glycerin (μ = 692.1 mPa s at 25 ◦C). The elastic fluid with nearly constant viscosity
(Boger-type fluid) was made by dissolving 1.5% of HASE polymer (Primal TT-935, supplied by
Rohm and Haas) in water adjusting the pH to 9.0 with a 0.1M solution of 2-amino-2-methyl-1-
propanol. Finally, the viscoelastic fluid was prepared by mixing 0.13% w/w of polyacrylamide
(Paam, Separan AP-30) in a 50/50 water-glycerin mixture. The viscosity and first normal stress
difference (N1) of the fluids are shown in Figure 2. The rheological measurements were done in a
TA Instruments rheometer (AR1000N, cone-plate geometry 60 mm, 1◦) at 25 ◦C.

The viscosity of the Paam solution can be fitted to the power-law model having k = 0.87 Pa sn

and n = 0.478; while the viscosity of the Boger-type fluid was modeled with the Carreau equation
having μo = 2.014 Pa s, λt = 0.0716 s−1, and n = 0.618. Also note that in the shear-rate range
found in the experiments, denoted by the vertical dashed lines in Figure 2, N1 is larger in the
viscoelastic fluid than in the Boger-type fluid (actually, no normal stress differences were registered
by the rheometer for the latter for γ̇ < 16 s−1). Evidently, for larger values of γ̇ , the HASE fluid
becomes more elastic. Considering that Wi∼N1(γ̇ )/μ(γ̇ )γ̇ , we estimated for the Paam solution a
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FIG. 2. Rheological properties of the fluids. The dashed horizontal line denotes the viscosity of the Newtonian fluid; (◦)
symbols are for the viscoelastic fluid, and (�) symbols are for the Boger fluid; empty symbols indicate the values of the
viscosity, μ, and filled symbols the values of the first normal stress difference N1. The vertical dashed lines denote the shear
rate range (0.51 < γ̇ < 26.03) calculated from the experiments. The solid lines denote model fittings for the viscosity, the

power law model μ = 0.8714γ̇ 0.478−1 for the viscoelastic fluid, and the Carreau model μ = 2.014[1 + (0.0716γ̇ )2]
(0.618−1)/2

for the Boger-type fluid.

Weissenberg number range of 5.7 < Wi < 9.2. In the case of the HASE fluid, we can consider a
Weissenberg number of the order of Wi ∼ λt γ̇ ,24 giving a range of 0.04 < Wi < 0.6.

III. VOLUME-VELOCITY CURVES FOR SINGLE BUBBLES AND BUBBLE CLUSTERS

The images of single bubbles and bubble clusters released in the column are shown in Fig. 3
for the three fluids. The volume-velocity plots are shown in Figs. 4–6 for the Newtonian, Boger,
and viscoelastic fluids, respectively. In all cases, the experimental velocity values were compared
with the theoretical values (lines in the volume-velocity plots) using the formula for a generalized
Newtonian fluid in the creeping flow regime3

U =
[

�ρgrn+1
eq

kY (n)

]1/n

, (2)

where we have assumed a priori that clusters obey the equivalent diameter rule. The drag correction
factor Y(n) for rigid spheres is considered as25

Y (n)rigid = 9

2n
3

3n−3
2

[
2 + 29n − 22n2

n(n + 2)(2n + 1)

]
, (3)

while the drag correction factor for mobile interfaces was considered as26

Y (n)mobile = 3
n+1

2

[
13 + 4n − 8n2

(n + 2)(2n + 1)

]
. (4)

The reported Reynolds numbers were computed as

Re = (
21−n

) ρU 2−ndn
eq

k
. (5)
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FIG. 3. Images of single bubbles and bubble clusters formed in the three fluids considered in this work. The numbers below
each image indicate the bubble (or cluster) volume [mm3], and the numbers in parenthesis indicate the number of bubbles
forming the cluster.

The factor 21−n is usually dropped from this expression, but we retained it in this case to be
consistent with the characteristic lengths disclosed below.

At a first glance, we can see that single bubbles and bubble clusters follow closely, in the
three fluids, the solution for spheres (generalized Stokes solution) in the creeping flow regime,
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FIG. 4. Experimental velocity values for single bubbles (gray circles) and bubble clusters (�) obtained for the Newtonian
fluid. The lines are the theoretical values according to Eq. (2) using Eq. (3) for rigid spheres (thick line) or Eq. (4) for mobile
interfaces (dashed line) having n = 1.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.248.12.211 On: Wed, 08 Apr 2015 17:57:27
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FIG. 5. Experimental velocity values for single bubbles having V < Vc (gray circles), single bubbles having V > Vc (◦),
and bubble clusters (�) obtained for the Boger (HASE) fluid. The lines are the theoretical values according to Eq. (2) using
Eq. (3) for rigid spheres (thick line) or Eq. (4) for mobile interfaces (dashed line) having n = 1 (μo = 2.014 mPa s). The
critical volume is Vc = 43 mm3.
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FIG. 6. Experimental velocity values for single bubbles having V < Vc (gray circles), single bubbles having V > Vc (◦),
and bubble clusters (�) obtained for the viscoelastic (Paam) fluid. The lines are the theoretical values according to Eq. (2)
using Eq. (3) for rigid spheres (thick line) or Eq. (4) for mobile interfaces (thin line) having n = 0.478 and μref = k = 0.87
Pa sn . The critical volume is Vc = 21 mm3.
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indicating that the inertia and wall effects are small. For the two elastic fluids, however, sin-
gle bubbles experience the velocity jump at the critical volume Vc, while the bubbles clusters
do not show velocity discontinuity. In all cases, some bubble movement within the cluster and
cluster rearrangement was observed immediately after release. After this initial adjustment, we
did not observe relative motion within the cluster or cluster rotation along the measurement site
(40 cm above the release point). We proceed now with the phenomenological description for each
fluid.

The Newtonian case (Figure 4) reveals that the equivalent diameter rule is obeyed in simple
fluids: touching bubbles can be considered single bubbles with an equivalent diameter deq, at least for
the cases where the bubbles do not move relative to one another during the rising motion and when
the fluid is inelastic. Moreover, the particular geometry of the bubble clusters (in our case, a kind
of “8” shape, see Figure 3) do not introduce additional drag, and single bubbles and bubble clusters
behave as rigid particles (see Figure 4). As expected, the single bubble shape is almost spherical due
to small inertia and buoyancy forces with respect to viscous and surface forces (maximum Reynolds
and Eötvös numbers, Eo = g�ρd2

eq/σ , were 0.55 and 10, respectively, considering a surface tension
of σ = 63 mN/m). In this fluid, we could only form bubble pairs (see Figure 3) varying the size
of the individual bubbles; clusters formed with more than two bubbles disaggregate into smaller
clusters.

For the Boger fluid, shown in Figure 5, the single bubble velocity increases with the volume
as in the case for Newtonian liquids, but at a critical volume (Vc = 43 mm3) the velocity suddenly
increases. The single bubbles follow closely the theoretical predictions of solid spheres if the volume
is below the critical one; for bubbles with larger volumes, the experimental velocities are closer to
the prediction for particles with a slip interface (clean bubbles). The magnitude of the velocity
jump at Vc is Uafter/Ubefore = 1.76, close to the Stokes-Hadamard velocity ratio (1.5). Interestingly,
the velocity of bubble clusters do not experience velocity jump and its value remains close to
that for rigid particles. This indicates that the bubble clusters are insensitive to the elastic stresses
developing in the fluid which promotes the velocity jump in single bubbles. The theoretical lines in
Figure 5 were calculated considering a Newtonian behavior in the shear-rate range. The approximate
expression proposed by Machač et al.27 for Carreau fluids practically followed the Stokes solution
after substituting the Carreau parameters obtained in the rheometer. In this fluid, we could form
clusters with different number of bubbles, each individual bubble having a V < Vc: from two to
seven bubbles and a very irregular cluster formed with ∼11 bubbles, all denoted by square symbols
in Figure 5; some cluster images are shown in Figure 3 (see also Ref. 28). In addition to missing
the velocity jump, clusters formed with 2, 3, and 4 bubbles do not deform as the single bubbles,
which experience surface deformation at the rear end (teardrop shape) for V > Vc. Note also that
clusters made with more than 4 bubbles present deformation in just one or two bubbles at the tail
(see Figure 3). An interesting observation, which is linked to this behavior, is that while the clusters
do not present a velocity jump at Vc, Figure 5 suggest that they may experience a gradual change
from no-slip to slip condition. Finally, the Boger fluid confirms that the equivalent diameter rule is
obeyed for any number of bubbles forming a cluster at least for the cases when the cluster does not
disaggregate in smaller ones.

The behavior of the viscoelastic fluid (Paam solution, Figure 6) is, in general, similar to the
Boger fluid: single bubbles having V < Vc (Vc = 21 mm3) and bubble clusters behave as rigid
particles, while single bubbles with V > Vc behave as stress-free bubbles. Unlike the previous case,
however, none of the bubble clusters showed a cusped tail (Figure 3), and the experimental points for
the clusters (square symbols in Figure 6) follow the generalized Stokes solution. Actually, a slight
decrease of the rise velocity is observed for the clusters compared with the single bubble trend and
the theoretical line. Such velocity decrease, which corresponds to an increase of about 20% of the
drag correction factor, suggests that additional elastic stresses act over the bubble interfaces forming
the clusters. The normal stress differences shown in the rheological data (Figure 2) together with
the Wi numbers calculated for this fluid, and the shape of the clusters, which show bubble chaining
with an evident larger aspect ratio with respect to single bubbles (maximum to minimum diameter
ratio, see Figure 3), support this observation. In spite of this, again, the elastic stresses forming in
the fluid do not favor a velocity jump in the cluster. Finally, the experimental velocity increment
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is Uafter/Ubefore = 4.33. The theoretical value for a generalized Newtonian fluid can be computed
according to Umobile/Urigid = [Y(n)rigid/Y(n)mobile]1/n,3 which, after using Eqs. (3) and (4) and the value
of n = 0.478 gives 4.73, i.e., the interface in single bubbles indeed experience mobilization, which
is not the case in the bubble clusters.

IV. BUOYANCY AND SURFACE FORCES ACTING IN BUBBLE CLUSTERS

As mentioned above, the theoretical values of the rise velocity were determined using Eq. (2),
which is derived from the balance between buoyancy and drag forces considering the equivalent
radius (or deq). Agreement with the experimental data confirmed the straightforward assumption that
each bubble contributes to the sum of the total buoyancy force, and, in general, to the cross-sectional
area related to the drag force. The contribution of the individual bubbles to the total surface is,
however, not additive, and the clusters can be considered as single bodies having a “segmented”
interface; in other words, there is no such “equivalent surface.” The reason of this is because the
radius of curvature linked to the surface tension is approximately equal to the radius of the individual
bubbles (rind) and not to the equivalent radius of the cluster itself. In order to test this asseveration,
we computed a dimensionless number used to predict Vc, which considers the surface stresses σ /r.
In this manner, we can determine if single bubbles and bubble clusters form a single master curve
for the velocity jump criteria. Among the different dimensionless numbers that have been proposed
to predict Vc, the parameter α, proposed by Ref. 11 is defined as

α = 
Ca =
(

N1r

σ

) (
μU

�σ

)
. (6)

The parameter α states that the velocity jump occurs when α = 1. The term N1
σ/r is a balance between

elastic and surface stresses, intuitively needed to produce bubble deformation at the rear end; on the
other hand, the modified Capillary number Ca = μU/�σ is the balance between viscous (∼μU/r)
and Marangoni stresses (∼�σ /r, �σ being the difference between the surface tension of the solvent
and that of the polymeric solution) involved in the tangential motion of the interface and subsequent
mobilization of surfactants acting on it.10 For our purposes, i.e., considering single bubbles and
bubble clusters, we must compute α as

α =
[

N1(γ̇ )rind

σ

] [
μ(γ̇ )U

�σ

]
, (7)

where γ̇ = 2U/deq . The plot of U/Urigid as a function of the parameter α is shown in Figure 7 for
the case of the Paam solution, where all the rheological information is available to compute N1(γ̇ )
and μ(γ̇ ). A value of σ = 66 mN/m and �σ = 3 mN/m were considered using the experimental
data of Ref. 12 for a 0.15% w/w Paam solution in 50/50 water-glycerin mixture. As shown in the
figure, single bubbles and bubble clusters with V < Vc have a value of α < 1 (no velocity jump
prediction), as expected. On the contrary, single bubbles with V > Vc have a value α > 1, while
bubble clusters still have a value less than one. This observation is important in two ways: confirms
that bubble clusters resist deformation due to the fact that the effective curvature is related to 1/rind

rather than 1/req; indirectly, this also supports the idea that interfacial deformability is important for
the velocity jump to occur.

V. NEGATIVE WAKE BEHIND SINGLE BUBBLES AND BUBBLE CLUSTERS

In order to close our discussion on the difference between single bubble and bubble clusters, we
studied the flow structure formed in both cases, particularly in the region behind the bubbles where
the negative wake appears. We conducted PIV measurements for the HASE fluid, whose extensional
properties promote the formation of a negative wake behind particles or bubbles.8, 29 Differences
in the negative wake structure or extensional properties between the HASE and Paam solutions are
out of the scope of the present investigation; some information in this regard can be found in
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FIG. 7. Map of the experimental rise velocity U, normalized by the generalized Stokes velocity Urigid (Eqs. (2) and (3)),
as a function of the parameter α computed for the viscoelastic (Paam) fluid. Single bubbles having V < Vc: gray circles,
bubble clusters having V < Vc (�), single bubbles having V > Vc (◦), bubble clusters having V > Vc (�). The horizontal
and vertical dashed lines denote the values U/Urigid = 1 and α = 1.

Refs. 29 and 30. Figure 8 shows instantaneous velocity fields left by a single bubble
(V = 194 mm3) and a bubble cluster (V ≈ 240 mm3, formed by ∼11 bubbles). Note that in both
situations the volume is larger that the critical one (Vc = 43 mm3). For the single bubble case, a
negative wake is evidently formed at y/r ≈ 7 away from the bubble center and extends beyond
y/r = 20. On the contrary, a very mild negative wake seems to develop behind the cluster at y/r
≈ 16. Consistent with the assumption that bubble clusters behave as rigid bodies and resist surface
deformation, the appearance of the negative wake in this case is not related with a sudden change
on the surface geometry of the bubble, as seen in single bubbles,9 but it seems to depend just on the
extensional properties of the fluid, as is in the case of settling particles.29, 31

The conjunction of all these observations leads us to consider a non-linear scenario, i.e., an
information feedback between the liquid and the interface: the gradual increase of the extensional
deformation affects the particle motion; in turn, the particle may adapt or not to such flow, affecting
the fluid structure at the downstream flow. Hence, it seems reasonable to consider that deformable
bodies can adapt to the extensional flow and promote an early formation of a negative wake near the
particle. To our knowledge, no comparative study exists in the literature regarding the differences in
the wake structure between rigid and deformable bodies having similar buoyancy forces. This work
is the first attempt to conduct this comparison and the results suggest that the cusped-end shape of the
bubbles, with possible surface mobility, speed up the relaxation of polymer molecules downstream.
The evidence that particle deformability intervenes in the formation of the negative wake does not
contradict the conclusions of Kemiha et al.,32 which stated that the rheological behavior of the liquid
is essentially the one that causes its appearance. Hence, the present discussion does not change the
current understanding of the appearance of the negative wake. In turn, our results can be used to
understand finer aspects of the strength of the wake. In a future investigation, we plan to further
analyze the influence of having a deformable surface on the shape of the wake and the position of
the stagnation point.
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FIG. 8. Velocity field obtained by PIV in the Boger (HASE) fluid of the wake left by the passage of a single bubble or a
bubble cluster having both a volume above the critical one. Single bubble (V = 194 mm3): (a) −14 < y/r < −2, (c) −20 <

y/r < −8; bubble cluster (N ∼11, V ≈ 240 mm3): (b) −14 < y/r < −2, (d) −20 < y/r < −8. The lines show some of the
streamlines. The center of the bubble or the cluster is located at (0,0). The grid coordinates were normalized by the bubble
radius or the equivalent cluster radius.

VI. CONCLUSIONS

In this investigation, we found that a compact array of non-coalescing bubbles behave as single
bubbles and that the calculation of the equivalent diameter is enough to explain with limited accuracy
their rise velocity in Newtonian fluids, elastic fluids with nearly constant viscosity, and in viscoelastic
fluids. On the other hand, we also found that bubble clusters do not experience the velocity jump
discontinuity seen in single bubbles; instead, they shift to the free-interface condition in a gradual
manner in cases where some of the bubbles composing the cluster experience deformation (teardrop
shape). Using a velocity jump criteria that considers the equivalent diameter for stress computation,
but the individual radii of the bubbles to calculate the surface stresses, we found that single bubbles
previous to the velocity jump and bubble clusters fall in a single master curve, in which the criteria
parameter do not predict a velocity jump. This led us to rationalize the bubble cluster as a single
bubble having a “segmented surface” that resists deformation (the surface immobilization works
at the scale of the single bubbles forming the cluster). Outstandingly, this confirms experimentally
that surface deformation and changes on the boundary conditions are necessary for the velocity
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jump appearance. Furthermore, PIV measurements allowed us to observe differences between the
negative wake formed behind a single bubble and that formed behind bubble clusters having both
a volume above the critical one and similar buoyancy forces. While the single bubble left a very
robust negative wake that extends beyond 20 bubble radii, a negative wake is barely visible for the
case of the bubble cluster. This demonstrates that the dependence between fluid flow (shear and
extensional) and boundary conditions (including surface geometry) goes in both senses: fluid flow
affects the motion of the particle, but, in turn, the particle can become adapted or not to the flow
influencing the latter as well.
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