A candidate for a single-chain magnet: $\left[\mathrm{Mn}_{3}(\mathrm{OAc})_{6}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathrm{OAc}$ is acetate and py is pyridine)

Judith Caballero-Jiménez, ${ }^{\text {a }}$ Yasmi Reyes Ortega, ${ }^{\text {a* }}$ Sylvain Bernès ${ }^{\text {b }} \ddagger$ and Roberto Escudero ${ }^{\text {c }}$

${ }^{\text {a }}$ Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. 194 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, b DEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and ${ }^{\text {CInstituto de Investigaciones en Materiales, }}$ UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacan, 04510 México DF, Mexico
Correspondence e-mail: yasmi.reyes@correo.buap.mx

Received 11 April 2014
Accepted 26 June 2014

The title complex, catena-poly[di- μ_{3}-acetato- $\kappa^{6} O: O: O^{\prime}$-tetra-$\mu_{2}$-acetato- $\kappa^{4} O: O ; \kappa^{4} O: O^{\prime}$-diaquabis(pyridine- $\kappa \mathrm{N}$)trimanganese(II) $],\left[\mathrm{Mn}_{3}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, is a true onedimensional coordination polymer, in which the $\mathrm{Mn}^{\mathrm{II}}$ centres form a zigzag chain along [010]. The asymmetric unit contains two metal centres, one of which (Mn1) lies on an inversion centre, while the other (Mn2) is placed close to an inversion centre on a general position. Since all the acetates behave as bridging ligands, although with different μ_{2} - and μ_{3}-coordination modes, a one-dimensional polymeric structure is formed, based on trinuclear repeat units ($\mathrm{Mn} 1 \cdots \mathrm{Mn} 2 \cdots \mathrm{Mn} 2^{\prime}$), in which the Mn 2 and $\mathrm{Mn}^{\prime}{ }^{\prime}$ sites are related by an inversion centre. Within this monomeric block, the metal-metal separations are $\mathrm{Mn} 1 \cdots \mathrm{Mn} 2=3.36180(18) \AA$ and $\mathrm{Mn} 2 \cdots \mathrm{Mn} 2^{\prime}=$ 4.4804 (3) A. Cation Mn1, located on an inversion centre, displays an $\left[\mathrm{MnO}_{6}\right]$ coordination sphere, while Mn 2 , on a general position, has a slightly stronger $\left[\mathrm{MnO}_{5} \mathrm{~N}\right]$ ligand field, as the sixth coordination site is occupied by a pyridine molecule. Both centres approximate an octahedral ligand field. The chains are parallel in the crystal structure and interact via hydrogen bonds involving coordinated water molecules. However, the shortest metal-metal separation between two chains $[5.3752$ (3) \AA] is large compared with the intrachain interactions. These structural features are compatible with a single-chain magnet behaviour, as confirmed by preliminary magnetic studies.

Keywords: crystal structure; manganese carboxylate cluster; one-dimensional polymer; qubit-based computation materials; single-molecule magnet; single-chain magnets; Ising onedimensional system.
\ddagger Currently unaffiliated to UANL.

1. Introduction

Manganese carboxylate cluster chemistry is now widely recognized as a field from which materials suitable for qubitbased computation could emerge. That chemistry was pioneered by George Christou and David Hendrickson, among others, with the fruitful Mn_{12} line of compounds, including the emblematic cluster $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (Boyd et al., 1988; Sessoli et al., 1993). This mixed-valence cluster displays the two essential features required for a singlemolecule magnet (SMM), i.e. a high-spin ground state and a large negative magnetic anisotropy. However, the most impressive behaviour reported for these clusters is the resonant quantum tunnelling of magnetization, which is a key property for molecular spintronics (Perenboom et al., 1998; Hill et al., 2003, 2010). Like SMM clusters, some chain-shaped molecules also exhibit bistability and slow relaxation of their magnetization. These compounds, termed single-chain magnets (SCM), have their magnetic behaviour affected not only by the magnetic anisotropy of the spins but also by their intrachain magnetic interactions (Coronado et al., 2003; Brooker \& Kitchen, 2009; Zhang et al., 2013).

Although many synthetic approaches have been described in the literature, the rational design of a synthesis for a given manganese carboxylate cluster is hindered by the fine tuning of the following parameters: the oxidation states of the metal centres; the suitability of the symmetry of the ligand field for the $3 d$ orbitals centred on the metals; the coordination modes of the carboxylate ligands; and competition with ancillary ligands. Moreover, both the nuclearity and dimensionality of the resulting structure are quite unpredictable, with a large range of possibilities, from isolated SMMs, which may be described as zero-dimensional nanoparticles, to three-dimensional polymeric architectures, which may be considered as bulk materials.

While working on the synthesis of such compounds, we obtained a one-dimensional coordination polymer, namely $\left[\mathrm{Mn}_{3}(\mathrm{OAc})_{6}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathrm{OAc}$ is acetate and py is pyridine), (I), which is a candidate for a new SCM.

2. Experimental

2.1. Synthesis, crystallization and SQUID magnetometry

All synthetic and post-synthetic work was carried out under aerobic conditions. The reagents and solvents were obtained

Table 1
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
a, b, c (A)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
713.31

Triclinic, $P \overline{1}$
200
8.1153 (2), 9.0404 (2), 10.0759 (2)
83.160 (1), 81.994 (1), 77.423 (1)
711.43 (3)

1
Mo $K \alpha$
1.38
$0.15 \times 0.12 \times 0.12$

Bruker APEXII CCD area-detector diffractometer
Multi-scan (SADABS; Bruker, 2009)
$0.820,0.852$
11780, 3514, 3269
0.012
0.667
$0.020,0.057,1.06$
3514
198
H atoms treated by a mixture of independent and constrained refinement
$0.31,-0.35$

Computer programs: APEX2 (Bruker, 2009), XPREP (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
from commercial sources and used without further purification. IR analyses were performed using a Nicolet Nexus 6700 FT-IR spectrometer in the $4000-600 \mathrm{~cm}^{-1}$ range. Compound (I) was prepared by the addition of excess pyridine $(12.41 \mathrm{mmol}, 1 \mathrm{ml})$ to a hot solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{mmol}, 0.245 \mathrm{~g}$) in EtOH ($95 \% ; 5 \mathrm{ml}$). The solution was stirred for 30 min and filtered, and then layered with $\mathrm{Et}_{2} \mathrm{O}$. After 1 d , colourless crystals of (I) were obtained from this solution by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ (yield 48%). IR (KBr pellet, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 3252(b r), 2943(s), 2878(s), 1557(m), 1414(m)$, $1004(s t), 877(m), 658(m), 606(m)$. Magnetic susceptibility measurements on powdered crystals were carried out using a Quantum Design SQUID magnetometer at 2 K under an applied field H of -50000 to 50000 Oe , and in the temperature range $2-300 \mathrm{~K}$ at $H=1000 \mathrm{Oe}$. Correction for the diamagnetic contribution of the constituent atoms was applied using Pascal's constants.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The collection of diffraction data (work done in Canada) and the final structure refinement (work done in Mexico) were routine. All C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95$ (pyridine) or $0.98 \AA$ (methyl). Methyl groups were considered as rigid tetrahedral groups free to rotate about their $\mathrm{C}-\mathrm{C}$ bonds. Isotropic displacement parameters for these H atoms were calculated as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the pyridine molecule
and $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups. Atoms H 71 and H 72 of the water molecule were clearly detected in a difference map and were refined with free coordinates and isotropic displacement parameters.

3. Results and discussion

Although the synthesis of (I) was carried out under aerobic conditions, the complex is an $\mathrm{Mn}^{\mathrm{II}}$ species with the formula $\left[\mathrm{Mn}_{3}(\mathrm{OAc})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{py})_{2}\right]_{n}$, where OAc and py are acetate and pyridine ligands, respectively. One manganese ion, Mn 1 , is located on an inversion centre in the triclinic unit cell, and the other, Mn 2 , is located on a general position, close to an inversion centre. Three acetate ligands are bonded to Mn1, using three coordination modes (Fig. 1). The first acetate (atoms O1/O2) bridges independent Mn centres in the common 2.11 syn-syn mode [for Harris coordination nomenclature, see Coxall et al. (2000)], found, for example, in the starting material manganese diacetate, $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Bertaut et al., 1974; Nicolaï et al., 2001), and also in $\mathrm{Co}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Zhang et al., 2010) and other simple divalent metal salts. Acetate O5/O6 bridges the same metal centres Mn 1 and Mn 2 in the 2.20 coordination mode, which is much less frequently observed. For Mn-based coordination polymers, only two cases have been reported to date in which this coordination mode for acetate is found, viz. $\left[\mathrm{Mn}_{3}(\mathrm{OAc})_{6}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Cheng \& Wang, 1991) and a complex polymer with a chain-like structure (Xu et al., 2009). Finally, the polymeric nature of (I) is fixed by the third acetate, $\mathrm{O} 3 / \mathrm{O} 4$, in the 3.12 coordination mode, between Mn 1 and Mn 2 in the asymmetric unit and a symmetry-related Mn^{i} site [symmetry code: (i) $-x+1,-y+1,-z+1]$. This arrangement for polymerization is identical to that found in $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Figure 1
Part of the polymeric chain of (I), limited to two Mn1 $\cdots \mathrm{Mn} 2$ units related by an inversion centre. Coordination spheres for the Mn1 $\cdots \mathrm{Mn} 2 \cdots \mathrm{Mn}^{\mathrm{i}}$ monomer are complete, and the asymmetric unit is labelled. Nonlabelled atoms are generated by the symmetry operator $(-x+1,-y+1,-z+1)$. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Part of the crystal structure of (I), showing three chains in the [010] direction and the $R_{2}^{2}(8)$ rings connecting the chains (dashed bonds). For the sake of clarity, pyridine ligands bonded to Mn2 centres are drawn with a single N atom (blue spheres), and all methyl H atoms have been omitted.
(Bertaut et al., 1974) and $\alpha-\mathrm{Mn}(\mathrm{OAc})_{2}$ (Lin et al., 2009), and in more complex polymeric compounds with various dimensionalities (e.g. Zartilas et al., 2008; Weng et al., 2008; Wan et al., 2010). These different μ_{2} and μ_{3}-bridging modes are reflected in the IR spectrum (see Supporting information) of (I): the $v_{\text {asym }}$ and $v_{\text {sym }}$ vibration modes for the COO^{-}groups are split into two or three bands around 1557 and $1414 \mathrm{~cm}^{-1}$, respectively.

The arrangement of the acetate ligands completes the octahedral coordination environment for the centrosymmetric Mn 1 centre. This metal centre presents an $\left[\mathrm{MnO}_{6}\right]$ ligand field with the symmetry lowered from octahedral to C_{i}, because the Mn1-O bond lengths for each acetate are significantly different: $\mathrm{Mn} 1-\mathrm{O} 1=2.1369$ (9) $\AA, \mathrm{Mn} 1-\mathrm{O} 3=2.1997$ (8) \AA and $\mathrm{Mn} 1-\mathrm{O} 5=2.2277$ (8) \AA. The coordination environment for Mn 2 , which is in a general position, is completed with neutral ligands, $\mathrm{H}_{2} \mathrm{O}$ and pyridine, present in the reaction media. Mn 2 thus has an $\left[\mathrm{MnO}_{5} \mathrm{~N}\right]$ coordination, with a ligand field probably slightly stronger than that for Mn1 and a large deviation from octahedral symmetry: the coordination bond lengths for Mn 2 are in the range 2.0995 (9)-2.2946 (10) \AA and the trans angles are in the range 164.84 (4)-176.87 (4) ${ }^{\circ}$.

The one-dimensional polymeric chain of (I), formed via inversion centres, runs in the [010] direction (Fig. 2). Within the asymmetric unit, the Mn1M.Mn2 separation is 3.36180 (18) \AA and the $\mathrm{Mn} 2 \cdots \mathrm{Mn} 2^{\mathrm{i}}$ distance, allowing polymerization, is longer, at 4.4804 (3) \AA. Both distances are unexceptional, considering that, in Mn-acetate-based polymers, they span a large range, ca 2.5-5.2 \AA (Allen, 2002), allowing a variety of magnetic ground states for these materials. In the present case, the long metal-metal separations alternate along the chain with the dimers possessing the short separation. Parallel chains are packed in the crystal structure, and the cohesion is maintained through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of moderate strength, using the coordinated water molecules as donors (Fig. 2 and Table 2). The graph set (Bernstein et al., 1995) resulting from two inversion-related

Table 2
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H71 \cdots O6	$0.81(2)$	$1.92(2)$	$2.6694(15)$	$154(2)$
O7-H72 $^{\mathrm{i}} \mathrm{O}^{2}$	$0.78(2)$	$2.05(2)$	$2.8162(13)$	$169(2)$

Symmetry code: (i) $-x+2,-y+1,-z+1$.
interchain hydrogen bonds is $R_{2}^{2}(8)$, common in water-acetate systems. The metal-metal distance in the $R_{2}^{2}(8)$ ring is Mn2 $\cdots \mathrm{Mn}^{2 i}=5.3752(3) \AA$ [symmetry code: (ii) $-x+2$, $-y+1,-z+1]$. Since this distance is much longer than the metal-metal distances along the chain, (I) should be considered as a true one-dimensional coordination polymer, rather than a two-dimensional material. In spite of its low dimensionality, this material is a densely packed system, reaching a high Kitaigorodski packing coefficient of $C_{\mathrm{K}}=0.733$ (PLATON; Spek, 2009).

The above-described geometric features are encouraging and make (I) a candidate for being an Ising one-dimensional system (Sun et al., 2010) behaving as a ferri- or ferromagnet. Assuming a weak enough crystal-field splitting, high-spin d^{5} electronic configurations may be expected for the $\mathrm{Mn}^{\mathrm{II}}$ centres. The anisotropic trinuclear units (Mn1…Mn2... Mn^{i}) have distances between the magnetic sites that are suitable for ferromagnetic interactions. Indeed, these distances, of 3.36 and $4.48 \AA$, may be compared with those observed in the first heterometallic $\mathrm{Mn}^{\mathrm{III}}-\mathrm{Ni}^{\mathrm{II}}$ polymeric SCM synthesized in 2002: $\mathrm{Mn}^{\text {III }} \ldots \mathrm{Mn}^{\text {III }}=3.42 \AA$ and $\mathrm{Mn}^{\text {III }} \ldots \mathrm{Ni}^{\text {II }}=$ $5.06 \AA$ (Clérac et al., 2002). Thus, the actual nature of the magnetic behaviour for the title $\mathrm{Mn}^{\mathrm{II}}$ polymer should be defined mainly by interchain contacts resulting from the $R_{2}^{2}(8)$ ring motifs. A search of the Cambridge Structural Database (Version 5.35, updated May 2014; Allen, 2002) retrieved 139 similar $R_{2}^{2}(8)$ rings in Mn compounds, with coordinated water molecules as donors and carboxylate O atoms as acceptors. Most of them are associated with first-level centrosymmetric patterns $\mathbf{R}(\vec{a} \vec{a})$, as in (I), and the others belong to second-level patterns $\mathbf{R}(\vec{a} \vec{b})$ according to Motherwell's graph-set nomenclature (Motherwell et al., 2000). The important feature to be considered, bearing the magnetic properties in mind, is the poor flexibility of this ring: for $\mathbf{R}(\vec{a} \vec{a})$ patterns, the ring has a chair conformation and the metal-metal interaction is determined mainly by the puckering parameters, while $\mathbf{R}(\vec{a} \vec{b})$ patterns may adopt a folded conformation, allowing shorter metal-metal interactions. In the subset of 139 hits, regardless of the Mn oxidation state and the dimensionality of the crystal structure, the $\mathrm{Mn} \cdots \mathrm{Mn}$ separation in $R_{2}^{2}(8)$ rings is in the range $4.77-6.32 \AA$. Interestingly, the shortest separation was reported for a complex Mn_{22} cluster, in which the $R_{2}^{2}(8)$ ring links two molecules. This mixed-valence compound is an SMM with quantum tunnelling of magnetization (Brockman et al., 2007). Thus, it may be inferred that the $R_{2}^{2}(8)$ ring in (I) is not an efficient exchange pathway, making a strong antiferromagnetic interchain coupling unlikely.

Preliminary magnetic measurements of (I) are in agreement with this structural description. At room temperature, the title
complex shows a $\chi_{\mathrm{m}} T$ value of $13.15 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, which is very close to that calculated for three non-interacting $S_{\mathrm{i}}=\frac{5}{2}$ centres, $13.12 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, assuming a spin-only model $\left(g_{\mathrm{Mn}}=\right.$ 2.00; Christian et al., 2004). A plot of M versus T shows different magnetization pathways below a critical temperature $T_{\mathrm{C}}=50 \mathrm{~K}$, pointing to superparamagnetic behaviour. On the other hand, a hysteresis loop in the $M(H)$ plot is observed (Fig. 3), indicative of ferromagnetic exchange interactions (Bertotti, 1998). Experimentally, an SCM shows both super-paramagnet-like properties with frequency-dependent out-ofphase signals in AC susceptibility measurements, and hysteresis in M versus applied DC field measurements (King et al., 2004; Brockman et al., 2007). Therefore, AC magnetic susceptibility measurements are currently being carried out, in order to characterize further the potential SCM behaviour of this new polymer.

The authors thank CONACyT Mexico (project No. BUAP-CA-261) and the Autonomous University of Puebla (project Nos. Y-NAT-12-I and Y-NAT-13-I) for financial support, and Dr Ilia Korobkov (University of Ottawa) for assistance in the collection of the diffraction data. RE thanks DGAPA-UNAM (project No. IN106014), CONACyT (project No. 129293, Ciencia Básica), BISNANO, and project No. PICCO 11-7 supported by the Institute of Sciences of Distrito Federal, Mexico City.

Supporting information for this paper is available from the IUCr electronic archives (Reference: YP3067).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bertaut, E. F., Tran Qui, D., Burlet, P., Burlet, P., Thomas, M. \& Moreau, J. M. (1974). Acta Cryst. B30, 2234-2236.

Bertotti, G. (1998). Hysteresis in Magnetism, 1st ed., edited by G. Bertotti. San Diego: Academic Press.
Boyd, P. D. W., Li, Q., Vincent, J. B., Folting, K., Chang, H. R., Streib, W. E., Huffman, J. C., Christou, G. \& Hendrickson, D. N. (1988). J. Am. Chem. Soc. 110, 8537-8539.
Brockman, J. T., Stamatatos, T. C., Wernsdorfer, W., Abboud, K. A. \& Christou, G. (2007). Inorg. Chem. 46, 9160-9171.
Brooker, S. \& Kitchen, J. A. (2009). Dalton Trans. pp. 7331-7340.
Bruker (2009). APEX2, XPREP and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, C.-Y. \& Wang, S.-L. (1991). Acta Cryst. C47, 1734-1736.
Christian, P., Rajaraman, G., Harrison, A., Helliwell, M., McDouall, J. J. W., Raftery, J. \& Winpenny, R. E. P. (2004). Dalton Trans. pp. 2550-2555.
Clérac, R., Miyasaka, H., Yamashita, M. \& Coulon, C. (2002). J. Am. Chem. Soc. 124, 12837-12844.
Coronado, E., Palacio, F. \& Veciana, J. (2003). Angew. Chem. Int. Ed. 42, 25702572.

Figure 3
Magnetization (M) versus applied magnetic field (H) hysteresis loop for (I) at $T=2 \mathrm{~K}$. The inset focuses on the experimental data in the -3000 to 3000 Oe range.

Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. \& Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349-2356.
Hill, S., Datta, S., Liu, J., Inglis, R., Milios, C. J., Feng, P. L., Henderson, J. J., del Barco, E., Brechin, E. K. \& Hendrickson, D. N. (2010). Dalton Trans. pp. 4693-4707.
Hill, S., Edwards, R. S., Jones, S. I., Dalal, N. S. \& North, J. M. (2003). Phys. Rev. Lett. 90, 217204.
King, P., Wernsdorfer, W., Abboud, K. A. \& Christou, G. (2004). Inorg. Chem. 43, 7315-7323.
Lin, J., Yuan, L., Guo, D.-W., Zhang, G., Yao, S.-Y. \& Tian, Y.-Q. (2009). Struct. Chem. 20, 505-508.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Motherwell, W. D. S., Shields, G. P. \& Allen, F. H. (2000). Acta Cryst. B56, 466473.

Nicolaï, B., Kearley, G. J., Cousson, A., Paulus, W., Fillaux, F., Gentner, F., Schröder, L. \& Watkin, D. (2001). Acta Cryst. B57, 36-44.
Perenboom, J. A. A. J., Brooks, J. S., Hill, S. O., Hathaway, T. \& Dalal, N. S. (1998). Physica B, 246-247, 294-298.

Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. \& Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sun, H.-L., Wang, Z.-M. \& Gao, S. (2010). Coord. Chem. Rev. 254, 1081-1100.
Wan, C.-Q., Xiao, N.-Y. \& Wang, Z.-J. (2010). Acta Cryst. E66, m1478.
Weng, Z.-H., Chen, Z.-L. \& Liang, F.-P. (2008). Acta Cryst. C64, m64-m66.
Xu, X.-X., Liu, X.-X., Zhang, X. \& Sun, T. (2009). Transition Met. Chem. 34, 827-833.
Zartilas, S., Moushi, E. E., Nastopoulos, V., Boudalis, A. K. \& Tasiopoulos, A. J. (2008). Inorg. Chim. Acta, 361, 4100-4106.

Zhang, W.-X., Ishikawa, R., Breedlove, B. \& Yamashita, M. (2013). RSC Adv. 3, 3772-3798.
Zhang, G., Lin, J., Guo, D.-W., Yao, S.-Y. \& Tian, Y.-Q. (2010). Z. Anorg. Allg. Chem. 636, 1401-1404.

supporting information

A candidate for a single-chain magnet: $\left[\mathrm{Mn}_{3}(\mathrm{OAc})_{6}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathrm{OAc}$ is acetate and $p y$ is pyridine)

Judith Caballero-Jiménez, Yasmi Reyes Ortega, Sylvain Bernès and Roberto Escudero

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

catena-Poly[di- μ_{3}-acetato- $\kappa^{6} O: O: O^{\prime}$-tetra- μ_{2}-acetato- $\kappa^{4} O: O ; \kappa^{4} O: O^{\prime}$-diaquabis(pyridine- κN)trimanganese(II)]

Crystal data

$\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=713.31$
Triclinic, $P \overline{1}$
$a=8.1153$ (2) \AA
$b=9.0404(2) \AA$
$c=10.0759(2) \AA$
$\alpha=83.160(1)^{\circ}$
$\beta=81.994(1)^{\circ}$
$\gamma=77.423(1)^{\circ}$
$V=711.43(3) \AA^{3}$
$Z=1$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.820, T_{\text {max }}=0.852$
$F(000)=365$
$D_{\mathrm{x}}=1.665 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 493 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9432 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=1.38 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, colourless
$0.15 \times 0.12 \times 0.12 \mathrm{~mm}$

11780 measured reflections
3514 independent reflections
3269 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.057$
$S=1.06$
3514 reflections
198 parameters
0 restraints

0 constraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.031 P)^{2}+0.2663 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. Data collection was performed with four batch runs at phi $=0.00^{\circ}(600$ frames $)$, at $\mathrm{phi}=90.00^{\circ}(600$ frames $)$, at phi $=180.00^{\circ}(600$ frames $)$ and at $\mathrm{phi}=270.00^{\circ}(600$ frames $)$. A fifth batch run was collected at phi $=0.00^{\circ}$ (50 frames) to monitor crystal and diffractometer stability. Frame width $=0.30^{\circ}$ in omega. Data were merged, corrected for decay (if any), and treated with multi-scan absorption corrections (if required).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Mn1	0.5000	1.0000	0.5000	0.01484 (6)
Mn2	0.67310 (2)	0.63019 (2)	0.56849 (2)	0.01492 (6)
N1	0.49468 (13)	0.58131 (12)	0.75859 (11)	0.0203 (2)
O1	0.69813 (11)	0.93862 (10)	0.34097 (9)	0.02220 (18)
O2	0.81744 (11)	0.69304 (9)	0.38176 (9)	0.02006 (17)
O3	0.43984 (10)	0.77516 (9)	0.49460 (9)	0.01721 (16)
O4	0.30799 (13)	0.58516 (10)	0.49762 (11)	0.0290 (2)
O5	0.66602 (11)	0.85585 (9)	0.64449 (9)	0.01837 (17)
O6	0.83746 (14)	0.78614 (12)	0.80527 (11)	0.0335 (2)
O7	0.89280 (13)	0.53570 (12)	0.67585 (11)	0.0269 (2)
H71	0.908 (3)	0.601 (3)	0.718 (2)	0.046 (6)*
H72	0.980 (3)	0.482 (2)	0.659 (2)	0.041 (5)*
C1	0.80320 (14)	0.81979 (13)	0.31196 (12)	0.0176 (2)
C2	0.92106 (19)	0.83031 (17)	0.18292 (15)	0.0327 (3)
H2A	1.0210	0.7471	0.1864	0.049*
H2B	0.9572	0.9281	0.1719	0.049*
H2C	0.8615	0.8225	0.1066	0.049*
C3	0.30526 (14)	0.72234 (13)	0.49728 (11)	0.0164 (2)
C4	0.13774 (16)	0.83251 (15)	0.50462 (17)	0.0306 (3)
H4A	0.0509	0.7845	0.4793	0.046*
H4B	0.1475	0.9232	0.4427	0.046*
H4C	0.1053	0.8619	0.5967	0.046*
C5	0.72135 (15)	0.87587 (13)	0.75330 (12)	0.0192 (2)
C6	0.6347 (2)	1.01701 (16)	0.82145 (15)	0.0323 (3)
H6A	0.7028	1.0322	0.8898	0.048*
H6B	0.5218	1.0051	0.8644	0.048*
H6C	0.6232	1.1054	0.7544	0.048*
C7	0.50630 (18)	0.43829 (15)	0.81537 (14)	0.0264 (3)
H7A	0.6018	0.3634	0.7860	0.032*
C8	0.3863 (2)	0.39423 (17)	0.91456 (15)	0.0332 (3)
H8A	0.3998	0.2916	0.9527	0.040*
C9	0.2468 (2)	0.5017 (2)	0.95705 (15)	0.0371 (3)
H9A	0.1618	0.4746	1.0246	0.044*
C10	0.23278 (19)	0.6499 (2)	0.89948 (15)	0.0356 (3)
H10A	0.1372	0.7262	0.9261	0.043*

C11	$0.36003(17)$	$0.68556(15)$	$0.80251(13)$	$0.0259(3)$
H11A	0.3516	0.7883	0.7655	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.01447(12)$	$0.00843(11)$	$0.01996(12)$	$-0.00059(8)$	$0.00022(9)$	$-0.00054(8)$
Mn2	$0.01320(9)$	$0.00939(9)$	$0.02067(10)$	$-0.00066(6)$	$0.00036(6)$	$-0.00119(6)$
N1	$0.0203(5)$	$0.0181(5)$	$0.0210(5)$	$-0.0024(4)$	$-0.0005(4)$	$-0.0009(4)$
O1	$0.0210(4)$	$0.0158(4)$	$0.0257(4)$	$0.0004(3)$	$0.0040(3)$	$-0.0012(3)$
O2	$0.0184(4)$	$0.0155(4)$	$0.0233(4)$	$-0.0004(3)$	$0.0024(3)$	$-0.0013(3)$
O3	$0.0136(4)$	$0.0121(4)$	$0.0250(4)$	$-0.0018(3)$	$-0.0013(3)$	$-0.0009(3)$
O4	$0.0309(5)$	$0.0144(4)$	$0.0435(6)$	$-0.0071(4)$	$-0.0014(4)$	$-0.0084(4)$
O5	$0.0205(4)$	$0.0134(4)$	$0.0210(4)$	$-0.0016(3)$	$-0.0036(3)$	$-0.0026(3)$
O6	$0.0365(6)$	$0.0294(5)$	$0.0333(5)$	$0.0076(4)$	$-0.0169(4)$	$-0.0090(4)$
O7	$0.0199(5)$	$0.0234(5)$	$0.0353(5)$	$0.0055(4)$	$-0.0067(4)$	$-0.0077(4)$
C1	$0.0148(5)$	$0.0180(5)$	$0.0196(5)$	$-0.0031(4)$	$-0.0002(4)$	$-0.0030(4)$
C2	$0.0317(7)$	$0.0305(7)$	$0.0275(7)$	$0.0002(6)$	$0.0113(6)$	$0.0015(5)$
C3	$0.0173(5)$	$0.0139(5)$	$0.0181(5)$	$-0.0030(4)$	$-0.0016(4)$	$-0.0023(4)$
C4	$0.0151(6)$	$0.0221(6)$	$0.0538(9)$	$-0.0011(5)$	$-0.0061(6)$	$-0.0023(6)$
C5	$0.0206(6)$	$0.0163(5)$	$0.0202(5)$	$-0.0039(4)$	$-0.0003(4)$	$-0.0018(4)$
C6	$0.0425(8)$	$0.0253(7)$	$0.0275(7)$	$0.0034(6)$	$-0.0074(6)$	$-0.0115(5)$
C7	$0.0326(7)$	$0.0196(6)$	$0.0253(6)$	$-0.0049(5)$	$0.0002(5)$	$-0.0003(5)$
C8	$0.0452(8)$	$0.0298(7)$	$0.0267(7)$	$-0.0178(6)$	$-0.0018(6)$	$0.0047(5)$
C9	$0.0303(7)$	$0.0543(10)$	$0.0262(7)$	$-0.0171(7)$	$0.0027(6)$	$0.0065(6)$
C10	$0.0250(7)$	$0.0472(9)$	$0.0264(7)$	$0.0041(6)$	$0.0042(5)$	$0.0007(6)$
C11	$0.0248(6)$	$0.0257(6)$	$0.0217(6)$	$0.0026(5)$	$0.0000(5)$	$0.0018(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Mn1-O1	2.1369 (9)	O7-H72	0.78 (2)
$\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	2.1369 (9)	$\mathrm{C} 1-\mathrm{C} 2$	1.5094 (17)
Mn1-O3	2.1997 (8)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	2.1997 (8)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
Mn1-O5 ${ }^{\text {i }}$	2.2277 (8)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
Mn1-O5	2.2277 (8)	C3-C4	1.4985 (17)
$\mathrm{Mn} 2-\mathrm{O} 4{ }^{\text {ii }}$	2.0995 (9)	C4-H4A	0.9800
$\mathrm{Mn} 2-\mathrm{O} 2$	2.1579 (9)	C4-H4B	0.9800
Mn2-O7	2.1755 (10)	C4-H4C	0.9800
Mn2-O3	2.2215 (8)	C5-C6	1.5092 (17)
Mn2-O5	2.2494 (8)	C6-H6A	0.9800
Mn2-N1	2.2946 (10)	C6-H6B	0.9800
N1-C7	1.3392 (16)	C6-H6C	0.9800
N1-C11	1.3395 (16)	C7-C8	1.3819 (19)
O1-C1	1.2542 (14)	C7-H7A	0.9500
$\mathrm{O} 2-\mathrm{C} 1$	1.2625 (14)	C8-C9	1.376 (2)
O3-C3	1.2796 (14)	C8-H8A	0.9500
$\mathrm{O} 4-\mathrm{C} 3$	1.2352 (14)	C9-C10	1.383 (2)

$\mathrm{O} 4-\mathrm{Mn} 2{ }^{\text {ii }}$
O5-C5
O6-C5
O7-H71
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 3$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O3}^{\text {i }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 5^{\text {i }}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5^{\mathrm{i}}$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5^{\text {i }}$
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5^{\mathrm{i}}$
O1-Mn1-O5
O1 ${ }^{\text {i }}$-Mn1-O5
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$
O3 ${ }^{\text {i }}$-Mn1-O5
O5 ${ }^{\text {i }} \mathrm{Mn} 1-\mathrm{O} 5$
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Mn} 2-\mathrm{O} 2$
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Mn} 2-\mathrm{O} 7$
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 7$
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Mn} 2-\mathrm{O} 3$
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 3$
$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{O} 3$
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Mn} 2-\mathrm{O} 5$
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 5$
O7-Mn2-O5
$\mathrm{O} 3-\mathrm{Mn} 2-\mathrm{O} 5$
$\mathrm{O} 4{ }^{\text {ii- }} \mathrm{Mn} 2-\mathrm{N} 1$
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{N} 1$
O7-Mn2-N1
$\mathrm{O} 3-\mathrm{Mn} 2-\mathrm{N} 1$
O5-Mn2-N1
C7-N1-C11
C7-N1-Mn2
C11-N1-Mn2
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mn} 1$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mn} 2$
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Mn} 1$
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Mn} 2$
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{Mn} 2$
C3-O4-Mn2 ${ }^{\text {ii }}$
C5-O5-Mn1
C5-O5-Mn2
$\mathrm{Mn} 1-\mathrm{O} 5-\mathrm{Mn} 2$
Mn2-O7-H71

2.0995 (9)
1.2870 (15)
1.2343 (16)
0.81 (2)
180.0
86.76 (3)
93.24 (3)
93.24 (3)
86.76 (3)
180.0
91.39 (3)
88.61 (3)
101.79 (3)
78.21 (3)
88.61 (3)
91.39 (3)
78.21 (3)
101.79 (3)
180.0
88.84 (4)
88.67 (4)
95.57 (4)
105.82 (4)
89.30 (3)
164.84 (4)
176.87 (4)
91.19 (3)
88.22 (4)
77.31 (3)
93.24 (4)
173.79 (3)
90.33 (4)
84.51 (3)
87.05 (3)
117.44 (11)
119.52 (9)
122.07 (8)
135.91 (8)
129.37 (8)
136.43 (7)
120.89 (7)
98.99 (3)
161.58 (10)
135.62 (7)
126.01 (7)
97.33 (3)
107.7 (15)

C9-H9A	0.9500
C10-C11	1.3833
C10-H10A	0.9500
C11-H11A	0.9500

108 (2)
125.21 (11)
116.92 (11)
117.87 (11)
109.5
109.5
109.5
109.5
109.5
109.5
122.80 (11)
119.24 (11)
117.94 (10)
109.5
109.5
109.5
109.5
109.5
109.5
124.09 (11)
118.89 (12)
117.01 (11)
109.5
109.5
109.5
109.5
109.5
109.5
123.28 (13)
118.4
118.4
118.76 (13)
120.6
120.6
118.72 (13)
120.6
120.6
119.02 (14)
120.5
120.5
122.75 (13)
118.6
118.6

Mn2-O7-H72

$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$-1.0(2)$
$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.82(10)$
$\mathrm{Mn} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$0.83(18)$
$\mathrm{Mn} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$-178.99(9)$
$\mathrm{Mn} 2 \mathrm{ii}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	$-85.5(3)$
$\mathrm{Mn} 2 \mathrm{ii}-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4$	$96.5(3)$
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$-177.30(9)$
$\mathrm{Mn} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$-24.02(16)$
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$0.76(18)$
$\mathrm{Mn} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$154.04(9)$
$\mathrm{Mn} 1-\mathrm{O} 5-\mathrm{C} 5-\mathrm{O} 6$	$-166.63(10)$

$\mathrm{Mn} 2-\mathrm{O} 5-\mathrm{C} 5-\mathrm{O} 6$	$27.84(17)$
$\mathrm{Mn} 1-\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6$	$14.66(17)$
$\mathrm{Mn} 2-\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6$	$-150.87(9)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$0.8(2)$
$\mathrm{Mn} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-168.22(11)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.5(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.4(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.8(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$-2.0(2)$
$\mathrm{Mn} 2-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$166.62(11)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$2.1(2)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
O7—H71 $\cdots \mathrm{O} 6$	$0.81(2)$	$1.92(2)$	$2.6694(15)$	$154(2)$
O7—H72 $^{\mathrm{H}} \mathrm{O}^{\text {iii }}$	$0.78(2)$	$2.05(2)$	$2.8162(13)$	$169(2)$

Symmetry code: (iii) $-x+2,-y+1,-z+1$.

