
A Conjugate Thermo-Electric Model for a Composite
Medium
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Abstract

Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We
theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with
different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule
heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the
electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to
obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and
thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons
with experimental data obtained from rock characterization tests.
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Introduction

A composite medium can be defined as that made of at least two

phases of different chemical compositions [1]. The study of

composite media are of great interest to various areas such as

physics, chemistry and materials science, among others [1–3].

The response of composite media when transmitting-absorbing

waves of different intensities and frequencies has been analyzed by

many previous studies. In [4], a fiber reinforced epoxy matrix

composite is studied as electromagnetic wave absorbing material in

a wide frequency range. Carbon fiber reinforced concrete [5] and

metallic wire structures [6] have been characterized in terms of

their capacity to absorb electromagnetic fields. It is interesting to

note that some materials have the ability to shield electromagnetic

waves, examples of these are styrene-butadiene rubber composites

[7], wood-cement boards [8] and nanocomposites [9].

The prediction of the effective properties of a composite

medium is commonly based on the knowledge of both the volume

fraction distribution and the value of the property of each of its

phases [1]. A series of mathematical models have been developed

to define global properties of a composite medium. In [1,10] the

effective electrical conductivity is obtained from the individual

electrical properties, also, heat transfer studies at macroscopic and

microscopic levels have been conducted to determine the effective

thermal conductivity [11,12]. To our knowledge the interaction

between the heat diffusion and transmission of electric current

through composite media has not been studied fully to date.

The present theoretical model considers two non-deformable

phases which are modeled as continua, and it is based on a

previous model developed by Chávez and Méndez [13] who

analyzed the conjugate heat and electromagnetic transfer mech-

anism in a bimetallic conductor. Our system consists of a cylindral

external phase confining a second cylindrical internal phase,

henceforth external and internal phases, as depicted schematically

in Figure 1.

Maxwell’s equations are coupled with the heat conduction

equation considering a heat source term to account for Joule’s

effect. This coupling is performed for each phase; also, both phases

are coupled with each other through the boundary conditions at

the common interface.

Particularly, the proposed model is intended to explain the role

of some effects that occur during the electrical conduction

processes in composite media, which to our knowledge have not

been fully addressed:

1. The so-called skin effect observed in power transmission lines

[14].

2. The Joule heating effect [15].

3. The effect of frequency on the current density and temperature

distribution.

4. The effect of volumetric fraction (porosity) on the bulk

electrical resistivity.

Modelling

The physical model under study is a composite medium like that

shown in Figure 1. We consider an external phase with radius b
and an internal one with radius a. A sudden alternating electric

current through this biphasic conductor is established. Thus, a rise

of temperature results from the flow of electric current, caused by

Joule’s effect. We assumed that the resistivity in both phases varies
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linearly with temperature. For large values of the frequency

associated to the alternating current, a redistribution of the current

density is inevitable and the skin effect yields a tendency of the

electric current to flow over the outer surfaces of both phases. In

real conditions, the current density distribution depends on the

values of electrical resistivities of each phase and the heat

generated by Joule’s effect which is transferred by heat conduction.

Finally, we model the heat transferred to the environment by a

convection process.

Electromagnetic model
Using Maxwell’s equations, we can readily derive a wave

equation to analyze the electromagnetic propagation. Therefore,

the current density is governed by the following equation [16]:

+2l~JJ~m
L~JJ
Lt

zc
L2l~JJ

Lt2

 !
, ð1Þ

where, l is the electric resistivity, ~JJ is the current density, m is the

magnetic permeability, c is the electric permitivity and t is the

physical time.

We consider only variations of the current density in the radial

direction and the alternating current behaves like a sinusoidal

wave. Therefore, the current density can be written as
~JJ~Js(r)eivt. On the other hand, the electrical resistivity has a

linear variation with temperature [16] which can be written as

l~l? 1zw(T{T?)½ �, and introducing it into Eq. (1) we obtain

that,
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where v is the frequency of the electrical signal, r is the radial

coordinate, T is the temperature, T? is the environment

temperature, Js is the current density function depending only

on radial coordinate, w is the temperature coefficient for resistivity

and i~
ffiffiffiffiffiffiffiffi
{1
p

.

In most practical cases, the term cv2m is smaller than ivm=l
and can be neglected as a first approximation. In addition, we also

introduce the well-known conductor skin depth parameter, d,

defined by d~(2l=mv)1=2 [17]. Thus, Eq. (2) can be rewritten for

the internal phase as:
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and for the external phase,
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where the subscript ‘‘s’’ is used to denote the spatial dependence

and the subscripts ‘‘E’’ and ‘‘I ’’ are used to denote external and

internal phases, respectively. The ‘‘?’’ subscript refers to external

environmental conditions.

The above equations system must be solved considering the

following boundary conditions:

at r~0 :
dJs,I

dr
~0, ð5Þ

at r~a : l?,I½1zwI(TI{T?)�Js,I~

l?,E ½1zwE(TE{T?)�Js,E ,
ð6Þ
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Figure 1. Schematic representation of a composite medium.
doi:10.1371/journal.pone.0097895.g001
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at the surface r~b : Js,E~Jb: ð8Þ

The boundary condition at the centre (Eq. (5)) is the symmetry

condition, while the continuity of the electric field at the interface

is expressed by Eq. (6). Eq. (7) refers to the continuity of the

magnetic field, while Eq. (8) expresses a characteristic current

density. Jb is the current density at the outer surface of the external

phase and should be determined with the following restriction:

I~2p

ða

0

Js,I rdrz

ðb

a

Js,Erdr

� �
ð9Þ

Thermal model
The general heat diffusion equation can be expressed as [18]:

+:½k+T �z _qqgen~(rc)
LT

Lt
: ð10Þ

With this equation we can determine the gradients of

temperature in both phases by taking into account their thermal

properties and the amount of heat generated on each of them.

Equation (10) is simplified by considering only temperature

variations in the radial direction and exclusively heat generation

by Joule’s effect. Therefore, for the internal phase we have:

kI

r

L
Lr

r
LTI

Lr

� �
zl?,I ½1zwI (TI{T?)�jJs,I j2~(rc)I

LTI

Lt
, ð11Þ

and for the external phase:

kE

r

L
Lr

r
LTE

Lr

� �
zl?,E ½1zwE(TE{T?)�jJs,E j2~(rc)E

LTE

Lt
, ð12Þ

subjected to the following boundary conditions:

at r~0 :
LTI

Lr
~0, ð13Þ

at r~a : TI~TE , ð14Þ

{kI

LTI

Lr
~{kE

LTE

Lr
: ð15Þ

For the outer surface of the external phase, we have

r~b : {kE
LTE

Lr
~h(TE{T?): ð16Þ

Also an initial condition is necessary. Here we have considered

that the composite media is initially at ambient temperature:

t~0 : TI~TE~T?: ð17Þ

In the above equations, k is the thermal conductivity, r is the

density, c is the specific heat, h is the convective heat transfer

coefficient.

Dimensional Analysis

In order to reduce the number of physical parameters, we can

perform a dimensional analysis. We first identify the characteristic

convective time scale tc~(rc)I b=h. On the other hand, the

suitable spatial scale is chosen as the radius of the external phase,

r~b. Furthermore, the characteristic temperature drop DTc can

be obtained through an energy balance between the heat

generation term and the transient term, i.e.:

DTc~
l?,I J2

a a2

kEBi
, ð18Þ

where Ja is the current density at the surface of the internal phase

and Bi is the Biot number which measures the environmental

conditions and is defined as

Bi~
hb

kE

, ð19Þ

With the above set of characteristic geometrical and physical

scales, the electromagnetic and thermal models can be simplified

by introducing the following dimensionless variables and param-

eters:

t~
th

(rc)I b
, hI ,E~

TI ,E{T?

DTc

, j~
r

b

QI ,E~
Js,(I ,E)

Ja

, k~wI ,EDTc, W~
a

b

� �2

G,

eI~
dI

a
, eE~

dE

b{a
, where dI ,E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l?,(I ,E)

mI ,Ev

s
,

where W is the volumetric fraction defined as the ratio of the

volume of the internal phase and the total volume of the composite

media, while G is defined as the actual lenght of the inner path

divided by the straight-line distance between the ends of the inner

path, for porous media applications this parameter is known as

tortuosity and is always larger or equal than one.

Dimensionless electromagnetic model
The system (3)–(8) can be rewritten in dimensionless form by

using the above dimensionless parameters and variables.
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The internal phase dimensionless model is:
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and external phase dimensionless model is:
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The corresponding dimensionless boundary conditions are:

j~0 :
dQI

dj
~0, ð22Þ

j~

ffiffiffiffi
W

G

r
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j~1 : QE~
lI

lE

G: ð25Þ

Dimensionless thermal model
In the same manner, we can use the dimensionless variables and

parameters in order to obtain the following dimensionless thermal

model:

Therefore, the internal phase equation can be written as:

1
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j
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and external phase as:
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The associated boundary and initial conditions are given by:

j~0 :
dhI

dj
~0, ð28Þ

j~

ffiffiffiffi
W

G

r
:

LhI

Lj
~

kE

kI

LhE
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, ð29Þ

hI~hE , ð30Þ

j~1 :
LhE

Lj
~{BihE , ð31Þ

t~0 : hI~hE~0: ð32Þ

The system of equations to be solved is formed by Eqs. (20) and

(21) for the current density distribution coupled through the

boundary conditions (23) and (24); and Eqs. (26) and (27) for the

thermal behavior also coupled through their boundary conditions

(29) and (30). It should be noticed that there is a coupling between

the electromagnetic and thermal model due to the dependence of

resistivity with temperature which is expressed by k parameter,

henceforth the coupling parameter.

Solution Methodology

The above dimensionless electromagnetic and heat conduction

equations, together with their boundary and initial conditions,

represented here by the system of Eqs. (20)–(32) was solved by

using a conventional iterative finite-differences method [19].

The electromagnetic equations are given by the system of Eqs.

(20)–(25). These equations are complex because the right-hand

sides of Eqs. (20) and (21) include, as a factor, the imaginary

number i. Therefore, we separate for each region the electrical

current density Q, in a real part, QR, and an imaginary part QI ,

through the relationship Q~QRziQI . The resulting equations are

discretized together with the boundary conditions (22)–(25)

considering central differences. In this form, we can construct a

matrix system which can be solved with a simple Gauss

elimination method.

The corresponding equations for the thermal model given by

the set of Eqs. (26) and (27) together with the boundary and initial

conditions (28)–(32), require a different treatment. In this case, the

above equations represent a non-stationary problem. Therefore,

the numerical procedure is based on the well-known Crank-

Nicholson finite difference scheme. In this manner, we obtain a

tridiagonal matrix which is solved by the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm.

Finally, we introduce the following iterative scheme: firstly, a

uniform profile for the temperature is considered, then we solve for

the electrical current density. In this manner, we can obtain the

modulus or absolute value of this function. Introducing the above

result into Eqs. (26) and (27), we obtain the first nonuniform

temperature profile. Again, we can obtain a new current density

and the foregoing procedure is repeated until a convergence

criterion is fulfilled. This criterion is based on the comparison of

the temperature and current density profiles.

Validation

It is important to note that if the coupling parameter is equal to

zero (k~0), the equations associated with the electromagnetic

behavior, Eqs. (20) and (21), are no longer affected by the

A Model for the Resistivity of Porous Media
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temperature; thus, the system can be solved analytically. The

solutions for the current density distributions, Ql(j) and Qr(j)
(liquid and rock phases, respectively) are:

Ql(j)~
G

ffiffiffiffi
W
p

elmlLJ0
gj
W

Uz
ffiffiffiffi
W
p

elmlVJ0(g)
, ð33Þ

and

Qr(j)~Gll

JY0( {f jffiffiffi
W
p )zHJ0( f jffiffiffi

W
p )

lr(Uz
ffiffiffiffi
W
p

elmlVJ0(g))

 !
, ð34Þ

where J0, J1, Y0, Y1 denote the Bessel functions of first and second

kind and of zeroth and first order, respectively. The variables

f ,L,U,V,J and H are defined as:

f ~
(1{i)

ffiffiffiffi
W
p

er{
ffiffiffiffi
W
p

er
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L~J1(f )Y0({f )zJ0(f )Y1({f ), ð36Þ

U~ermr(
ffiffiffiffi
W
p

{1)(J0(f )J1(g)Y0({h){J0(h)J1(g)Y0({f )), ð37Þ

V~J1(f )Y0({h)zJ0(h)Y1({f ), ð38Þ

J~(
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This analytical solution has great relevance since it serves as a

validation test for our numerical results. As shown in Fig. 2, the

numerical simulations (open symbols) agree very well with the

analytical solutions (solid lines).

Results and Discussion

In the system of equations (26)–(32) we have two coupling

parameters kI and kE . They, however, depend on each other

because they are affected by the same DTc, thus

kE~kI
wE

wI

, ð41Þ

therefore it is necessary to know only one parameter. We choose

the level of coupling between thermal and electrical model as

k~kI .

In the same manner the skin parameter for the internal phase,

eI , is related to that of the external one, because both phases

transmit a wave at the same frequency. Thus we have:

eE~eI
(W=G)

1
2

1{(W=G)
1
2

ffiffiffiffiffiffiffiffiffiffi
lEmI

lI mE

s
: ð42Þ

From now on, eI will be simply called e, the depth of

penetration of the electrical signal. Therefore, the main param-

eters in this problem are: lE=lI , kE=kI , (rc)E=(rc)I , mE=mI , e, Bi,

k and W.

To study the transmission of the electrical signal in a composite

medium, we perform a parametric analysis based on the following

parameters: e, which is a function of the frequency, the ratio of

resistivities, lE=lI , and the ratio of thermal conductivities, kE=kI .

For simplicity, all these calculations assuming k~1, W~0:5,

(rc)E=(rc)I~1, mE=mI~1 and G~1; also, we consider Bi~1,

which assures that the heat is efficiently transferred by convection

from the external phase to the environment. To assure steady state

solutions we performed all calculations using t~20.

Effect of e
To analyze the effect of the skin parameter on the current

density and temperature, numerical results were obtained from

three different values of e (0.1, 0.5 and 10) and are presented in

Fig. 3. The series of three temperature profiles shown in Fig. 3a

represents the steady-state solution for each corresponding value of

e. For lower values of the skin parameter (which correspond to

electric signals with high frequency), the temperature profiles

become more uniform in both phases; on the contrary, when

grows a slightly parabolic temperature profile is exhibited in the

internal phase and even a steeper parabolic profile is observed for

the external one. This parabolic behavior comes from the Joule

effect (source therms in equations (26–27)). Figure 3b shows the

current density distribution as a function of the dimensionless

radial coordinate for the same conditions shown in Figure 3a.

Clearly, for small values of e, the skin effect becomes noticeable in

both phases. In particular the current density in the internal phase

is higher in regions close to the interface (e?a=b). On the opposite

side, high values of e show nearly constant current distribution in

both phases, hence the electric power tends to be transmitted as

direct current.

Figure 2. Dimensionless current density distribution Q as a
function of the radial coordinate j for both conducting phases
and three different values of the skin parameter e. Solid lines are
computed from the analytical solution, the open symbols represent
numerical simulation results.
doi:10.1371/journal.pone.0097895.g002
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Effect of lE=lI

Figure 4a shows the dimensionless temperature and Figure 4b

current density distributions for three different values of the ratio

of resistivities lE=lI (2, 3 and 10). For smaller values of the lE=lI

ratio, it is expected that most of the current will flow through the

internal phase which also increases the temperature due to the

heat generated by Joule effect. In constrast, when the ratio lE=lI

tends to increase, the current density profiles in the external phase

are redistributed at the outer surface showing a more pronounced

skin effect and smaller current densities gradients. The shape of

the temperature profiles does not appear to change substantially.

The temperature profile in the external phase becomes slightly

parabolic in shape and its negative slope is less pronounced

indicating smaller temperature gradients.

Effect of kE=kI

Figure 5a shows the dimensionless temperature distribution for

three different values of the ratio of thermal conductivities kE=kI

(0.1, 1.0 and 10). High kE=kI ratios imply an excellent heat

transfer by diffusion in the external phase compared with the

internal one, consequently the heat generated at the internal phase

faces more resistance to be transferred to the external one, which

leads to a higher temperature gradient, while the external phase

transfers the energy to the environment optimally. For the case

when kE=kI~1 both media behave thermally as a single phase.

On the other hand, when the ratio kE=kI is small the internal

phase transfer the heat generated in a better way and as a result we

obtain a flatter profile than in the external phase. Figure 5b shows

the current density distribution under the influence of thermal

conductivities (above mentioned). The electromagnetic equations

(20) and (21) are affected by temperature gradients, as a result, the

higher temperature gradient the more affected the current density

profile; for the external phase where the temperature gradient is

basically the same, the current density is almost not affected.

Figure 3. Spatial profiles of temperature and current density. (a) Dimensionless temperature distribution, and (b) dimensionless current
density distribution as a function of the dimensionless radial coordinate for three different values of the skin parameter e. For lE=lI ~10 and
kE=kI~0:1.
doi:10.1371/journal.pone.0097895.g003
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Experimental Validation

The measurement of the electrical conductivity of porous media

has applications in many areas of science and technology such as

geothermal reservoir engineering and soil science and is particu-

larly important in the oil and gas industry to estimate the amount

of petroleum in reservoirs. The main mechanism for electrical

transport in porous rocks and soils is electrical conduction through

the water filling the pore space. Furthermore, the pore-scale

geometrical features of rocks and soils have a significant effect on

their bulk electrical conductivity [20]. Conversely, the electrical

conductivity can be used to infer the characteristics of pore space

in rocks and soils [21].

The previous developed model can be used to study electro-

magnetic transmission through rocks; which are a type of natural

composite medium with two interpenetrating, percolating phases:

the pore and solid networks [2]. It is worthy of note that rocks are

also clasified as porous media [22].

For the present application we suppose that the solid phase

consists of a rock matrix forming a solid cylinder (external phase).

The fluid phase, typically a brine solution, represents a static

incompressible fluid filling a pore (internal phase) which is

embedded into the solid phase. From now in advance, all the

variables with subindex E will be rename with the subindex r
which stands for rock domain while for I we will use l, liquid

domain.

The relationship that links the electrical resistivity of a rock to its

porosity was empirically determined by Archie [23]. He proposed

that the formation factor depends on porosity obeying an inverse

power law:

F~W{m, ð43Þ

where W is the bulk porosity and F is the formation factor, defined

as the resistivity of a porous medium completely saturated with a

conductive liquid divided by the liquid resistivity. The parameter

Figure 4. Spatial profiles of temperature and current density. (a) Dimensionless temperature distribution, and (b) dimensionless current
density distribution as a function of the dimensionless radial coordinate for three different values of the ratio of resistivities lE=lI . For e~0:5 and
kE=kI~0:1.
doi:10.1371/journal.pone.0097895.g004
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m is estimated by a fitting regression analysis of experimental data

and is often called the cementation exponent; it implicitly provides

information about the pore structure.

Since its publication in 1942, Archie’s law has been widely used

in the petroleum industry to characterize reservoirs. This fact is

easily explained by two aspects. First of all, the formula is simple

and compact, which are undoubtedly attractive features. Secondly,

this law describes to some extent the experimental trends of data

from many different types of rock samples [24,25]. Nevertheless, it

should be noted that the relation between F and W data acquired

from reservoirs commonly show considerable scattering [24–26],

which strongly suggests a non-trivial relationship between these

variables. Therefore, Archie’s law is simply a crude approxima-

tion.

In view of the previous definition for F and from the set of Eqs.

(20)–(25), the following expression is constructed:

F~

G
W

Ð ffiffiffiffiffiffiffi
W=G
p
0 Qljdjz G

G{W
lr
ll

Ð 1 ffiffiffiffiffiffiffi
W=G
p Qrjdj

Ð ffiffiffiffiffiffiffi
W=G
p
0 Qljdjz

Ð 1 ffiffiffiffiffiffiffi
W=G
p Qrjdj

: ð44Þ

In the previous equation W is known as porosity, which

previously was defined as volumetric fraction and now the

tortuosity, G, is calculated according to the expression reported

by Maciej [27]

G~1{b ln(W), ð45Þ

where b is a parameter which relates the porosity with tortuosity.

Typically in a porous medium applications F is shown as

function of W in log-log plots, showing a negative slope behavior

(power-law dependence) [23]. It is worth pointing out that for the

Figure 5. Spatial profiles of temperature and current density. (a) Dimensionless temperature distribution, and (b) dimensionless current
density distribution as a function of the dimensionless radial coordinate for three different values of the ratio of thermal conductivity kE=kI . For
lE=lI ~10 and e~0:5.
doi:10.1371/journal.pone.0097895.g005
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present model we fix the values for the thermal and electrical

properties of rock and brine, and also an initial value for W (which

is increased at a constant DW); now we calculate F from equation

(44) for each value of W.

Figures 6 and 7 show the formation factor as a function of

porosity. The prediction of our model is compared directly with

experimental data [28] and [29]. The numerical model repre-

sented by the dashed dotted line is solved with typical values of

electrical resistivity for both phases [30]. The bulk magnetic

permeability of the rock phase is of the same order than that of the

liquid [31]. Moreover, the skin parameter was taken e~1|104,

which involves frequencies in the range from 1 to 1000 Hz and the

penetration of the electromagnetic wave in the whole domain for

which experiments are usually conducted [32]. A remarkable

agreement is observed between the numerical results and the

experimental data. The model accurately reproduces the typical

decreasing dependence of F with W for the experimental data;

clearly, both the experimental data and our model for the

formation factor do not follow a power-law dependence on

porosity as proposed by Archie [23].

Conclusions

A nonlinear theoretical model that describes the combined

effect of heat transfer and transmission of an electromagnetic wave

through a composite medium was developed. The model reveals

the influence of the properties of the composite medium and the

electrical signal on the current density and temperature as a

function of the radial coordinate. Basically three parameters were

varied: the skin depth for which the well-known skin effect is

clearly observed for electric signals of high frequency; the ratio of

electrical resistivities, showing different current distribution and

their effect on the temperature through Joule’s effect and finally

the ratio of thermal conductivities which shows that the current

density is clearly affected by temperature gradients.

Additionally, our model allows the calculation of the formation

factor without the use of empirical relations, such as Archie’s law.

Now, the formation factor can be calculated directly if the physical

properties of the porous media and the electric signal are known.

A curve of the formation factor as a function of the porosity shows

a similar trend than that found in experimental data for a rock

porous medium, clearly the behavior is non-linear and is well

predicted by our model in strong contrast with the linear log-log

Archie’s law. To our knowledge, such a theoretical model does not

exist in the specialized literature.
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