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In this paper calculations are done of the flow instability of a shallow horizontal fluid layer under an
inclined temperature gradient for Prandtl numbers of magnitudes Pr > 1. In a previous paper (Ortiz-Pérez
and Dávalos-Orozco, 2011 [17]), the range of values investigated were Pr 6 1. There, the magnitudes of
the horizontal Rayleigh number investigated were far larger than those used in the literature and it
was found the new oblique oscillatory mode Obo. In the present paper it is found that this oblique oscil-
latory mode still appears for Pr = 2. Further, it is also shown that some modes become irrelevant when the
Prandtl number is increased, and different modes become the first to go unstable. An important result is
that above a large enough Prandtl number, the curves of criticality remain almost the same. Therefore,
the limit Pr ?1 is employed to calculate useful analytical expressions for the longitudinal modes of crit-
icality which cover almost all the range of horizontal Rayleigh numbers. In contrast to the authors pre-
vious results, in this paper it is shown that for Pr > 1 the transversal oscillatory mode has a range, in
the horizontal Rayleigh number, as the first unstable one which first increases and then decreases with
Pr, but never disappears.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Temperature differences are unavoidable in many natural
phenomena. They are responsible of a variety of convection mo-
tions. In industrial applications it is sometimes necessary to avoid
any motion as in processes of crystal growth [1] and solidification
of molten metals [2]. The most simple convective motion is that of
a horizontal fluid layer heated from below. This has been reviewed
in the monograph by Chandrasekhar [3]. In this particular problem
the fluid starts in a hydrostatic state. In contrast, if the fluid is
heated at one of the lateral boundaries, a closed main flow appears
forming one large cell. The creation of that cell is due to the up-
ward motion of the fluid by buoyancy force at the hot wall and
its downwards motion at the cold wall, satisfying mass conserva-
tion. The motion is sustained by a horizontal temperature gradient
which destabilizes the flow when its magnitude is above a critical
one. This closed flow is called Hadley circulation [4]. For small
aspect ratios (very far away lateral walls), the stability of the
Hadley circulation was investigated by Hurle et al. [1] and Hart
[4]. Kuo et al. [5] present important corrections to previous works
by including a very large range of Prandtl numbers. In other papers
Kuo et al. [6] and Wang et al. [7] investigated the nonlinear
problem for particular ranges of the Prandtl number, taking into
account very good conducting and insulating walls. Numerical
calculations and corrections to previous results were also done
by Laure [8] and Laure and Roux [9]. Hughes and Griffiths [10]
reviewed this problem including applications to oceanography.

In nature temperature gradients do not appear as purely hori-
zontal or purely vertical, but a combination of both. Therefore, it
is worth considering the effect of an inclined temperature gradient.
Weber [11] investigated the problem assuming that the horizontal
walls are stress-free and that the horizontal temperature gradient
is small. Later Sweet et al. [12] investigated the instability for free
shear walls and found the possibility of oscillatory convection
increasing the ratio of the applied temperature gradients. This
problem was extended for small horizontal temperature gradient
and rigid horizontal walls by Bhattacharyya and Nadoor [13]. We-
ber [14] improved his previous calculations for stress-free walls
using a Galerkin method. He also made calculations for rigid hori-
zontal walls and found that the Prandtl number is important to
determine which mode is the first to appear in the instability,
the longitudinal or the transversal one with respect to the main
flow. Besides, he showed that an increase of the horizontal temper-
ature gradient promotes oscillatory instabilities. Nield [15] was the
first to give a more complete view of this phenomena for four dif-
ferent values of the Prandtl number. His goal was to investigate all
the possible modes of instability by means of a Galerkin method.
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Nomenclature

an nth constant Galerkin coefficient
bn nth constant Galerkin coefficient
cn nth constant Galerkin coefficient
d thickness of the layer
dn nth constant Galerkin coefficient
D=DT Lagrange operator
D ¼ d=dz

symbol of z-derivative
fn nth constant Galerkin coefficient
g acceleration of gravity
gn nth constant Galerkin coefficient
k x-direction wavenumber
k vertical unit vector
l y-direction wavenumber
Lo1 longitudinal oscillatory mode
Ls1 first longitudinal stationary mode
Ls2 second longitudinal stationary mode
Obo oblique mode
p0 pressure perturbation
Pr Prandtl number
RV vertical Rayleigh number
RVC vertical critical Rayleigh number
RH horizontal Rayleigh number
Tðx; zÞ main temperature profile

T0: nondimensional temperature
To transversal oscillatory mode
Ts transversal stationary mode

�u0 ¼ ðu0;v 0;w0Þ nondimensional velocity perturbation
uðzÞ x-direction perturbation amplitude
UðzÞ x-direction main flow
ue x-direction even Galerkin velocity
uo x-direction odd Galerkin velocity
VðzÞ y-direction main flow
wðzÞ z-direction perturbation amplitude
we z-direction even Galerkin velocity
wo z-direction odd Galerkin velocity

Greek
a wavenumber magnitude
aC critical wavenumber magnitude
aT coefficient of volumetric expansion
bH horizontal temperature gradient
DT vertical temperature difference
h amplitude of temperature perturbation
he even Galerkin temperature
ho odd Galerkin temperature
j thermal diffusivity
m kinematic viscosity
q0 reference density
r frequency of oscillation
rC critical frequency of oscillation
/ perturbation propagation angle
/C perturbation critical propagation angle

Fig. 1. Sketch of the system. The liquid layer is contained between two horizontal
walls separated a distance d. There are vertical and horizontal temperature
gradients. The temperature difference between lower and upper solid walls is DT.
b is the rate of uniform temperature increase along the x-axis. The lateral walls are
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Numerical problems limited his results to a horizontal Rayleigh
number of 6000. Later, Kaloni and Qiao [16] made calculations of
the nonlinear problem by means of the energy method. They
showed that the curves of criticality of Nield [15], which did not
drop to a zero critical vertical Rayleigh number RVC, should do so
with an increase of the horizontal Rayleigh number RH. Therefore,
for some Prandtl numbers the linear results of Nield [15] have to be
corrected and extended to larger magnitudes of RH.

In this paper we present new results of the linear problem of
natural convection under an inclined temperature gradient when
the Prandtl number is larger than one. Here, it is also of interest
to find out the magnitude of Pr around which the oblique mode
may disappear (see [17]). Furthermore, it is shown that the trans-
verse oscillatory mode, found by Nield [15], decreases its range in
RH as the most unstable one by increasing Pr. However, it never dis-
appears. The improved numerical method used by Ortiz-Pérez and
Dávalos-Orozco [17] cleared the restriction on the magnitude of
the Prandtl number, which now may be as large as needed. Here,
the calculated curves of criticality drop until the critical vertical
Rayleigh number RVC is zero, in good agreement with previous re-
sults in the literature with horizontal temperature gradient alone.

The paper is organized as follows. In Section 2 a description of
the physical system is given along with the equations of motion
and energy with their linear version for use in the numerical anal-
ysis. In Section 3 a description of the numerical method is pre-
sented with a discussion of how it improves the one used by
Nield [15]. Section 4 gives the results in the form of plots of the
critical vertical Rayleigh number RVC, wavenumber aC, frequency
of oscillation rC and angle of propagation of the perturbation /C

against RH, the horizontal Rayleigh number. Also Section 4 gives
the results of an asymptotic expansion analysis in terms of a large
Prandtl number. Section 5 presents the discussion and conclusions.
The Appendix A contains the calculation details of the very useful
and simple approximate formulas for the marginal RV of the two
longitudinal modes. These modes are shown to be dominant in al-
most all the range of RH investigated when the Prandtl number is
larger enough. The Appendix B shows the validity and convergence
of the numerical algorithm used in this and in the authors previous
paper.
2. Equations of motion

In this paper it is supposed that a fluid layer is contained be-
tween two parallel very good conducting solid walls perpendicular
to gravity (anti parallel to the z-direction, see Fig. 1) that have an
imposed horizontal temperature gradient superposed to a vertical
one due to heating from the lower wall. The horizontal tempera-
ture gradient is due to the existence of a hot and a cold lateral ver-
tical walls located very far away from the middle region of interest
here. The buoyancy force makes the fluid to move upwards in the
hot wall and downwards in the cold wall. Due to mass conserva-
located at a very larger distance from the region under study.



446 A.S. Ortiz-Pérez, L.A. Dávalos-Orozco / International Journal of Heat and Mass Transfer 68 (2014) 444–455
tion, the main flow is generated in the form of one very large con-
vection cell. If the distance between the lateral walls is very large
in comparison with the thickness of the layer, the main velocity
profile in the middle region between them can be considered as
parallel flow in the x-direction with the form U(z). Note that the
instability is three dimensional and that perturbations perpendic-
ular to the main flow (in the x-direction) are also investigated.
The equations of motion, heat diffusion and mass conservation
are, respectively:

Pr�1 D�u0

Dt
¼ �rp0 þ T 0kþr2�u0 ð1Þ

DT 0

Dt
¼ r2T 0 ð2Þ

r � �u0 ¼ 0 ð3Þ

where use is made of the Boussinesq approximation. Here,
�u0 = (u0,v0,w0) is the velocity vector, k is a vertical unit vector, p0 is
the pressure, T0 is the temperature and D/Dt is the Lagrange
operator. The variables have been made non dimensional using
for distances the thickness of the layer d, for time d2/j (where j
is the thermal diffusivity), for velocity j/d, for pressure q0jm/d2

(where q0 is a reference density) and for temperature DT/RV, where
DT is the vertical temperature difference and the vertical Rayleigh
number is defined as RV = gaTd3DT/mj. The horizontal Rayleigh
number is defined as RH = RVdbH/DT = gaTd4bH/mj, where g is the
acceleration of gravity, aT is the coefficient of volumetric expansion
and bH is the rate of uniform temperature increase along the x-axis.
The walls are assumed to be rigid and very good conductors. Then
the velocity and temperature satisfy the boundary conditions at
the walls located at z = ± 1/2

�u0 ¼ 0 ð4Þ
T 0 ¼ �RV=2� RHx ð5Þ

As explained above, the interest here is on the instability of the
parallel flow in the middle region of the layer, very far from the lat-
eral walls. This flow has a steady solution which depends only on
the variable z. At the same time, the temperature depends on the
velocity profile. Then, the steady parallel flow equations are:

D3UðzÞ ¼ �RH ð6Þ
D3VðzÞ ¼ 0 ð7Þ
D2Tðx; zÞ ¼ �RHUðzÞ ð8Þ

Here, use is made of the operator D ¼ d=dz. An extra condition
seems to be missing because the differential equations (6) and (7)
are of third order. The condition used in this case is that the inte-
grals of UðzÞ and VðzÞ in the range �1/2 6 z 6 1/2 must be zero (that
is, the mass flux per unit length is zero). Thus, the main flow and
temperature solutions are:

UðzÞ ¼ RH
z

24
� z3

6

� �
ð9Þ

VðzÞ ¼ 0 ð10Þ

Tðx; zÞ ¼ R2
H

7z
5760

� z3

144
þ z5

120

� �
� RV z� RHx ð11Þ

Analytic temperature profiles, like that of Eq. (11), have been
reviewed by Lappa [18], under different physical conditions. The
perturbation of the variables is assumed in the form of normal
modes G(z)exp[i(kx + ly � rt)], where G(z) represents the amplitude
of any of the perturbations and k and l are the x and y-components
of the wavenumber. r is a complex number whose real part is the
frequency of oscillation of the perturbation and its imaginary part
is the growth rate. Substitution into the perturbed equations gives
[15,17]:

½PrðD2 � a2Þ � iðkU � rÞ�ðD2 � a2Þwþ ikwD2U � Pra2h ¼ 0 ð12Þ
½ðD2 � a2Þ � iðkU � rÞ�hþ RHu�wDT ¼ 0 ð13Þ
½PrðD2 � a2Þ � iðkU � rÞ�ð�a2uþ ikDwÞ þ l2wDU ¼ 0 ð14Þ

where u and w are the amplitudes of the x and z-components of the
velocity perturbations, respectively, and h is the amplitude of the
temperature perturbation. a2 = k2 + l2 is the square of the magnitude
of the wavenumber vector, which is useful when it is expressed in
polar form by means of k = acos/ and l = asin/, where / is the angle
of propagation of the perturbation with respect to the direction of
the main flow. When the walls are rigid and the temperature is
fixed, the boundary conditions are w = Dw = u = h = 0 at z = ± 1/2.

3. Numerical analysis

The system of equations Eqs. (12) and (13), is the same as in Or-
tiz-Pérez and Dávalos-Orozco [17]. Again, a numerical Galerkin
method [19,20] is used, in which even and odd modes are included
at the same time in the process (see Hart [21]). This allowed us to
improve the results of Nield [15] and increase the magnitude of the
horizontal Rayleigh number to find the oscillatory oblique mode as
the first unstable one in a range of RH [17]. It will be shown
presently that this mode only survives in a limited range of Pr.

The expansions of the variables which are substituted into the
homogeneous system of differential Eqs. (12)–(14) are used in
the numerical analysis are:

w ¼ we þwo ¼
XN

n¼1

½a2ðn�1Þz2ðn�1Þðz2 � 1=4Þ2 þ b2n�1z2n�1ðz2 � 1=4Þ2�

ð15Þ

h ¼ he þ ho ¼
XN

n¼1

½c2n�1cosð2n� 1Þpzþ d2nsin2npz� ð16Þ

u ¼ ue þ uo ¼
XN

n¼1

½f2n�1cosð2n� 1Þpzþ g2nsin2npz� ð17Þ

where the subindexes e and o mean even and odd functions, respec-
tively (see reference [17] for more details).

In the previous paper [17] it was shown that the system of Eqs.
(12)–(14), has some symmetries which can be used to understand
the instability in the 360� range of the angle / by only doing calcu-
lations in the first quadrant, that is, from 0� to 90�. Therefore, the
calculations of the oblique mode presented in this paper are also
limited to this range.

As done before, the results of the numerical analysis were
compared with those reported for the case of RV = 0 (see Kuo
et al. [5]). Even more, the convergence of the numerical algorithm
was checked increasing the order of the Galerkin method in a wide
range of magnitudes of the Prandtl number (see Appendix B).

4. Numerical results

The numerical results are presented in the form of plots of the
critical values against the horizontal Rayleigh number. Only when
the oblique mode is the first unstable one, a fourth figure is given
for the critical angle of propagation of the perturbation. Other
results where only longitudinal and transversal modes are present
do not need that figure. Therefore, the following notation will be
used in the paper. The longitudinal mode means a roll aligned with
the flow direction, here the x-direction. In the present problem,
there are three longitudinal modes, the oscillatory Lo1, the first sta-
tionary Ls1 and second stationary Ls2 modes. The transversal mode
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means a roll in a direction perpendicular to the flow direction, that
is the y-direction. There are two transversal modes, the stationary
Ts and the oscillatory To modes. There is also the new oblique oscil-
latory mode Obo which is a roll making an angle with respect to the
x-direction. This angle depends on the magnitude of the horizontal
Rayleigh number, as will be shown presently.

The marginal curves were calculated fixing Pr, RH and the wave-
number. When the mode is stationary, the roots RV were calculated
from the determinant found with the Galerkin method. There are a
number of roots and only the smallest one is selected. The process
follows by varying the wavenumber until a minimum is found for
RV. For fixed Pr and RH, this is called the critical RVC corresponding
to the critical wavenumber aC. If the flow is oscillatory, the deter-
minant is complex. Therefore, before calculating the roots RV of the
real part, the marginal frequency of oscillation is obtained as the
root of the imaginary part. This is substituted into the real part
from which the roots RV are obtained. From them, only the smallest
one is the marginal. The process follows by varying the wavenum-
ber until the minimum for RV is obtained. For fixed Pr and RH, this is
called the critical RVC corresponding to the critical wavenumber aC
(a)

(c)

Fig. 2. Graphs of RVC,aC,rC and /C vs RH for Pr = 2. In (a), the first unstable mode is Ls1, the
follows the mode Ls2 and finally from RH = 11632.5, the mode Ls1. Two codimension two
and Ls2 when RH = 7374. The mode Ls1 is the first to decrease and touch the horizon
frequency and angle of propagation against RH. The streamlines correspond to values in th
(6000, 23826.13, 5.1, 170.74) at 33�, Ls2 (10000, 23935.48, 7.5, 0.0), Ls1 (12000, 13070.
and frequency rC. In particular, the oblique oscillatory mode was
calculated by searching, around any stationary or oscillatory curve
of criticality, where a more unstable mode may appear at different
angles of the perturbation wavenumber. With this method were
found all the important modes of instability.

Fig. 2(a) shows the critical values of RVC against RH for Pr = 2.
Saturated liquid amonia [22] has a Pr around 2 at �30 �C. Modes
that were not the first unstable ones for low Pr, now are the first
to appear for almost the whole range of RH. In Fig. 2 the instability
is dominated by the longitudinal stationary modes Ls1 and Ls2 and
the oscillatory mode Lo1. As seen in the middle of the RH axis, the
range of the oblique oscillatory mode Obo has been reduced. Also
notice that in a range of RH, the transverse oscillatory mode To is
already close to the lowest curves of criticality. Therefore, it is pos-
sible that it becomes the first unstable one with a small increase of
Pr. The Ls1 mode starts to be the first unstable one with RVC = 1708
at RH = 0. Then, from RH = 2884, the oscillatory longitudinal mode
Lo1 becomes the first one. A codimension two point appears be-
tween them with the critical values given in the following order
(RH,RV,a,r): (2884, 11519.92, 5.4, 0) and (2884, 11519.92, 2.7,
(b)

(d)

n from RH = 2884, the mode Lo1, next from RH = 5225, the mode Obo, from RH = 7374
points appear: one between Ls1 and Lo1 when RH = 2884, another one between Obo

tal axis (RVC = 0) when RH = 13360.36. Figures (b)–(d) show critical wavenumber,
e order (RH,RVC,aC,rC): Ls1 (2000, 6866, 4.6, 0), Lo1 (4000, 15496.85, 2.6, 45.27), Obo

79, 8.1, 0) and Ls1 (13360.36, 0, 8.3, 0).



(a)

(b)

(c)

Fig. 3. Graphs of RVC,aC, and rC vs RH for Pr = 10. In Fig. (a), Ls1 is the first unstable
mode. From RH = 4538.5 is the mode To. From RH = 6548 is the mode Ls2. Finally,
from RH= 12039.8 is the mode Ls1. Ls1 drops to RVC = 0 at RH = 13641.77. Figs. (b) and
(c) present the critical wavenumber and frequency, respectively. The streamlines
data, in the order (RH,RVC,aC,rC), are: Ls1 (3000, 9311.87, 4.1, 0), To (6000, 22366.89,
5.4, 240.31), Ls2 (8000, 24388.35, 6.2, 0), Ls1 (12100, 13445. 38, 8, 0) and Ls1
(13641.77,0, 8.3, 0).
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24.82) for Ls1 and Lo1, respectively. The mode Lo1 plays a impor-
tant role in the instability for Pr = 2. For higher Prandtl numbers
Lo1 is more stable than the others. This is clear by observing the
continuous increase of its slope as the Prandtl number is increased
[17]. The oblique mode Obo is the first unstable one from (5525,
21700.59, 4.8, 124.11) at 41� and Lo1 has the values (5525,
21700.59, 2.5, 61.91). Another codimension two point appears
when the Obo and Ls2 cross to each other at the points (7374,
26591.92, 5.7, 261.49) and 23�, and (7374, 26591.92, 6.4, 0),
respectively. The mode Ls1 is intersected by Ls2 at (11632.5,
16053.48, 8.1, 0) and (11632.5, 16053.48, 8, 0), respectively. Final-
ly, the Ls1 decreases until RVC = 0 at RH = 13360.36 with a = 8.3. No-
tice that a little far (more stable) from Ls1 is Ls2 touching the axis
at RH = 13499, with wave number a = 8.5.

Fig. 3(a) presents the critical values RVC against RH for Pr = 10,
corresponding approximately to saturated liquid water [22] at
10�C. Notice the importance of the longitudinal stationary modes
Ls1 and Ls2 for almost all range of RH. In that figure there is also a
range where the oscillatory transverse mode To, first found by
Nield [15], is important. To is the first unstable one in the range
4538.56 RH 6 6548. Ls1 is the first unstable one from RH = 0 to
RH = 4538.5. The first codimension two point occurs between
modes Ls1 and To when RH = 4538.5 at (4538.5, 17641. 42,
5.22, 0) for Ls1 and at (4538.5, 17641.42, 4.51, 144.76) for To.
There are differences in the magnitudes of the wavenumbers.
From RH = 6548 the mode Ls2 is the first unstable one until RH

= 12039.8, where Ls1 becomes the first one. Thus, a second codi-
mension two point occurs at RH = 6548 between modes To and
Ls2 at (6548, 23890.02, 5.75, 279.79) for To and (6548,
23890.02, 5.84, 0) for Ls2. The intersection between Ls2 and Ls1
occurs at (12039.8, 14026.42, 7.95, 0) for Ls2 and (12039.8,
14026.42, 7.98, 0) for Ls1, which can be considered the same. In
this way, mode Ls1 plays an important role in two large ranges
of RH. Ls1 drops to RVC = 0 at (13641.77, 0, 8.3, 0). Behind mode
Ls1, the curves of Ls2 and To drop for larger magnitudes of RH.
The curves of the other critical values are presented in Fig. 3(b)
for the critical wavenumber and in Fig. 3(c) for the critical
frequency.

Now, the Prandtl number is increased as in Fig. 4(a) which pre-
sents the case for Pr = 100, corresponding approximately to a
hydraulic fluid (MIL-H-5606) [22] at 75�C. Notice that Ls1 increases
its range of RH as the most unstable one. However, that increase is
relatively small, almost 30 units. The oscillatory transverse mode
To has reduced its influence as a critical curve and now it is limited
to appear in the small range from RH = 5434 to RH = 5849. There-
fore, the two codimension two points are closer than in Fig. 3 for
Pr = 10. The first codimension two point appears at Ls1 (5434,
21212.30, 5.32, 0) and To (5434, 21212.30, 5.18, 214.36) and the
second one at To (5849, 22651.01, 5.47, 244.1) and Ls2 (5849,
22651.01, 5.64,0). The modes Ls1 and Ls2 cross to each other at
Ls1 (12113.9, 13677.10, 7.95,0) and Ls2 (12113.9, 13677.10, 7.91,
0) which practically are the same magnitudes. From RH = 0 to RH

= 5434 the first unstable mode is Ls1. From the second codimen-
sion two point the mode Ls2 is the first unstable one up to the
intersection with Ls1. Ls1 drops to RVC = 0 at RHC = 13704 with a
wave number aC = 8.3. The Fig. 4(a) also presents plots of the
streamlines at different representative locations. The critical wave-
numbers and frequencies are shown in Fig. 4(b) and (c),
respectively.

It is of interest to know what happens at very large Prandtl
numbers. Therefore, Fig. 5(a) presents results for Pr = 500, which
corresponds to a hydraulic fluid (MIL-H-5606) [22] at 0�C. The
plots are very similar to Pr = 100. However, an important differ-
ence appears. The oscillatory transverse mode To now has a very
narrow range to be the first unstable one. That is, between RH =
5564 to RH = 5793. Notice that both stationary longitudinal
modes, Ls1 and Ls2, have covered almost the whole range of RH.
At the same time, both codimension two points have moved more
closer to each other. The first codimension two point appears at



(a)

(b)

(c)

Fig. 4. Graphs of RVC, aC, and rC vs RH for Pr = 100. In Fig. (a) Ls1 is the first unstable
mode, next from RH = 5434, it is the oscillatory transverse mode To. From RH = 5849
it follows Ls2 and from RH = 12113.9 it is again Ls1. The first codimension two point
between Ls1 and To appears at RH = 5434. A second codimension two point between
To and Ls2 occurs at RH= 5849. The intersection between Ls2 and Ls1 occurs at RH =
12113.9, after which Ls1 is again the first unstable one. Ls1 falls to RVC = 0 at RH =
13704.27. Figs. (b) and (c) present the critical wavenumbers and frequencies. The
plots of the streamlines correspond to the values: Ls1 (4000, 13269.41, 3.9,0), To
(5700, 22230.38, 5.4, 235.31), Ls2 (8000, 24388.35, 6.2, 0), Ls1 (12150, 13825.63, 8,
0) and Ls1 (13704.27, 0, 8.3, 0).

(a)

(b)

(c)

Fig. 5. Graphs of RVC, aC, and rC vs RH for Pr = 500. In Fig. (a), Ls1 is the first unstable
mode, then from RH = 5564, the oscillatory transverse mode To, next from RH= 5793,
the mode Ls2 and from RH= 12120, the mode Ls1. The first codimension two point
occurs at RH = 5564 and the second one at RH = 5793. The Ls1 drops to RVC = 0 at RH =
13709.79. The critical wavenumbers and frequencies are shown in Figs. (b) and (c),
respectively. The streamlines are ploted with the following data: Ls1 (4000,
13130.30, 3.8,0), To (5700, 22230.38, 5.4, 235.31), Ls2 (8000, 24390.58, 6.2, 0), Ls1
(12150, 13303.25, 8, 0) and Ls1 (13709.79, 0, 8.3, 0).
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Ls1 (5564, 21754.60, 5.38,0) and To (5564, 21754.60, 5.29, 224.99)
and the second one at To (5793, 22548.20, 5.44, 241.09) and Ls2
(5793, 22548.20, 5.62, 0). The intersection of Ls1 and Ls2 occurs
now at Ls1 (12120, 13648.73, 7.94, 0) and Ls2 (12120,
13648.73, 7.91, 0). Notice that the last set of values are very close
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to those of Pr = 100. In the range from RH = 0 to RH = 5564 the
mode Ls1 is the first unstable one. To is the first unstable one
in the range between the two codimension two points. Ls1 drops
to RVC = 0 at RHC = 13709.8 with aC = 8.3. This figure also shows
inserts with the streamlines of cell patterns of different modes of
instability. The Fig. 5(b) and (c) present the critical wavenumbers
and frequencies of oscillation, respectively. It is important to note
that a decrease in the magnitude of the first unstable curves of
criticality is observed in different regions of RH when passing
from Pr = 2 to Pr = 500. In that sense, the Prandtl number has a
destabilizing effect on the flow. The results for Pr = 1000 are very
similar to those of Pr = 500 and therefore they are omitted here.
The mode To survives in a slightly shorter range of RH as the first
unstable one.

In natural convection the patterns appear due to vertical tem-
perature gradients that are critical or larger than the critical one.
However, in the present problem, the patterns are also deter-
mined by horizontal temperature gradients critical or larger than
the critical one. This can be shown by the main temperature pro-
file Eq. (11) which is modified by the main flow Eq. (9) (generated
by the horizontal temperature gradient). This temperature profile
(Eq. (11)) produces two unstable regions near the upper and
Fig. 6. Stable and unstable regions due to the main temperature profile for Pr = 10,
RVC = 24388.3577, aC = 6.2, rC = 0, and RH = 8000. The corresponding streamlines of
the convection cell are shown too. Note that under these conditions the two-cell
pattern prevails (mode Ls2).
lower walls and a stable region in the middle section (see Fig. 1
of Lappa [23] or here in Fig. 6). These unstable regions should
be made more unstable by an adverse vertical temperature gradi-
ent. However, this is not possible because, in a range of RH, the
local vertical temperature gradients in the unstable regions are
not large enough to destabilize the flow. Therefore, only after
reaching a maximum of RVC, the curves of criticality start to
destabilize with RH until RVC = 0. The increase of RH has an impor-
tant influence on convection because the patterns change from a
one-cell to a two-cell structure (mode Ls2) near the maximum of
RVC. In this case, the two unstable regions made by the tempera-
ture profile separate in such a way that two cells are able to form
(see Fig. 6). Note that for this magnitude of RH the two cells are in
contact to each other. A further increase of RH leads to a larger
separation between the two unstable regions and consequently
a three-cell structure appears. The reason is that for this magni-
tude of RH, the two cells formed inside each unstable region of
the temperature profile are so far away from each other that they
can not touch directly, but only by means of a third cell in the
middle generated by viscous friction. This pattern corresponds
to the second even mode of instability.

In [17] it was shown that to have a maximum and a minimum
in the main temperature profile the inequality R2

H P 5760RV=7 has
to be satisfied. However, according to the numerical results, when
RH is large enough and satisfies the equality, the system is already
located in the oscillatory mode Lo1 in the range 0.1 < Pr < 3 (notice
the strict inequalities). This might be a way to know when the
oscillatory mode Lo1 appears as the first unstable one in that range
of Pr. It is found that at the magnitudes of RV and RH of the first
codimension two point, the slope of the temperature at z = 0 is neg-
ative and the profile still has no maximum and minimum. It is
important to point out that the mode Obo appears in the range
0.45 6 Pr 6 2 when 5225 6 RH 6 8300 (note that RH = 8300 corre-
sponds to Pr = 0.45 and RH = 5225 to Pr = 2). However, it is possible
that the Obo mode arises for the first time for Pr > 0.2. The occu-
rance of the mode To as the first unstable one is more difficult to
guess. But it is interesting to note that it always starts to appear
in the picture above Ls1 for RH’ 2000 in the range Pr P 1. The
corresponding RV decreases with Pr, as can be seen from Fig. 6 of
[17] and following through all the figures in this paper. From the
numerical analysis, it is possible to say that the codimension-two
points between Ls1 and To can be found in the ranges 4538.5 6 RH

6 5564 and 17641.42 6 RV 6 21754 for 10 6 Pr 6 500. The magni-
tudes at the right hand side of the inequalities are almost the same
for Pr = 1000. The physical reason for the oscillatory motion is the
propagation of internal waves in the stable region of the layer due
to the shear flow.

All the physical points discussed above also depend on the mag-
nitude of the Prandtl number. For example, in Ortiz-Pérez and
Dávalos-Orozco [17] it is shown that for small Pr, RH destabilizes
immediately. When Pr increases, it is found that RH first stabilizes
and then destabilizes.

In this paper it is shown that, when Pr P 10, the qualitative
and quantitative properties of the first unstable curves of critical-
ity are similar and in some cases are almost the same. This im-
proves whenever the Prandtl number is very large. Therefore,
the idea is to use this result to obtain an approximate analytical
formula which may be very useful and simple to write down for
immediate applications. To attain this goal, the determinant ob-
tained by the Galerkin method is expanded in terms of the small
parameter 1/Pr. The expansion of the variables used is different
from that presented above and is given in Appendix A. At zeroth
order of 1/Pr, a very simple formula was found for each of the
two most important modes Ls1 and Ls2 which fill almost all the
range of RH, when Pr is very large. The marginal curves of Ls1
are described by



Table 1
Mode Ls1.

Approximation order 1/Pr = 0 High Galerkin, Pr = 10 High Galerkin, Pr = 100 High Galerkin, Pr = 500

RH RV a RV a RV a RV a

00000 01708.549 3.116 01708.831 3.1 01707.831 3.1 01707.831 3.1
01000 02448.781 3.121 02591.639 3.2 02464.627 3.1 02453.052 3.1
02000 04655.374 3.153 05188.937 3.5 04713.080 3.2 04668.501 3.2
03000 08281.082 3.267 09311.879 4.1 08379.135 3.4 08284.952 3.3
04000 13214.357 3.610 14569.875 4.8 13269.415 3.9 13130.307 3.8
05000 19122.244 4.486 20262.576 5.6 18844.137 4.9 18696.269 4.8
06000 25054.593 5.670 25347.823 6.3 24022.109 5.8 23889.425 5.8
07000 29577.447 6.561 28760.819 6.8 27645.490 6.5 27535.899 6.5
08000 31549.426 7.101 29918.547 7.2 29065.819 7.0 28983.998 7.0
09000 30625.723 7.399 28825.578 7.4 28241.067 7.3 28184.630 7.3
10000 27128.172 7.561 25731.060 7.6 25405.016 7.5 25371.923 7.5
11000 21569.087 7.653 20858.357 7.8 20782.529 7.7 20772.507 7.7
12000 14370.394 7.709 14321.664 8.0 14497.098 7.9 14510.168 7.9
13000 05817.140 7.744 06138.829 8.2 06577.316 8.1 06614.218 8.1
13611.54 00000.013 7.76 – – – – – –
13641.77 – – 00000.0007 8.3 – – – –
13704.27 – – – – 00000.004 8.3 – –
13709.79 – – – – – – 00000.005 8.3

Table 2
Mode Ls2

Approximation order 1/Pr = 0 High Galerkin, Pr = 10 High Galerkin, Pr = 100 High Galerkin, Pr = 500.

RH RV a RV a RV a RV a

00000 17625.548 5.363 17611.755 5.4 17611.755 5.4 17611.755 5.4
01000 17810.270 5.365 17812.245 5.4 17798.017 5.4 17796.752 5.4
02000 18352.753 5.373 18399.477 5.4 18343.354 5.4 18338.364 5.4
03000 19217.378 5.393 19330.531 5.4 19207.241 5.4 19196.276 5.4
04000 20342.469 5.435 20530.716 5.5 20321.621 5.4 20302.791 5.4
05000 21635.340 5.512 21885.234 5.6 21578.326 5.5 21550.867 5.5
06000 22961.956 5.647 23232.582 5.7 22834.592 5.7 22799.115 5.7
07000 24127.435 5.868 24348.537 6.0 23880.844 5.9 23838.888 5.9
08000 24846.156 6.203 24920.669 6.3 24434.819 6.2 24390.587 6.2
09000 24719.491 6.650 24567.106 6.7 24130.697 6.6 24090.446 6.6
10000 23275.339 7.154 22885.767 7.2 22570.488 7.1 22540.614 7.0
11000 20088.103 7.636 19532.361 7.6 19398.582 7.5 19385.454 7.5
12000 14879.801 8.049 14278.519 8.0 14375.128 7.9 14382.591 7.9
13000 07531.651 8.383 06995.599 8.2 07355.395 8.2 07386.127 8.2
13766.51 – – �0000.002 8.5 – – – –
13810.81 00000.001 8.600 – – – – – –
13827.02 – – – – 0000.002 8.4 – –
13832.39 – – – – – – 00000.004 8.4
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RV ¼
59
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and those of Ls2 are described by

Rm ¼ 1

ðC5aÞ2
�C5C0a2R2

H þ C1a6 þ C2a4 þ C3a2 þ C4

n
� a4C2

5C6R4
H � a2 C7a6 þ C8a4 þ C9a2 þ C10

� �
C5R2

H

h
þC11a12 þ C12a10 þ a8C13 þ a6C14 þ a4C15 þ a2C16 þ C17

�1=2
o
ð19Þ

The seventeen coefficients Ci are given in Appendix A.
For fixed RH, the critical RVC is calculated varying a and selecting
the lowest value (the minimum) obtained from each of the formu-
las Eqs. (18) and (19). The two calculated critical curves also cross
to each other at a point very near to that shown in the figures from
Fig. 3(a) to Fig. 5(a) using a high order Galerkin approximation. The
crossing point of this approximate curves occurs at RH = 11710 and
RV = 16607 with a = 7.695 for Ls1 and a = 7.937 for Ls2. These show
the maximum errors of 3.5% and 21.6%, respectively, for Pr = 500.
The wavenumber errors are minimal for all Prandtl numbers and
are around 3.2% and 0.3%, respectively. If, as shown in Appendix
A, the curves are a very good approximation why is there a maxi-
mum error of 21.6 % for RV at the crossing point? The reason is that
around the crossing point both curves are very near to each other
in a range of RH and a slight displacement (slight error) means a
large change in RV for this point. Note that the formulae are a better
approximation for large Prandtl numbers.

Notice that the results presented above are in contrast with
those of Fig. 6.8 of Lappa [24] for horizontal temperature gradient
alone, that is, for RV = 0. In that figure a dashed curve appears for
the Ls2 mode which appears as the first unstable one (before the
mode Ls1). This is pointed out here in order to avoid any confusion
(see Appendix B for the validation and convergence of the numer-
ical algorithm). In the present paper it has been shown by means of
a high precision numerical analysis, that the oblique mode appears



Table 3
Convergence of the Galerkin Method: Pr = 10 and Pr = 500

Order Ls1 Ls2

RH RV a Error (%) RH RV a Error (%)

Pr = 10
2 14138.030 �0.0035 7.6 2.404 13740.292 �0.0023 8.6 0.377
3 13806.127 �0.0010 8.4 1.204 13792.155 0.0012 8.4 0.186
4 13641.770 �0.0034 8.3 0.124 13766.510 �0.0019 8.5 0.080
5 13624.821 0.0033 8.3 0.024 13755.430 �0.0020 8.5 0.014
6 13621.419 �0.0012 8.3 0.007 13753.481 0.0025 8.5 0.004
7 13620.461 �0.0058 8.3 – 13752.914 0.0014 8.5 –

Pr = 500
2 14179.835 �0.0015 7.6 2.202 13809.392 0.0021 8.6 0.351
3 13874.293 �0.0010 8.3 1.199 13857.954 0.0053 8.4 0.184
4 13709.799 �0.0043 8.3 0.126 13832.385 0.0036 8.4 0.080
5 13692.521 0.0032 8.3 0.025 13821.323 0.0031 8.4 0.014
6 13689.093 0.0016 8.3 0.007 13819.379 �0.0011 8.4 0.004
7 13688.128 0.0014 8.3 – 13818.815 0.0010 8.4
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and disappears with Pr and that the transverse oscillatory mode re-
duces considerably its range in RH but never disappears increasing
Pr. Furthermore, it is also shown that the stationary Ls1 mode
remains the first unstable one after crossing the curve of Ls2 when
RH increases. Therefore, Ls1 is the first unstable mode when RVC = 0,
as has been the case for all the Prandtl numbers investigated
0.26 6 Pr 6 1000. However, Ls2 starts to become important some-
where inside the range 0.5 < Pr < 1 (see reference [17]).

Nonlinear problems on convection under an inclined tempera-
turegradientare hardlyfoundunder theconditionsof thepresentpa-
per. One exception is the paper by Kaloni and Qiao [16]. They used the
nonlinear energy method to determine sufficient conditions for sta-
bility. They show, for the first time, that the curves of criticality have
to drop down with RH until RV = 0 when Pr is large. However, there are
some papers on nonlinear convection under a horizontal tempera-
ture gradient. Wang and Korpela [7] calculated the nonlinear super-
critical instability for finite aspect ratio. Laure and Roux [9]
investigated the linear and weakly nonlinear stability. Gelfgat et al.
[25] investigated linear and supercritical instabilities for the case
for aspect ratios from 1 to 11 and various Pr. Few experiments are
found like that of Hung and Andereck [26] who made experiments
for convection near and far above the criticality. Wang and Huang
[27] made experiments with small aspect ratio where the tempera-
ture gradients produce magnitudes of RH above the critical RHC. All
this means that the nonlinear stability calculations of a system under
the same conditions as in the present paper are still an open problem.

5. Conclusions

In this paper the range 2 6 Pr 6 500 is covered to investigate the
instability of convective flows under an inclined temperature gra-
dient (however, larger magnitudes of Pr were also investigated but
the results were similar). It is shown that the oblique oscillatory
mode Obo found by Ortiz-Pérez and Dávalos-Orozco [17] disap-
pears somewhere in the range 2 6 Pr 6 10. However, it is believed
that it is also replaced as the first unstable one by the transverse
oscillatory mode To with a small increase of Pr above 2. It is also
shown that the transverse oscillatory mode found by Nield [15] de-
creases its range considerably with Pr, but never disappears. It is
found that, for Pr P 0.5 the longitudinal modes Ls1 and Ls2 play
important roles on the instability for almost all the range of RH

investigated, except in the short range where the Obo and To
modes are present. Simple and useful formulas, Eqs. (18) and
(19), were obtained to calculate the curves of criticality for both
Ls1 and Ls2. They are good approximations for Pr = 10 and very
good approximations for Pr P 100. The results of these two formu-
las also agree with the high order Galerkin method in the result
that Ls1 becomes the first unstable mode after crossing the curve
of Ls2 with an increase of RH. Further, the main temperature profile
is used to understand the changes in cell structure when RH is
increased. The growth of RH increases the stable region in the mid-
dle of the liquid layer and consequently increases the separation
between the unstable regions formed near each of the two walls.
At the same time, RH increases the local temperature gradient at
the two unstable regions. The larger separation between the unsta-
ble regions due to the increase of RH is responsible for the creation
of the observed two-cell structure (Ls2) and three-cell structure
(Ls1) found in the present convection problem.
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Appendix A

In this Appendix the calculations leading to formulas Eqs. (18)
and (19) are presented. Those formulas correspond to the first
and second longitudinal stationary modes Ls1 and Ls2 which dom-
inate almost all the range of RH for large Pr. Therefore, they were
obtained assuming r = 0, k = 0 and Pr ?1. Under these assump-
tions, Eqs. (12)–(14) can be reduced to:

ðD2 � a2Þ2w� a2h ¼ 0 ðA:1Þ
ðD2 � a2Þh�wDT ¼ 0 ðA:2Þ
Notice that under the present conditions Eq. (14) decouples from
the other two. This system of equations can be written as:

L2
1 �a2

�DT L1

" #
w

h

	 �
¼

0
0

	 �
ðA:3Þ

where the operator is defined as L1 = (D2 � a2).
The general problem is solved using the expansions

w ¼
XN

n¼1

AnWn ¼ we þwo ¼
XN

n¼1

½a2ðn�1Þz2ðn�1Þðz2 � 1=4Þ2

þ b2n�1z2n�1ðz2 � 1=4Þ2� ðA:4Þ

h ¼
XN

n¼1

BnTn ¼ he þ ho ¼
XN

n¼1

½c2n�1z2ðn�1Þðz2 � 1=4Þ2

þ d2nz2n�1ðz2 � 1=4Þ2� ðA:5Þ

u ¼
XN

n¼1

CnUn ¼ ue þ uo ¼
XN

n¼1

½f2n�1cosð2n� 1Þpz

þ g2nsin2npz� ðA:6Þ
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Notice that the selection of the expansion functions for h is because
this gave the best approximate formulas Eqs. (18) and (19). These
expansions include even and odd functions where An, Bn and Cn

are the coefficients of the basic functions Wn, Tn and Un.
The solution of the complete system of Eqs. (12)–(14), by the

second order Galerkin method needs the solution of the following
determinant
detðMÞ ¼

hL1W1;W1i �a2hT1;W1i 0 hL1W2;W1i
hDTW1; T1i hL2T1; T1i �RHhU1; T1i hDTW1; T1i
hL4W1;U1i 0 hL3U1;U1i hL4W2;U1i
hL1W1;W2i �a2hT1;W2i 0 hL1W2;W2i
hDTW1; T2i hL2T1; T2i �RHhU1; T2i hDTW1; T2i
hL4W1;U2i 0 hL3U1;U2i hL4W2;U2i
















�a2hT2;W1i 0
hL2T1; T1i �RHhU1; T1i
0 hL3U2;U1i
�a2hT2;W2i 0
hL2T1; T2i �RHhU1; T2i
0 hL3U2;U2i
















where: hf ; gi ¼
R 1=2
�1=2 fgdz. If only longitudinal modes are needed,

then the even (odd) mode only requires the even (odd) functions
of Eqs. (A.4) and (A.5). This means a great simplification of the
determinant. However, when the limit Pr ?1 is taken, the deter-
minant reduces to:

detðMÞ ¼

hL1W1;W1i �a2hT1;W1i hL1W2;W1i �a2hT2;W1i
hDTW1; T1i hL2T1; T1i hDTW1; T1i hL2T1; T1i
hL1W1;W2i �a2hT1;W2i hL1W2;W2i �a2hT2;W2i
hDTW1; T2i hL2T1; T2i hDTW1; T2i hL2T1; T2i






















In the case of Ls1 only the we and he are used for w and h, that is

we ¼
XN

n¼1

a2ðn�1Þz2ðn�1Þðz2 � 1=4Þ2
h i

ðA:7Þ

he ¼
XN

n¼1

c2ðn�1Þz2ðn�1Þðz2 � 1=4Þ2
h i

ðA:8Þ

and from them Eq. (18) is obtained. For Ls2 the terms wo and ho are
used, that is

wo ¼
XN

n¼1

b2n�1z2n�1ðz2 � 1=4Þ2
h i

ðA:9Þ

ho ¼
XN

n¼1

d2nsin2npz½ � ðA:10Þ

which lead to Eq. (19).
In the following Tables 1 and 2, one for Ls1 and the other for Ls2,

are presented the numerical comparisons between the approxi-
mate formulas and the high order Galekin method. There, it is
shown the effectiveness of the simple Eqs. (18) and (19) for differ-
ent Prandtl numbers. In each table three lines are added to show
the different magnitudes of RH where RV becomes zero for the dif-
ferent values of Pr.

Due to their large extension, the seventeen coefficients of Eq.
(19) for the marginal values of RV of the odd mode Ls2 are pre-
sented here. They are:

C0 ¼ 45
ffiffiffi
2
p

128p8 þ 23520p6 � 1522080p4 þ 17222625p2�
� 45544275Þ= 2097152p2

� �
C1 ¼ 225p14 6656p8 þ 4227084225� 1184256p6 þ 64944000p4�

� 960172920p2�=67175972864
C2 ¼ 45p14 �22165272675p2 þ 464979264750
�

þ 1155818880p6 � 22717440p8 � 11843559000p4

þ 131584p10
�
=16793993216

C3 ¼ 405p14 154926872100p2 � 123788800p8 þ 789504p10�
þ 6234869760p6 � 77816466000p4

þ 1162448161875Þ=8396996608
C4 ¼ 2025p16 131584p8 � 15896727000p2 þ 1046209920p4�
� 18368000p6 þ 71531997075

�
=161480704

C5 ¼ 2025
ffiffiffi
2
p

p2 8p4 � 105p2 þ 315
� �

=8192

C6 ¼ 28704375 36608p12 � 102290060250p2 � 3501792000p6
�

þ 201081888p8 þ 28111511295p4 � 4707840p10

þ 136903411575Þ= 2199023255552p4� �
C7 ¼ 91125

ffiffiffi
2
p

p12 10215424p14 � 493240320p12�
� 7266823178288625p2 � 145483738772400p6

þ 6386414025600p8 þ 1495248208587000p4

� 86045137920p10 þ 13759367056036875
�
=

70439112921841664

C8 ¼ 91125p12
ffiffiffi
2
p
�1618845696p14 � 360751242240p12�

� 104977386498859875p2 þ 2775821144607000p6

� 441635595332400p8 þ 3872553785706375p4

þ 40099840p16 þ 23733268272000p10

þ 302706075232811250Þ=17609778230460416

C9 ¼ 820125p12
ffiffiffi
2
p
�10949238784p14 � 1709120000000p12
�

� 129809431450573875p2 þ 21380010774343200p6

� 2511913849704000p8 � 60379155744862500p4

þ 240599040p16 þ 121130655663360p10

þ 756765188082028125Þ=8804889115230208

C10 ¼ 4100625p14
ffiffiffi
2
p

40099840p14 � 1976418304p12�
� 24551372029944375p2 � 487456817778000p6

þ 21062606947200p8 þ 5040655848509400p4

� 267202790400p10 þ 46573139073124125
�
=

169324790677504

C11 ¼ 50625p28 6656p8 � 1202688p6 þ 65185920p4�
� 960898680p2 þ 4227084225

�
� 6656p8 � 1165824p6 þ 64702080p4 � 959447160p2�
þ 4227084225Þ=4512611330224864362496
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C12 ¼ 10125p28 43137739653120p14 � 3049297844428800p12�
� 540154972841776621875p2 þ 875823104p18

þ 14267537145418536000p6 � 1945656141136243200p8

þ 1416249590948010000p4 þ 1965506514976823568750

� 307036422144p16 þ 111311915165107200p10�=
564076416278108045312

C13¼2025p28 437325199582343244046875þ17314349056p20�
�44863191486259200p14þ1116802837908403200p12

�41369588281223727525000p2�5742031011840p18

þ6539021006679800730000p6�460367788488794424000p8

�28621755094539156834375p4þ741071559720960p16

þ1664944356200832000p10�=282038208139054022656

C14¼18225p28 51943047168p20�146105627844403200p14�
þ4788897028163136000p12þ72271314968284466409375p2

�16969746350080p18þ6020211271324882905000p6

þ81879316398243000000p8�48772829552856505346250p4

þ2227163326382080p16�64887969734864640000p10

þ270257145809313240703125Þ=35254776017381752832

C15¼18225p28 10111579848704p20�27646415279529984000p14�
þ992021391544251801600p12

þ11889533044126877139000000p2�3164780049203200p18

�88723235550005456400000p6

þ131494094477211630528000p8

�3746285613890572725472500p4

þ12161571561419095831640625þ410267312522526720p16

�17361659437467770880000p10�=70509552034763505664

C16 ¼ 820125p30 3918986036510720p14�
�266802378135552000p12�7396892519082584017500p2

þ103886094336p18þ1823764386552326064000p6

�192075740753823360000p8

�6813050918038214850000p4�30790234931200p16

þ9997031016085478400p10þ83152238515081626515625
�
=

677976461872726016

C17 ¼ 4100625p32 �4833869824000p14 þ 612421730959360p12
�

� 2274249258532147050000p2 � 35890125980607360000p6

þ 1697289330860928000p8 þ 402380448542375688000p4

þ 17314349056p16 � 42609447508992000p10

þ 5116826605537808555625Þ=26076017764335616
Appendix B

In this appendix a discussion is presented on the validation of
the numerical algorithm used in the paper. This will be done in
two ways. One is to show the convergence of the algorithm by
means of two examples corresponding to Pr = 10 and 500. Besides,
a comparison is done with Figs. 3 and 5 of Birikh and Katanova [28]
and of Fig. 10 of Gershuni et al. [29] where RV = 0. Notice that this
Fig. 10 of [29] is the same as Fig. 6.8 of Lappa [24]. The curve 1 of
Fig. 3 of [28] corresponds to the oscillatory mode To of Ortiz -Pérez
and Dávalos-Orozco [17]. It is important to point out that both
papers have no numerical tables. Therefore, their figures are
amplified and copied to calculate the magnitudes of the critical
parameters with the best precision possible. The critical value that
[29,28] find is RHGBK = 1269 with a wavenumber aGBK = 4.15, which
have to be multiplied by 16 and 2, respectively, in order to be able
to compare due to the different scaling. The results are RHGBK � 16
= 20304, aBK � 2 = 8.3 and those of [17] are RH = 20281.2, a = 8.2.
As can be seen, the agreement is very good. The extra subindexes
GBK mean data of the papers [29,28]. Notice that aBK only has
the extra subindex BK because Gershuni et al. [29] did not give
graphs for the wavenumber for Pr = 1. Moreover, in both papers
there are no numerical results of the frequency of oscillation.

The first draft of paper [17] contained results for Pr = 0.1 but,
due to the length of the paper, they were deleted. For this reason,
we are able to compare that data with the results of [29,28] for the
TS mode. They find RHBK = 79 and aBK = 1.3 and multiplication gives
RHGBK � 16 = 1230 and aBK � 2 = 2.6. The agreement is good with the
values RH = 1278 and a = 2.6 of [17].

However, disagreement is found with the results of Gershuni
et al. [29] for magnitudes of Pr P 10. In [17] it is found that the
mode Ls2 is never the first unstable one when RV = 0. This is clearly
shown in Figs. 1–6for Pr = 0.026 to Pr = 1, respectively. In the pres-
ent paper it is shown that the same condition prevails from Pr = 2
to Pr = 1000 (not shown but calculated too). Note that with respect
to mode Ls2, comparison is very difficult with [28] due to the scal-
ing of their Fig. 5. However, they make a very important comment
in their Section 4. They say that ‘‘The results are in good agreement
with those in [29], except for the curve of the spiral monotonic
mode (the upper curve 5 corresponding to the odd mode (Ls2) does
not intersect the lower curve of the even mode (Ls1))’’. The paren-
thesis with Ls1 and Ls2 were added here. They attribute the differ-
ences to the ‘‘insufficient accuracy of the calculations on this range
of the parameters’’. Even more, Gershuni et al. [29] limit their cal-
culations to a range of Pr 6 100, as can be seen in their Fig. 10. In
this sense, our results are in agreement with those of Birikh and
Katanova [28]. Therefore, in what follows, it will be shown that
the numerical algorithm used in this paper has a very good conver-
gence and that the agreement with [28] is not fortuitous.

The convergence of the numerical Galerkin method used here
and in [17] will be understood by means of the calculated error be-
tween orders of approximation. This is given in Table 3. Two exam-
ples of Pr = 10 and 500 are presented for the particular cases of Ls1
and Ls2 when RV = 0. The critical value of RH is localized where RV is
very near to zero. Therefore, the column of RV sometimes shows
very small positive and negative values. The error is calculated
with respect to the next value. As can be seen, the convergence
is very good and the difference between the results of the fourth,
fifth and sixth order is very small (less than one percent).

In this way, it is concluded that the results agree very well with
[28] in the limit of RV = 0. The percentage of the errors shown in
Table 3 support the reliability of the numerical results presented
in this paper and in [17] for all Prandtl numbers. The numerical
algorithm is able to distinguish clearly between modes Ls1 and Ls2.
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