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Derivation of the mechanical and thermodynamic
potentials from the generalized BMP model under
shear-banding flow
Abstract: In this work, we demonstrate that the thermodynamic potential calculated from the steady-state
�ow curve using the de�nition of free energy from irreversible thermodynamics, and the mechanical poten-
tial derived from the generalized BMP constitutive equation provide the same information in the unstable
andmetastable regions of the �ow curve. The contribution of normal stresses in both potentials as well as its
weight on the position of the stress plateau are explicitly exposed. The plateau stress is univocally de�ned
by the location of the critical shear rates corresponding to the minima in the potential. This demonstration
is carried out using experimental data of wormlike micellar solutions for various concentrations and tem-
peratures, including regions close to the non-equilibrium critical point. A method to accurately determine
the non-equilibrium critical point (or the critical temperature) in a direct form is provided here. Bifurcation
points are de�ned, notably one located at the high shear-rate branch of the �ow curve separating the regions
of one real solution and three real solutions. The �rst normal stress di�erence exhibits three real solutions as
sources of elastic instabilities in the high shear band. The contribution of the second normal-stress di�erence
in both themechanical and thermodynamic potentials is clearly exposed. These results demonstrate that the
non-equilibriumphase transition and themechanical instability as sources of the banded �oware essentially
two manifestations of the same reality.
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1 Introduction
There is increasing evidence, both numerical and experimental, of the analogy between mechanical insta-
bility and non-equilibrium thermodynamic phase transition in inhomogeneous �ows of wormlike micelles.
Spatially inhomogeneous �ow patterns, namely shear bands, resemble the coexistence of two “phases”, the
highly oriented and the non-oriented �ow regions. In this regard, the similarities between the shear-banding
transition and a thermodynamic phase transitions have been a provocative and a standing issue [1–8].

The shear-induced phase transition mechanism is supported by several arguments, namely: a reversible
shear-induced structural or non-equilibrium phase transition; the existence of the plateau stress which is
unique, robust and independent of �ow history; the long stress oscillations in transient �ows that re�ect
the kinetics of nucleation and growth of a second phase, similar to that observed in equilibrium �rst order
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transitions; and the similarities found between the master �ow-phase diagram constructed by temperature-
concentration superposition and the equilibrium liquid-vapor phase diagrams [9, 10]. In addition, the lever
rule derived from theMaxwell construction by equating the chemical potentials under gas-liquid equilibrium
is analogous to that derived from the spatial proportion of bands, in which the applied shear rate and the bin-
odals (extremes of the plateau), corresponding to the two critical shear rates, determine this band proportion
[9, 11].

The appearance of the stress plateau is similar to the behavior of thermodynamic �rst-order phase tran-
sition. Experimental observations and computer simulations have suggested this analogy. To describe such
behavior theoretically, some constitutivemodels predict a cubic �ow curve that strongly re�ects the pressure-
volume plot as a function of the temperature predicted by the van der Waals or other cubic equation of state
[12, 13]. To elaborate more on the analogy, the constitutive �ow curve exhibits a bands-coexistence envelope,
a region of instability akin to the spinodal region in pressure-volume plots, and two metastable regions that
collapse into a critical or in�ection point. As experimentally observed, when the temperature or surfactant
concentration is increased, the shear-banding region diminishes, and it vanishes at a critical temperature or
surfactant concentration [14, 15].

To describe the spinodal and coexistence lines out of equilibrium, thermodynamicmodels based on non-
equilibrium chemical potentials that include shear e�ects have been forwarded [16, 17]. The unique stress se-
lection is based on the equality of the generalized Gibbs free energy of the stable �ow branches. The criterion
on the equality of the extended free energy not only selects the stress plateau, but it also is closely related to
the stability analysis [18]. Stable and metastable regions of the �ow curve are then coupled to the minima or
maxima of the free energy along the constitutive curve [19]. A plot of the normalized stress and the shear rate
for various temperatures maintaining the concentration constant reveals that experimental data collapse in
the regions of homogeneous �ow at low and high shear rates, but describe several �at lines in the region
of intermediate stress (the stress plateau) depending on the temperature. As the temperature increases, the
width of the stress plateau (located between the critical shear rates ̇ãc1 and ̇ãc2) diminishes and ends at the
non-equilibrium critical point where for higher temperatures, a monotonic increase instead of a plateau is
observed. The dissipated energy (or extended Gibbs free energy) depicts a single minimum in the low and
high shear rate Newtonian regions (homogeneous �ow) and two minima in the multi-valued stress versus
shear rate region (non-homogeneous �ow) [19]. The multi-valued region itself contains three sub-regions:
one unstable or shear-banding region, corresponding to the negative slope of the cubic �ow curve, and two
metastable sub-regions, where the slope is positive. The �rst metastable sub-region is located between the
�rst Newtonian region and the top jumping stress (maximum of the �ow curve) and the second metastable
sub-region is located between theminimumof the �ow curve and the secondNewtonian region (see Figure 1).
It turns out that in themetastable regions the free energy exhibits twominima, one of them is deeper than the
other, while in the shear-banding region both minima have the same depth. The later scenario determines
the location of the stress plateau and of the critical shear rates for shear-banding, ̇ãc1 and ̇ãc2.

From the extended free energy it is possible for the particular case of shear �ow, to relate the free energy
to the two important conjugate variables: the stress and shear rate [20]. Likewise, the free energy itself under
isobaric and isothermal conditions can be related to the dissipation arising in a �owing micellar solution.
The equal area construction in this case represents the dissipated energy above and below the plateau stress,
which re�ects the equal minima of the thermodynamic potential [19]. Thus, the stress plateau is de�ned as
the set of points alongwhich the extended Gibbs free energy exhibits two equal minimawhen plotted against
the shear rate.

In this work, we derive the mechanical potential from the constitutive equations of the generalized BMP
model [18], which includes normal stresses within a tensorial formulation, and the thermodynamic potential
from the same model, using the known relationships derived from irreversible thermodynamics.
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Figure 1. Stress versus shear rate for a 20 wt.% CTAT solution at 25 ∘C (ÿ0 = 4.2 × 10−3, ÿ∞ = 12, kë = 4.3 × 10−6, ú = 1.5 × 10−3).
Regions I, II and III correspond to the �rst metastable, unstable and second metastable regions, respectively. ò1, ò2 and ò3
are the stresses located at the bifurcation points, and òP is the plateau stress. Sections 1–6 correspond to homogeneous flow
(1 and 5), metastable flow (2 and 4), unstable flow (3) and multivalued region at high shear rates (6). ̇ãc1 and ̇ãc2 correspond to
the critical shear rates (extremes of the plateau stress or binodals).

2 The generalized BMP model
We start with the following constitutive equations comprising the set of the generalized BMPmodel equations
[18]:

dõ
dt

=
1
ë
(1 − õ) + k0(1 + ú(IID))(õ∞ − õ)ò : D +

1
ñ
∇ ⋅ ̄J, (2.1)

õJ + ó1∇J = −D∇c − ñD�∇õ + óò∇ ⋅ ò, (2.2)

õò + óò∇ò = 2ç0D + Ψ2D ⋅ D +D(∇ ̄J)s, (2.3)

where (∇ ̄J)s stands for the symmetric part of grad( ̄J). The upper-convected derivatives of the mass �ux vector
and of the total stress tensor ò are de�ned, respectively, as∇

J =
dJ
dt

− L ⋅ J,∇
ò =

dò

dt
− (L ⋅ ò + ò ⋅ LT).

Here L is the velocity gradient tensor,D is the symmetric part of the rate-of-strain tensor, and IID is its second
invariant. Moreover, õ = ÿ/ÿ0, where ÿ is the �uidity (inverse of the shear viscosity ç) and ÿ0 ≡ ç−10 is the
�uidity at vanishing strain rates, õ∞ is the �uidity at high strain rates, ë is a structure relaxation time, k0 can
be interpreted as a kinetic parameter for structure breaking, ó1 is a relaxation time for the mass �ux, óò is
the stress relaxation time, D is the Fickean di�usion coe�cient, D� is the structure di�usion coe�cient, Ψ2
is the second normal stress coe�cient, c is the local equilibrium concentration, and ú is the shear-banding
intensity parameter.
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Equations (2.1)–(2.3) together with the conservation equations represent a closed set of time evolution
equations for all the independent variables chosen to describe the behavior of complex �uids. Conservation
of mass, concentration, and momentum reads

∇ ⋅ ô = 0, (2.4)
àc
àt

= −∇ ⋅ J, (2.5)

ñ
àô
àt

= −∇ ⋅ ò + çs∇2ô. (2.6)

For simple-shear (where x is the direction of the macroscopic �ow velocity, y the direction of the velocity
gradient, and z the vorticity direction) we assume small inertia and that the mass �ux relaxation time is
negligible small compared to the stress relaxation time, i.e., 1/G0ÿ ≫ ó1. The set of resulting equations is

àõ
àt

=
1
ë
(1 − õ) + k0(1 + ú ̇ã)(õ∞ − õ)òxy ̇ã −D

�[ à
ày

(
1
õ
àõ
ày

)] −
D

ñ
[
à
ày

(
1
õ
àc
ày

)], (2.7)

õòxy + óò[àòxyàt
] = ç0 ̇ã + ̇ãóòN2 + Dóò

2
à
ày

[
1
õ
àòxy
ày

], (2.8)

õN1 + óò[àN1
àt

− 2 ̇ãòxy] = −Ψ2 ̇ã2 + ñDD
� à
ày

[
1
õ
àõ
ày

] +D
2[ à

ày
(
1
õ
àc
ày

)], (2.9)

õN2 + óò[àN2
àt

] = Ψ2 ̇ã2 − ñDD
� à
ày

[
1
õ
àõ
ày

] −D
2[ à

ày
(
1
õ
àc
ày

)], (2.10)

whereN1 = òxx − òyy andN2 = òyy − òzz. Under steady-state, Eqs. (2.5)–(2.10) become

0 =
1
ë
(1 − õ) + k0(1 + ú ̇ã)(õ∞ − õ)òxy ̇ã, (2.11)

õòxy = ç0 ̇ã + ̇ãóòN2, (2.12)

õN1 = (2óòòxy − Ψ2 ̇ã) ̇ã, (2.13)

õN2 = Ψ2 ̇ã2. (2.14)

Integration of Eq. (2.6) under steady-state gives the total stress, independent of y:

ò + çs∇ô = const. = ò∗.
Substituting Eq. (2.14) into Eqs. (2.11) and (2.12) gives

õ3 + a�õ2 + b�õ − c� = 0, (2.15)
a� = k0ë(1 + ú ̇ã)ç0 ̇ã2 − 1, (2.16)
b� = k0ë(1 + ú ̇ã) ̇ã2[Ψ2óò ̇ã2 − ç0õ∞], (2.17)
c� = k0ë(1 + ú ̇ã)Ψ2 ̇ã4õ∞óò. (2.18)

For an imposed shear rate, Eq. (2.15) renders the three roots for the �uidity, from which the stress can be
calculated. However, it is di�cult to �nd the multivalued region for a given stress. It is then necessary to
modify the equations for a controlled stress scheme, i.e.,

õ3 − aõ2 + bõ − c = 0, (2.19)
a = õ∞ − 1/âú, (2.20)
b = (k0ëúòxyâ2)−1 − õ∞/âú, (2.21)

c = (k0ëúòxyâ2)−1, (2.22)

â = òxy/(ç0 + óòN2). (2.23)

Here N2 will be considered as a small perturbation. For a given input stress, and knowing the solutions of
Eqs. (2.15)–(2.18), Eq. (2.12) gives new values of the shear rate. Calculation of Eqs. (2.19)–(2.23) provides the
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roots of the �uidity, which must be the same roots found using the exact Eq. (2.15). The procedure is repeated
for various values of the second normal stress coe�cient as follows:

Ψ2 = N2/ ̇ã2 = Ψ1x,
where x = 10−1, 10−2, 10−3, 10−4.
3 Derivation of the mechanical potential
The three roots of Eq. (2.19) are themselves functions of the applied stress. The �rst root covers the region of
positive slope from low values of the stress up to the top-jumping stress or �rst maximum in Figure 1 (regions
1 and 2). The second root goes from theminimumof the curve to high stress values in the positive slope region
(regions 4 to 6 of Figure 1) and the third root goes along the negative slope region (from the top-jumping stress
down to the minimum in the �ow curve, i.e., region 3 of Figure 1).

The regimes corresponding to a single root and three real roots are separated in the space of parameters
u and v by the cubic equation, 4u3 + 27v2 = 0, where u and v are de�ned in Eqs. (3.2) and (3.3). This cubic
equation sets the loci of the bifurcation points along the �ow curve, inasmuch as it sets the limits of the
single-valued regions and multiple-valued regions. The �rst and second bifurcation points are located at the
crossing points of the �ow curve and the dashed line in Figure 1, which correspond to the applied stress ò1
and ò2, respectively. As observed, these are the bounds of the multiple-valued region.

There are six di�erent sections of the �ow curve depending on the nature of the roots. The �rst section
(1) covers the homogeneous low-stress region up to the �rst bifurcation point, corresponding to one real
and two imaginary roots of Eq. (2.19). Sections 2, 3 and 4 have three real roots; section 2 goes from the �rst
bifurcation up to the top jumping stress, section 3 covers the negative slope, and section 4 goes from the
minimum up to the second bifurcation point. As indicated in Figure 1, sections 2 and 4 are the meta-stable
sub-regions and section 3 is unstable or the shear-banding region. The limits of section 3 (maximum and
minimum) correspond to two points belonging to the spinodal line. Finally, section 5 has one real root and
two imaginary roots, as a counterpart similar to section 1. An unexpected result is the existence of a third
bifurcation point in the high-stress region of the �ow curve. In fact, section 6 again has three real roots, but
two of them are negative. Therefore, although sections 5 and 6 are homogeneous �ow regions, wemay expect
di�erences in the �ow and �uid behavior.

Eq. (2.19) can be expressed as follows:

0 = õ�3 + uõ� + v, (3.1)

where õ� = õ − a/3, and

u = b − a2/3, (3.2)
v = ab/3 − 2a3/27 − c, (3.3)

which can in turn be written in terms of the mechanical potential V as

0 =
dV
dõ� ,

where
V = õ�4/4 + uõ�2/2 + võ�. (3.4)

The following expressions provide an insight into the solutions of Eq. (3.1). De�ning

R = (u/3)3 + (v/2)2, (3.5)

A = (−v/2 + √R)1/3, (3.6)

B = (−v/2 − √R)1/3, (3.7)
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the solutions of Eq. (3.1) are

õ�1 = A + B, (3.8)
õ�2 = −1/2(A + B) + √3/2(A − B)i, (3.9)
õ�3 = −1/2(A + B) − √3/2(A − B)i. (3.10)

As observed, these solutions depend on the parameter R and v. As explained later, the zeros of these param-
eters de�ne the loci of the plateau and bifurcation lines. Four cases can be analyzed.

3.1 Case R > 0
In this case A and B are real and so the �rst solution of Eq. (3.1) is real. The other two are complex conju-
gates. Given applied stresses corresponding to regions 1 and 5 in Figure 1, u, v and hence R, A and B can be
calculated. Then Eq. (3.1) gives the value of the modi�ed �uidity in these regions.

3.2 Case R = 0
In this case, Eqs. (3.5)–(3.10) give three real solutions, two of them are equal. These are

õ�1 = ±2√|u|/3, (3.11)

õ�2 = õ3 = ∓√|u|/3. (3.12)

The stresses corresponding to R = 0 are shown as dashed lines in Figure 1. The smallest one intersects
the �rst bifurcation point and theminimum of the �ow curve. These intersections are located at the positions
given by Eqs. (3.11) (negative root) and (3.12) (positive root), respectively. The intermediate stress intersects the
�ow curve in two points: the maximum (Eq. (3.12), negative root) and the second bifurcation point (Eq. (3.11),
positive root). In fact, the �rst derivative of Eq. (3.1) gives the position of the maximum and the minimum
of the �ow curve (Eq. (3.12)). Finally, the largest stress for R = 0 corresponds to the third bifurcation point
located in the high shear rate branch (Eq. (3.11)), dividing regions 5 and 6.

3.3 Case R < 0
In this case, Eqs. (3.8)–(3.10) render three real solutions corresponding to regions 2, 3 and 4 in Figure 1, re-
spectively. These are

õ�1 = 2√|u|/3 cos(è/3), (3.13)

õ�2 = −2√|u|/3 cos((è + ð)/3), (3.14)

õ�3 = −2√|u|/3 cos((è − ð)/3), (3.15)

è = cos−1((−v/2)/(u/3)3/2). (3.16)

For stresses between those corresponding to the �rst and second bifurcation points, three points of inter-
section are located in the two metastable �ow regions (2 and 4) and one unstable �ow region (3). Eqs. (3.13)
and (3.14) meet at the maximum and Eqs. (3.14) and (3.15) meet at the minimum of the �ow curve.

3.4 Case v = 0
This case is associated to the location of the plateau stress. In fact, Eq. (3.1) or Eqs. (3.13)–(3.16) give the
following solutions:

õ�1 = 0, õ�2 = −√|u|, õ�3 = √|u|. (3.17)
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Figure 2.Mechanical potential as a function of modi�ed fluidity for a 20 wt.% CTAT solution at 25 ∘C. The three roots of the mul-
tivalued region are indicated, two at the minima and one at the maximum. The depth of the potential and the separation of the
two minima are functions of u as indicated.

T ÿ0 ÿ∞ kë ú G030 ∘C 0.01 7 2 × 10−4 0.015 54.538 ∘C 0.069 10 5 × 10−5 0.012 57.540 ∘C 0.105 11 3 × 10−5 0.01 6445 ∘C 0.24 16 1 × 10−5 0.007 6850 ∘C 0.45 17 9 × 10−6 0.004 6855 ∘C 1.3 19 7 × 10−6 0.001 69
Table 1. Parameter values used for the BMP model (5 wt.% CTAT solutions).

The �rst solution corresponds to the in�ection point of the �ow curve, coinciding with the null second
derivative of Eq. (3.1). As shown later, the plateau stress has two main properties: the areas above and below
the plateau stress are equal, and the potential associated to this stress has equal heights. In fact, Eq. (3.4)
gives, for v = 0,

V = õ�4/4 + uõ�2/2. (3.18)

Substituting Eq. (3.17) into Eq. (3.18) gives
V = −(u)2/4.

Thismeans that the potential has twominimawith equalmagnitude symmetrically separated from the origin
(see Figure 2), i.e., the potential, Eq. (3.18), describes two minima and one maximum corresponding to the
three roots (Eqs. (3.17)). The plot of u and v as a function of the stress reveals that the crossing at v = 0 gives
the value of the plateau stress, corresponding to a negative value for u. This value for u sets the symmetric
position and magnitude of the minima of the mechanical potential.

When the two minima have equal heights, they are located at the critical �uidities õc1 and õc2. Further-
more, the ratio of the critical shear rates to critical �uidities is precisely the plateau stress:

òp = ( ̇ãc/õc)1 = ( ̇ãc/õc)2.
The in�uence of the second normal stress di�erence on the position of the plateau stress can be analyzed,

and the results are exposed in Figure 3. In Figure 3a, data for a 5 wt.% CTAT solution at 40 ∘C (see Table 1) is
used. The variable u is plotted versus the second normal-stress coe�cient. It is observed that for values of the
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coe�cient larger than 0.01, the plateau stress is modi�ed by Ψ2, and no modi�cation is observed below this
value. This is clearly seen in Figure 3b, where the plateau stress value is plotted versus the second normal-
stress coe�cient.

In Figure 4, themechanical potential for this system is plotted against themodi�ed �uidity. For this value
of the second normal-stress coe�cient (0.0028 units), equalminima in the potential lead to the determination
of the position of the stress plateau. In Figure 5, the normal stresses are plotted versus the shear rate. At high
shear rates, the magnitude di�erence betweenN1 andN2 is around two decades. In view of the experimental
uncertainties to determine the value of the second normal-stress di�erence, this is a reasonable prediction.

Changes in the �ow curves arising from increasing the value of the second normal-stress coe�cient are
depicted in Figure 6. In Figure 6a, a small coe�cient gives the same results compared to Ψ2 = 0, but a sub-
stantial change in the �ow curve at high shear rates is observed whenΨ2 is increased. Similarly, the position
of the third bifurcation point at high shear rates, represented by the value of the shear rate, does not change
substantially for the second normal stress coe�cients smaller than 0.0028, as observed in Figure 6b. Notwith-
standing, the same plateau stress is predicted.

4 Behavior near the non-equilibrium critical point
As the non-equilibrium critical point (NECP) is approached, the span of the plateau gradually diminishes
and the two critical shear rates merge into a single one. This leads to the situation where the minima of the
potential in Figure 2 approach eachotherwhile theirmagnitudedecreases. In fact, as theNECP is approached,
u tends to zero. Thus, the conditions of the location of the NECP are u = 0 and v = 0. These conditions are
ful�lled for a pair of critical values of the plateau stress and shear-banding intensity parameter (òPc and úc).

Predictions for the 5 wt.% solution of CTAT in water at several temperatures are provided in Figure 7,
where the normalized stress is plotted against the normalized shear rate. The value of each model parameter
corresponding to a given temperature describing the experimental were taken fromRehage andHo�mann [2].

To interpolate and �nd the precise location of the NECP, each parameter was plotted as a function of the
temperature. At a given temperature, the plateau stress was found using the condition v = 0 (see Figure 8a)
and given the value of the plateau stress, u is then calculated for various temperatures. (In Figure 8a we can
identify the plateau stress at the critical temperature.)

This procedure givesway to the construction of a plot of u as a function of the temperature (see Figure 8b).
As theNECP is approached, the two roots ofu tend to zero at the critical temperature, as indicated in Figure 8b.
Similarly, the di�erence in critical shear rates Δ ̇ã = ̇ãc1 − ̇ãc2 also tends to zero near the NECP (see Figure 8c).

Figure 8d shows the variation of the shear-banding intensity parameter with temperature, allowing the
evaluation of the critical value of the parameter úc at the critical temperature. For higher temperatures, ú(T)
tends to zero, signaling in fact the transition from cubic to quadratic-monotonic behavior of the �ow curve.

The characteristic lines in Figure 7 are displayed according to the position at each temperature of the
spinodal, coexistence (binodal) and bifurcation lines. They are determined by the conditions set in Eqs. (3.11),
(3.12) and (3.17), respectively. In summary, we have the following loci of the characteristic lines with respect
to the reference õ� = 0:

õ� = ±√|u|/3 spinodal line, (4.1)

õ� = ±√|u| coexistence line, (4.2)

õ� = ±2√|u|/3 bifurcation line. (4.3)

An interesting observation is that the line corresponding to the third bifurcation prevails even beyond the
NECP into isotherms with higher temperatures than the critical isotherm. Within the low temperature range,
Figure 7 also shows that for temperatures lower than 30 ∘C the second and third bifurcation lines meet (not
shown).

Figure 9 shows the variation of R as a function of the applied stress for the 5 and 20wt.% CTAT solutions.
In Figure 9a, the locations of the bifurcation points correspond to the zeros of the functionR, where the value
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of the plateau stress is also indicated. The positive values of R correspond to a single homogeneous solution;
the negative values correspond to themultivalued region (where the plateau stress is located). The high stress
multivalued region corresponds to that when the three roots are real, but only one is positive. In Figures 9b
and 9c the plots are for the 5 wt.% solution, where it is clearly shown that the �rst and second bifurcation
points approach each other as the temperature increases. Finally, at the critical temperature (50.8 ∘C), the
�rst and second bifurcation points merge, leaving the third bifurcation point outside the region of the critical
point. The critical isotherm contains a multivalued region at high stresses, as shown in Figure 9d.

The variation of the parameters u and v as a function of the applied stress is shown in Figure 10. Near the
critical temperature (50 ∘C), the plateau set by the condition v = 0 corresponds to a negative value of u (see
Figure 10a) giving rise to a symmetric position of the potential. At the critical temperature (50.8 ∘C), the values
of u and v are zero as illustrated in Figure 10b. The three roots of Eqs. (3.13)–(3.15) have the value of zero at
the critical point according to Eq. (3.1).

A three-dimensional plot of the �uidity as a function of the parameters u and v is shown in Figure 11 for
several temperatures. This phase-space projection indicates that at u = v = 0 only the data corresponding
to T = 50.8 ∘C crosses the line drawn in the 3-D plot. Most points corresponding to the curves of the �uidity
at various temperatures lie on the multivalued region near the critical line. The plot gives di�erent symbols
to the speci�c regions of each curve. The projection of the di�erent curves on the u-v plane is displayed in
Figure 12 for increasing temperature. The position of the three bifurcation points again is described as the
temperature tends to the critical isotherm. The third bifurcation point remains away from the region near the
critical point. In fact, as the temperature increases, the �rst and second bifurcation points approach each
other and merge at the NECP, where u = v = 0. This is similar to the behavior shown in Figure 9.

5 The thermodynamic potential
According to the Extended Irreversible Thermodynamics of viscoelastic �uids, the extendedGibbs free energy
for constant temperature and pressure is given by [16]

dG =
vóòÿ
2

ò : ò. (5.1)

For simple-shear �ow, Eq. (5.1) becomes

dG =
vÿ
2G0 (2òxydòxy + òxxdòxx + òyydòyy + òzzdòzz).

From Eqs. (2.11)–(2.14), we obtain

dG =
v
G0 (ò2xy õ̇ã + 4ò2xyó2ò ̇ã

õ
+ 2òxyóòΨ2 ̇ã2

õ
+ 4òxyó3òΨ2 ̇ã4

õ3 + Ψ22 ̇ã3
õ
)d ̇ã. (5.2)

The �rst term is the contribution of the shear stress to the free energy, the second term is that of N1 and the
last three terms represent the contributions of N2. We then calculate the integral in Eq. (5.2) and �nd that
the thermodynamic potential in fact has two minima and one maximum, and when the minima have the
same height, the plateau stress can be obtained (Figure 2). A most interesting result is that the contribution
of the normal stresses modi�es the shape of the potential but does not change the position of the minima in
the thermodynamic potential. Hence, it does not change the position of the binodals or the extremes of the
plateau stress (see Figure 13).

Having set the location of the plateau stress, we then calculate the areas above and below the plateau. In
fact, by plotting the product of the stress and shear rate (i.e., the dissipation versus shear rate; see Figure 14)
the areas become equal, validating the equal-areas criterion derived from the mechanical potential.

It turns out that when comparison is made between the plateau stress calculated using Eq. (5.2) and
that calculated from the mechanical potential, a slightly di�erent value is obtained (128.8 versus 130.1Pa).
In Figure 15 we compare the thermodynamic and mechanical potentials for the three cases of the unstable
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and two meta-stable regions for a 20 wt.% CTAT solution. For stresses below and above the plateau stress,
the two minima have di�erent depths, while at the plateau stress both minima have equal depths. Notice in
Figure 15a that the critical shear rates of the thermodynamic and mechanical are slightly shifted, although
they have equal minima.

6 Discussion and concluding remarks
In Ref. [19], we have shown that an e�ective or extended free energy can be constructed from the BMPmodel
using Eq. (5.2). The present formulation is similar to that of the Ginzburg–Landau model for thermodynamic
�rst-order phase transitions, or particularly, it belongs to the class of Cahn–Hilliard dynamics. In a relevant
work [21], a mathematical proof of an analogy between themechanical instability and thermodynamic phase
transitions is established for the di�usive Johnson–Segalman model (DJS). Starting from a mechanical con-
stitutive model (DJS), the time-dependent Ginzburg–Landau equation was derived by reducing the degrees
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Figure 14. Dissipation above and below the plateau stress as a function of the shear rate for a 20 wt.% CTAT solution at 25 ∘C.
The maximum corresponds to the area above the plateau, and the minimum correspond to the area below the plateau. They
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Figure 16. First normal stress di�erence as a function of shear rate squared, for two temperatures below the critical tempera-
ture (a, b) and at the critical temperature (c). Notice that forN1 larger than its value at the bifurcation line (dashed line), three
states are possible, two of them with physical meaning. Similarly, for increasing shear rates,N1 is double-valued and becomes
single valued for shear rates larger than that at the unstable region.

of freedom of the equations in the vicinity of the critical point. It was shown that a thermodynamic potential
for the mechanical constitutive equation could be constructed.

In the present work, we have shown that the mechanical potential inherent in the BMPmodel also corre-
sponds to the thermodynamic potential derived from the model itself, again similar to the Ginzburg–Landau
model. We have illustrated that the constitutive equations of the model inherently possess a mechanical po-
tential, which can be identi�edwith the free energy (Eq. (5.2)). Furthermore, it has been shown that the contri-
bution of the normal stresses to the free energy and to the mechanical potential can be evaluated. For values
of the second normal-stress di�erence lower than 0.01N1, these contributions are not substantial, and the
same plateau stress and position of the binodals are obtained.

The construction of the mechanical potential has illustrated the form to build the characteristic curves
of the system. In fact, by knowing the parameters u and R, the spinodal, co-existence and bifurcation lines
can be de�ned. This information provides the necessary premises to determine the NECP for the system.

Finally, concerning the elastic instability observed along the high shear-rate branch of the �ow curve
[22, 23], it is tempting to relate the predicted bifurcation in the high-shear-rate branch to this instability. In
fact, the formulation of the BMPmodel for the �rst normal stress di�erence along the high-shear branch of the
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�ow curve, reveals a region of stability (region 5, one root) and a region of three roots (section 6) separated by
abifurcationpoint. Figure 16 shows the�rst normal stress di�erence plotted against the shear rate squared for
three temperatures, including the critical isotherm. At the bifurcation point, two of the three roots are equal,
and for largerN1, these roots correspond to three shear rates where two of them have physical meaning: the
largest root corresponds to the region where the elastic instability is observed, and the second root roughly
corresponds to that along the observed shear-banding region. For increasing shear rates, two values ofN1 are
predicted and an apparent jump from the high branch to the low branch is observed at a shear rate located
along the negative slope of the low branch, after which a single value ofN1 with increasing shear rates is pre-
dicted along the positive slope of the low branch. As shown in Ref. [22], the inclusion of normal stresses does
not change substantially the position of the plateau stress nor the minima in the thermodynamic potential.
The analysis linking the multi-valued region with the elastic instability is currently under attention in our
group.

Funding: The authors acknowledge the �nancial support from CONACYT (National Council for Science and
Technology).
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