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a b s t r a c t

This hybrid finite element/volume study is concerned with the modelling of worm-like micellar systems,
employing a new micellar thixotropic constitutive model with viscoelasticity within network-structure
construction–destruction kinetics. The work focuses on steady-state solutions for axisymmetric,
rounded-corner, 4:1:4 contraction–expansion flows. This has importance in industrial and healthcare
applications such as in enhanced oil-reservoir recovery. Material functions for the micellar models
(time-dependent, thixotropic) have been fitted to match two different extensional configurations of the
exponential Phan-Thien/Tanner (PTT) model (rubber network-based, non-thixotropic). This covers mild
and strong-hardening response, and re solvent fraction, highly-polymeric (b = 1/9) and solvent-domi-
nated (b = 0.9) fluids. Solution results are described through normalised Excess Pressure Drop (EPD), vor-
tex intensity and stream function, stress (N1 and N2), and f-functional data. EPD predictions with the new
micellar models prove to be consistent (at low rates, some rising) with Newtonian results, contrary to the
base-reference modified Bautista–Manero (MBM) results. Markedly different vortex intensity trends are
found in comparing micellar and EPTT solutions, which correspond with N2 � N1 and f data. In order to
address the highly-elastic regime for thixotropic materials, a convoluted approach between EPPT and
micellar models has been proposed. Here, numerically stable solutions are reported for impressively large
We up to 300 and new vortex structures are revealed.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

This work is devoted to solve numerically the benchmark 4:1:4
rounded contraction/expansion flow of worm-like micellar systems
using the Bautista–Manero constitutive approach [1–3]. Herein, a
new approach is proposed that intimately introduces the viscoelas-
ticity into the structure construction/destruction mechanism of
worm-like micellar solutions. These non-Newtonian viscoelastic
liquids present interactions of viscosity, elasticity, and breakdown
and formation of internal structure. This spurns highly complex
rheological phenomena, and manifests features associated with
thixotropy, pseudo plasticity and shear-banding [1,5]. The versatil-
ity and complex rheological behaviour of viscoelastic wormlike
micellar solutions render them an ideal candidate for varied appli-
cations. In viscoelastic surfactant form, they have been termed
‘Smart Fluids’, due to their ability to self-select their rheological
properties to appropriately fit to change in alternative deformation
environments. Processing and modern-day applications of such
material systems range amongst additives in house-hold products
(hard surface cleaners and drain-opener liquid plumber), paints,
cosmetics, health care products (nutrient-carriers in shampoo and
body wash), and under specific application fluid design such as with
drag reducing agents in heating and cooling systems, and drilling
fluids in enhanced oil-reservoir recovery (EOR) [6].

Significantly in modern EOR processes, which consist of hydrau-
lic stimulation of oil wells to increase productivity, these fluid sys-
tems have become highly important given their adaptability in
rheological characteristics [6]. Fracturing fluids are required in this
operation, with the capability of transforming their rheological
properties according to the prevailing flow conditions encoun-
tered. This involves transitions from low viscosity Newtonian
fluids, when pumped into the oil-wells to fracture the rock-pores;
passing through to gel-like form, with highly viscoelastic charac-
teristics, capable of transporting proppants to keep fractures open
and enhance rock-pores permeability in the oil-well; to finally,
reverting into low viscosity fluids which degrade easily and
unblock the fractures as the prerequisite pressure levels are rea-
lised. Wormlike micellar solution systems fulfil these require-
ments, being constituted of mixtures of surfactants – typically
cetyltrimethylamonium bromide (CTAB) or cetylpyridinium chlo-
ride (CPyCl) [7] – and salts – sodium salicylate (NaSal) – in water.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2013.11.001&domain=pdf
http://dx.doi.org/10.1016/j.jnnfm.2013.11.001
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These mixtures arrange themselves into physically bonded units
and change their network-structure characteristics with tempera-
ture, surfactant and salt concentration [8]; but also with the forces
and deformations they experience. The wormlike micelles are
elongated surfactant groups that, under suitable conditions, can
entangle and impart viscoelasticity to the fluid. Their behaviour
is highly complex, although similar to that observed for polymer
solutions and melts; hence their naming ‘‘living polymers’’ [8]. Un-
like the covalently bonded polymer backbone, these micelles lie in
thermodynamic equilibrium with the solvent and continuously
break and reform under Brownian fluctuations. Therefore, addi-
tionally to reptation, wormlike micelles provide a mechanism for
stress relief and entanglement elimination, creating and destroying
temporary branch points, known as ‘‘ghost-like crossing’’ [8].

Furthermore, wormlike micelles are particularly viable for
industrial application, since (a) fewer additives than for polymer-
based fracturing fluids are required in their production, which ren-
der them a cheaper option [6]; (b) in EOR, chemical-breakers are
unnecessary, since after contact with crude oil, wormlike micelles
systems rearrange into small spherical micelles (c.a. 10–50 nm).
These are simpler and smaller physical arrangements, which final-
ly form a low viscosity microemulsion. Additionally, (c) wormlike
micelles are more environmentally friendly and more easily biode-
gradable than polymer-based fracturing fluids [6].

Many approaches have been pursued to model wormlike mi-
celles flow behaviour. Bautista et al. [1,2,4] proposed a rheological
modelling approach for wormlike micelle solutions, the Bautista–
Manero–Puig (BMP) model. This equation of state consists of the
upper-convected Maxwell constitutive equation to describe stress
evolution, coupled to a kinetic equation that takes into account
structural changes induced by the flow, based on the rate of energy
dissipation. This theory has demonstrated accuracy in the descrip-
tion of shear-banding [4,9,10], pulsating flows of wormlike micelle
solutions [11], characterisation of associative polymers [12], and
for evaluating the negative wake flow past a sphere [13] and drag
correction [14]. Some years later, Boek et al. [3] corrected the BMP
model, given its unbounded extensional viscosity in simple uniax-
ial extensional flow – thus producing the Modified Bautista–Man-
ero (MBM) model. This has been utilised to model the transient
flow of wormlike micellar solutions in planar 4:1 contraction flow
setting [15], being a forerunner in wormlike micellar simulations
for complex flows, along with others based on the principles of
mesoscopic Brownian dynamics [16]. The VCM model, based on a
discrete version of the ‘living polymer theory’ of Cates, has been
tested in simple flows, where rheological homogeneity prevails
[17,18], and under conditions of shear-banding [19]. Another ap-
proach, consists of using the Johnson–Segalman model, modified
with a diffusion term for the extra/polymeric stress (so-called d-
JS model [16,20–22]). This model has been tested against experi-
mental data in simple shear flows and shear-banding conditions.
The Giesekus model has also been used in the representation of
wormlike micelles under simple shear scenarios, whilst using the
non-linear anisotropy coupling parameter to introduce shear-
banding conditions [23–28]. For this purpose, the appropriate Gies-
ekus model parameters, for both banding and non-banding condi-
tions, have been determined through Large Amplitude Oscillatory
Shear (LAOS) [24] experiments in a coaxial-cylinder Couette geom-
etry [23]. In addition, whilst using parallel plate geometries, and
adjusting temperature, salt concentration and shear rate, shear-
banding and non-banding conditions have been studied by
Rheo-small-angle 1ight scattering (Rheo-SALS) [25], and flow-
small angle neutron scattering (flow-SANS) [26]. In this respect,
findings reveal shear-induced separation into an isotropic low-
shear band and another flow-aligned nematic high-shear band.

The surfactant:salt concentration of these fluid-systems dictates
their nature and rheological response, providing a classification into
three (or more) basic types. As such, the so-called ‘salt curve’ pro-
vides the dependency of the zero-shear viscosity gp0 on the surfac-
tant:salt concentration. Studies on the composition of wormlike
micellar solutions and their rheological implications [29–31], pro-
vide evidence that these solutions (i) have gp0 close to the Newto-
nian solvent at low salt concentration; this range is characterised
by spherical micelles. (ii) When the salt concentration is increased
to moderate/semi-dilute levels, the solution demonstrates a dramatic
increase in its zero-shear viscosity, reaching gp0 peaks as large as six
times the solvent zero-shear viscosity [30,31]; this range manifests
the formation-growth of wormlike structures and beginnings of their
entanglement, causing shear-thinning and normal stresses in shear
[31]. (iii) Further increase of the salt concentration generates longer
wormlike micelles, which form an entangled network [31]. This is re-
flected in a steep decline in gp0 given by the proliferation of stress-
relaxation points at the entanglement junctions [30]. The work
presented in this manuscript is based around the Bautista–Manero
approach [1–3,4], and aims to represent wormlike micellar systems
in the second–third type-stage, with significant pseudoplastic and
elastic characteristics. This theory originated to represent semi-
dilute concentrations of micellar solutions in water, composed of
erucyl bis-(hydroxyehtyl)methylammonium chloride (EHAC) as
surfactant, and sodium salicylate (NaSal) as counterion [32]. In
addition, such theory has proven effective more broadly to describe
other micellar systems, such as cetylpyridinium chloride–sodium
salicylate (CPCl) as surfactant, and brine as counterion; and cetyltri-
methylammonium tosylate (CTAT), dodecyltrimethylammonium
bromide (DTAB), Pluronics P103 as surfactants, with NaSal as coun-
terion [33].

The contraction–expansion flow has become a standard bench-
mark problem in experimental and computational rheology [34].
Two of the most outstanding aspects to this configuration are the
kinematics of flow, and the pressure drop measurement and its
numerical estimation. The former is given by vortex activity in the
re-entrant corner and the lip of the contraction. Here, diverse man-
ifestations of the nature of the fluid can be outlined related in vortex
size and evolution (extensional viscosity) and structure formation
and numerical tractability (sharp/rounded corners) [15,35–37]. The
pressure drop measurement, which reflects the energy expended
in the flow, is often studied through an EPD measure [38,39], and of-
fers a significant challenge to computational rheology [34,38].

Taking the experience gained in our prior work on modelling of
wormlike micellar solutions [15], we subsequently deploy a new
micellar approach, driven by phenomenological observation (EPD
attainment) in the axisymmetric rounded-corner 4:1:4 contrac-
tion/expansion domain, for which there is a dearth of comparable
work available – micellar fluid solutions in complex flows. This
study also sheds light on some other key related topics – that is lim-
iting We (Welim) and vortex dynamics – all absent in simple visco-
metric flows [15,16]. We proceed to demonstrate that this new
constitutive approach provides: (i) consistent EPD values at low
We regimes – vital for oil-well rock-bed permeability estimation
in EOR; (ii) larger Welim in numerical solution reached through the
explicit presence of the elasticity (We) in the structure equation;
and (iii) attainment of rising EPD trends at high elasticity levels.

2. Governing equations, constitutive modelling and fluids
considered

Under transient, incompressible and isothermal flow condi-
tions, the relevant mass conservation and momentum equations
for viscoelastic flow, may be expressed in non-dimensional terms
(see definitions below; where here for conciseness the ⁄ notation
on dimensionless variables is omitted) as:

r � u ¼ 0 ð1Þ



1 The corresponding theory may be developed for constructive contributions also,
to be addressed subsequently.
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Re
@u
@t
¼ r � T � Reu � ru�rp ð2Þ

where t represents time; the gradient and divergence operators ap-
ply over the spatial domain; field variables u, p and T represent fluid
velocity, hydrodynamic pressure and stress contributions, respec-
tively; stress is split into solvent (viscous-inelastic) and polymeric
contributions T = 2gsD + sp; D = (ru +ru�)/2 is the rate of deforma-
tion tensor, where the superscript � denotes tensor transpose. The
dimensionless variables utilised are defined as follows:

u� ¼ u
U

t� ¼ U
L

t s�p ¼
sp

ðgp0 þ gsÞ U
L

p� ¼ p
ðgp0 þ gsÞ U

L

D� ¼ L
U

D

The non-dimensional group of the Reynolds number may be de-
fined as Re = qUL/(gp0 + gs), with characteristic scales of U on fluid
velocity (based on flow rate) and L on spatial dimension (based on
minimum contraction dimension). Material density is q and refer-
ence viscosity is taken as the zero shear-rate viscosity, so that

gp0
gp0þgs

þ gs
gp0þgs

¼ 1:0. Here, gp0 is the zero rate polymeric viscosity

and gs is the solvent viscosity, from which the solvent fraction
can be defined as b = gs/(gp0 + gs).

A general statement of the differential constitutive model may
be expressed in dimensionless form as [40]:

We
@sp

@t
¼ 2ð1� bÞD� fsp �Weðu � rsp �ruT � sp � sp � ruÞ ð3Þ

in which a second dimensionless group number is introduced gov-
erning elasticity, via a Weissenberg number ðWe ¼ k1U=LÞ, which is
a function of the characteristic material relaxation time, k1, and the
characteristic velocity and length scales. By specifying the functional
f, the network nature and theoretical properties of the fluid consid-
ered may be imposed into this general framework. Correspondingly,
the exponential Phan-Thien Tanner (EPTT) model [41,42] has the fol-
lowing non-linear exponential form in the functional f:

f ¼ exp
e

1� b
Wetrsp

� �
: ð4Þ

The constant, non-dimensional parameter e largely dictates
severity in strain-hardening, with smaller values limiting to zero,
offering the greater extremes in extensional viscosity (larger Trou-
ton ratios).

In the field of wormlike micellar systems, in the first instance,
we adopt the modified Bautista–Manero (MBM) model [3]. This ap-
proach is based on the Bautista–Manero–Puig [1,2], in which a
non-linear differential structure equation for the fluidity
ð/p ¼ g�1

p Þ, ultimately providing the polymeric viscosity gp, dic-
tates the construction/destruction dynamics of the structure of
the fluid. Typically, this may begin from a fully structured state
to be converted to a completely unstructured one, using the energy
dissipated by the polymer under flow. This MBM model consists of
a stress-split form, originally specified in dimensional form (see
Eqs. (5)–(7)), in which the solvent contribution is of Newtonian-
type and the polymeric contribution is given by the following
expression:

sp þ
gp

G0
sp
r
¼ 2gpD: ð5Þ

The structure equation is then:

@g�1
p

@t
¼ 1

ks

1
gp0
� 1

gp

 !
þ k

g1

� �
sp : D: ð6Þ

Defining f = (gp0/gp) using the zero-rate viscosity gp0 as a scaling
factor, Eq. (6) can be recast into that to determine f, as follows:

@f
@t
¼ 1

ks
ð1� f Þ þ k

g1

� �
gp0sp : D: ð7Þ
Applying non-dimensionalisation (once more, omitting the
⁄ notation on dimensionless variables), as above, Eq. (5) takes the
form of Eq. (3), and Eq. (7) now becomes:

@f
@t
¼ 1

x
ð1� f Þ þ ngp0

sp : D: ð8Þ

The dimensionless parameters of this micellar model, which ac-
count for structural construction ðx ¼ ksU=LÞ and destruction
ðngp0

¼ ðk=g1Þgp0ðgp0 þ gsÞU=LÞ, appear in the corresponding terms
for these mechanisms.

In this study, we propose a key modification to Eq. (7) driven by
phenomenological observation, which results in the novel inclusion
of viscoelasticity within the destruction mechanics of the fluid
structure, via gp0 ¼ G0k1. In the first instance, we develop the
destruction term to accommodate only the energy in destroying
the fluid structure from the polymeric dissipation (NM_sp model):

@f
@t
¼ 1

x
ð1� f Þ þ nG0

Wesp : D ð9Þ

where nG0
¼ ðk=g1ÞG0ðgp0 þ gsÞ is the new and replaced destruction

dimensionless parameter.1

A second factor to consider is that there are contributions from
both polymeric and solvent energy dissipation to the destruction of
the fluid structure (NM_T model):

@f
@t
¼ 1

x
ð1� f Þ þ nG0

WeT : D: ð10Þ

Finally, a hybrid modelling approach is pursued, by convoluting
f-functionals of the EPTT and micellar models. Herein, a stronger,
steady state f–We explicit relation is designed to attain high elas-
ticity predictions for micellar fluids. For the steady-state case of
the convolution of MBM and EPTT f-functionals (EPTT/MBM model)
(see Table 1, for the other two variants):

f ¼ ð1þxngp0
sp : DÞexp

e
1� b

Wetrsp

� �
: ð11Þ

Material functions for the first four models in Table 1, along with
the Oldroyd-B (f = 1) reference, are plotted in Fig. 1. Solvent fraction
variants considered in this work are b = {1/9,0.9} for highly-poly-
meric and solvent-dominated fluids, respectively. The EPTT model
parameters are chosen to take values at benchmark settings of
e = {0.25,0.02}, characterising polymer melts and solutions [41],
which are identified as applicable for moderate (MH, e = 0.25) and
strong hardening (SH, e = 0.02) scenarios, respectively. The result-
ing micellar extensional viscosities are matched with those of cor-
responding EPTT forms at each {e,b} combination. The micellar
combinations adopt the structure-construction parameter values
of x = 4.0 for MH, and x = 0.28 for SH fluids. The structure-destruc-
tion parameter assumes different values for each micellar model
depending on the solvent fraction, hardening characteristics and
their matching to EPTT. The corresponding sets of parameters are
listed in Table 1 for b = {1/9,0.9}. Here, the distinction between
parametric specification of NM_sp and NM_T models arises due to
inclusion of the solvent contribution within the energy dissipation
term, which introduces the further influence of the b-factor.

The material functions generated by the convoluted models are
plotted in Fig. 2 for b = 1/9 and MH response (Table 1). Here, in
Fig. 2a, the extensional and shear viscosity curves lie closer to
those for EPTT. After the peak in extensional viscosity, at
We � 0.7, the convoluted data provide larger extensional viscosity
values than under MBM prediction, for which introduction of
strain-softening is more abrupt. The EPTT/NM_T curve shows a
steeper slope in the 20 < We < 400 range; yet, there is little



Table 1
Parameter sets; highly-polymeric (b = 1/9), solvent-dominated fluids (b = 0.9).

Model – f-functional b = 1/9 b = 0.9

MH SH MH SH

EPTT

f ¼ exp e
1�b Wetrsp

� �
e = 0.25 e = 0.02 e = 0.25 e = 0.02

MBM x = 4.0 x = 0.28 x = 4.0 x = 0.28
f ¼ 1þxngp0

sp : D ngp0 = 0.1125 ngp0 = 0.1125 ngp0 = 1.0 ngp0 = 1.0

NM_sp x = 4.0 x = 0.28 x = 4.0 x = 0.28
f ¼ 1þxnG0

Wesp : D nG0 = 0.1125 nG0 = 0.1125 nG0 = 1.0 nG0 = 1.0
NM_T x = 4.0 x = 0.28 x = 4.0 x = 0.28
f ¼ 1þxnG0

WeT : D nG0 = 0.1030 nG0 = 0.1100 nG0 = 0.1500 nG0 = 0.5800
EPTT/MBM e = 0.25 – e = 0.25 –

f ¼ ð1þxngp0
sp : DÞexp e

1�b Wetrsp

� �
x = 4.0 x = 4.0
ngp0 = 0.0010 ngp0 = 0.010

EPTT/NM_sp e = 0.25 – e = 0.25 –

f ¼ ð1þxnG0
Wesp : DÞexp e

1�b Wetrsp

� �
x = 4.0 x = 4.0
nG0 = 0.0010 nG0 = 0.010

EPTT/NM_T e = 0.25 – e = 0.25 –

f ¼ ð1þxnG0
WeT : DÞexp e

1�b Wetrsp

� �
x = 4.0 x = 4.0
nG0 = 0.0010 nG0 = 0.010

Fig. 1. Material functions versus We: top-shear and extensional viscosity, bottom-shear N1; EPTT, MBM, NM_sp and NM_T models; left-MH (EPTT e = 0.25; Micellar x = 4.0),
right-SH (EPTT e = 0.02; Micellar x = 0.28) response; highly-polymeric (b = 1/9) fluids.
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difference observed outside this range with respect to the other
convoluted cases. The MBM shear viscosity curve provides smaller
values than the other curves for We > 3 onwards. On N1 in shear
(Fig. 2b), the convoluted data follow the nature of their non-convo-
luted pairs: the EPTT/MBM and EPTT/NM_sp curves inherit the
MBM-plateau, with larger magnitude. The EPTT/NM_T curve peaks
at We � 40 and declines thereafter with increasing We, as under
NM_T prediction, which peaks at We � 5 (Fig. 1).
3. Problem specification and numerical scheme

3.1. The 4:1:4 rounded corner contraction/expansion flow

The schematic representation of the 4:1:4 axisymmetric,
rounded-corner contraction/expansion flow problem with its cor-
responding zoomed mesh are shown in Fig. 3a and b, respectively.
Mesh data are tabulated in Table 2. See Aguayo et al. [39] for



Convoluted data

(a)

(b)

Fig. 2. (a) Shear and extensional viscosities, (b) shear N1 versus We; MBM, EPTT and
convoluted models; MH (EPTT e = 0.25; Micellar x = 4.0) response, highly-poly-
meric (b = 1/9) fluids.

Ru

Ru / 4

(a)

(b)

Fig. 3. (a) Schematic diagram, (b) zoomed mesh sections 4:1:4 contraction/
expansion.
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further detail on this problem, which provides a full mesh refine-
ment analysis for some typical case studies.
3.2. Numerical scheme

The general framework of the time-marching hybrid fe/fv
scheme employed here involves two distinct aspects. First, velocity
and pressure are computed via a semi-implicit incremental pres-
sure-correction (ipc) procedure with finite element spatial discret-
isation. Secondly, a finite volume based fluctuation distribution
scheme is adopted for the computation of the hyperbolic extra-
stress equations. The algorithm consists of a two-step Lax-Wendr-
off time-stepping procedure, extracted via a semi-implicit Taylor
series expansion in time. The incremental pressure-correction sig-
nature is apparent through the three time-level pressure-refer-
ence. This ensures that temporal error bounds are uniformly met,
to an order one higher than under direct pc-implementation, hence
of O(Dt2) [43]. Here, first velocity and stress components are pre-
dicted to a half time-step (Stage 1a), and then, corrected over the
full time-step (Stage 1b, Lax-Wendroff, split time-step, predic-
tion–correction). To ensure the satisfaction of the incompressibility
constraint, pressure at the forward time-step is derived from a
Poisson equation for pressure-difference (Stage 2). The solenoidal
end-of-time-step velocity field is constructed at a final stage (Stage
3). To attain second-order time accuracy, the free weighting
parameter (h), governing Stages 2 and 3 across the time-step, is
selected as the Crank-Nicolson option, (h = 0.5). Defining initial
time-step (tn) solution components (u, p, sp)n, the semi-discrete
three-stage algorithmic structure per time-step may be expressed
(omitting � for dimensionless variables), as follows [44,45]:

Stage 1a:

2Re
Dt

unþ1
2�un

� �
¼ r�sp�Reu �ru
� �n�r pnþh1ðpn�pn�1Þ

� 	
þr� 2b

Dnþ1
2þDn

2

 !
þFn

G

2We
Dt

snþ1=2
p �sn

p

� �
¼ 2ð1�bÞD� fsp�We u �rsp�sp �ru� sp �ru

� 	T
� �h in

2
Dt
ðf nþ1=2� f nÞ¼ 1

x
ð1� f Þþf : D


 �n

:

ð12Þ

Stage 1b:
Re
Dt
ðu� �unÞ¼ r�sp�Reu �ru

� �nþ1
2�r pnþh1ðpn�pn�1Þ

� 	
þr�ð2b

D� þDn

2
ÞþFnþ1

2
G

We
Dt

snþ1
p �sn

p

� �
¼ 2ð1�bÞD� fsp�We u �rsp�sp �ru� sp �ru

� 	T
� �h inþ1

2

1
Dt
ðf nþ1� f nÞ¼ 1

x
ð1� f Þþf : D


 �nþ1
2

:

ð13Þ

Stage 2:

r2ðpnþ1 � pnÞ ¼ Re
h2Dt

r � u�: ð14Þ

Stage 3:
2Re
Dt
ðunþ1 � u�Þ ¼ �h2rðpnþ1 � pnÞ: ð15Þ

Here, f can take either ng0
sp, nG0

Wesp or nG0
WeT values, to spec-

ify MBM, NM_sp or NM_T models, respectively. With the EPTT
model alone, the extra differential equation for f is replaced by
the algebraic identity of EPTT-f (Eq. (4)); otherwise all model ver-
sions, including counterpart-convoluted, appeal to f (Eqs. (12),
(13)).
4. Results and discussion

Discussion around the rising We-results solutions is based on
findings under EPD, limiting We (Welim), vortex dynamics, stress



Table 2
Mesh characteristics.

Mesh
characteristics

Elements Nodes Degrees of
freedom (u, p, sp)

Rmin

Coarse 1080 2289 14,339 0.0099
Medium 1672 3519 22,038 0.0074
Refined 2112 4439 27,798 0.0058

Non-convoluted results: EPD

(a)

(b)

Fig. 4. EPD versus We; MBM, EPTT, NM_sp and NM_T models; (a) highly-polymeric
(b = 1/9) and (b) solvent-dominated (b = 0.9) fluids; MH (EPTT e = 0.25; Micellar
x = 4.0) response.

Table 3
Limiting We; highly-polymeric (b = 1/9), solvent-dominated fluids (b = 0.9).

Model b = 1/9 b = 0.9

MH SH MH SH

EPTT 210.0 3.6 300.0a 4.6
MBM 3.6 1.8 4.1 2.2
NM_sp 4.9 2.1 7.6 2.4
NM_T 16 2.2 300a 30.0
EPTT/MBM 217 – 300a –
EPTT/NM_sp 224 – 300a –
EPTT/NM_T 300a – 300a –

a Stable solution.
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fields contours, and f-functional fields, considered against variation
in rising We.

4.1. Excess pressure drop

4.1.1. Low solvent fraction conditions (b = 1/9)
The first point to highlight is the preservation of consistency in

EPD in the Stokesian limit for the new versions of micellar models
developed. In this limit of small deformation rates or vanishing
elasticity, all fluids behave as the ideal universal fluid, for which
non-linear characteristics vanish, and EPD (pressure drop measure
relative to the equivalent Newtonian fluid) tends to the Stokes-
Newtonian reference level of unity. Nevertheless, it is apparent
from Fig. 4a that MBM EPD is inconsistent, providing We ? 0
limiting EPD values �30% below the Stokes-Newtonian reference
level. In contrast, EPTT models generate consistent EPD trends in
the low elasticity asymptotic limit. With rising We away from zero,
EPD-predictions generally tend to decrease and fall away from the
Stokes-Newtonian reference EPD level (of unity); and this is upheld
in MBM and EPTT solutions.

As described in Section 2, here new versions of micellar models
are developed to address the MBM-shortcoming in EPD when
We ? 0, which incorporate the viscoelasticity in the structure-
destruction term, with explicit dependency on the We-factor [see
Eq. (9) and Eq. (10), Fig. 4a]. Conspicuously then, and in contrast
to the MBM-results, both micellar approaches (NM_sp and NM_T)
do not exhibit underprediction in EPD in the low We-range. NM_sp

solutions provide EPD values tightly matching in trend to EPTT
predictions. Subsequently, upon rise in We there is: (i) a slight
deviation to lower EPD from EPTT data in the 0 < We < 3 range;
(ii) NM_sp data attains critical solutions to Welim = 4.9 (Table 3),
where both NM_sp and EPTT curves intersect. In contrast when
considering NM_T against EPTT solutions, some new EPD trends
are gathered as We rises: (i) there is less degradation observed in
EPD with NM_T than with EPTT, from the reference-line and in
the low elasticity range (0 < We < 3.5); (ii) intersection between
their respective EPD-curves occurs at a lower elasticity level
(We � 3.5), taken relative to the NM_sp comparison. From
We P 3.5 onwards, both NM_T and EPTT data-curves decline, but
the loss of slope in EPD is more rapid with NM_T than EPTT as
We rises; thus predicting ultimately larger EPD with NM_T for
higher We up to Welim = 16. These differences in EPD and Welim

attainments with new micellar versions (_sp and _T) can be ex-
plained by appealing to their respective material functions
(Fig. 1), and analysing the competing influences of extensional vis-
cosity (strain-hardening) and normal stress difference on EPD [46].
Whilst the NM_sp data-curve provides a plateau in N1 for high We
(Fig. 1), following the MBM results; the NM_T data-curve reveals a
maximum in N1 at moderate elasticity levels (We � 5), followed by
a sharp decline over the extended range, 5 < We < 100. This major
disparity, firstly, generates lower stresses under NM_T compared
with NM_sp solutions; consequently, yielding higher Welim with
NM_T than NM_sp. Secondly, as the competing roles between
extensional viscosity (gE) and N1 in EPD predictions dictate [46] –
rise in the former (strain-hardening) elevates EPD whilst it is
weakening in N1 (from quadratic form) that reinforces EPD. There-
fore, the declining-N1 of NM_T stimulates larger EPD than under
EPTT-solutions, acknowledging that EPTT provides monotonically
rising viscometric N1 (itself with decay away from quadratic re-
sponse). All comments apply equally under both strong and
moderate-hardening settings, with exaggeration to higher gE and
N1-maxima under the strong-setting.

In Fig. 5a, EPD predictions with convoluted models are reported,
with restriction to MH-response and highly-polymeric (b = 1/9)
fluids, and compared to those for base-EPTT and NM_T forms. Here,
convoluted EPD data-curves principally inherit their parent-EPTT
trends. Contrastingly, the NM_T solutions begin to show margin-
ally larger EPD predictions, with respect to convoluted results,
upon approaching the early Welim = 16 of NM_T. Notably, at high
deformation rates, EPD predictions for the convoluted models are



Convoluted results: EPD 

(a)

(b)

Fig. 5. EPD versus We; EPTT, NM_T and convoluted models; (a) highly-polymeric
(b = 1/9) and (b) solvent-dominated (b = 0.9) fluids; MH (EPTT e = 0.25; Micellar
x = 4.0) response.
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larger than the corresponding second-Newtonian EPD-plateau ref-
erence level indicated, and asymptote to a limiting plateau above
that, accordingly.
4.1.2. High-solvent fraction conditions (b = 0.9)
In the high-solvent fraction scenario, with only mild strain-

hardening properties and Newtonian-like response, NM_T solu-
tions are observed to provide ultimately rising EPD trends with
increasing elasticity (Figs. 4b and 5b). In contrast, NM_sp and EPTT
solutions manifest only monotonic EPD-decline whilst traversing
towards their Welim. Similarly to the highly-polymeric scenario
above, NM_sp solutions faithfully follow those of EPTT, locating
their Welim (=7.6) sooner than occurs with NM_T solutions, remain-
ing numerically-stable at We = 300+ (Table 3). The reason for this
discrepancy in Welim, again as argued above with b = 1/9 fraction,
lies in the base-N1 material function response: recall, NM_T shows
declining N1 with rising We. This has the consequent effect of
exhibiting a wider tractable window of numerical solution for
NM_T, and favours the ultimate and opposite rising trend in EPD.
This is the situation encountered beyond the local EPD-minima
reached for NM_T at We = 8.

Under this high-solvent fraction, the convoluted data-curves
again all follow those of parent-EPTT, and actually intersect with
the second-Newtonian EPD-plateau reference line at high We lev-
els, We � 220 (Fig. 5b). This latter observation contrasts with the
distinctly different and remarkable NM_T model predictions (par-
tially shown in Fig. 4b), which further pursue rising EPD trends
with increasing elasticity levels (without encountering a limit).
4.2. Vortex dynamics

This section describes the various dynamic vortex structures
developed in the flow, alongside their growth and decay patterns,
through comparison across thixotropic and non-thixotropic mod-
els and their solutions at increasing levels of elasticity up to critical
limits.

4.2.1. Vortex dynamics – low solvent fraction conditions (b = 1/9)
Here, a comparison on vortex intensity, size and streamlines

patterns is performed as We is increased. To facilitate direct com-
parison, both upstream and downstream vortex intensities are
plotted in Fig. 6 as a function of We.

4.2.1.1. Non-convoluted solutions, vortex intensity. Upstream vortex
activity. MBM, NM_sp and NM_T data for the upstream vortex follow
each other closely in a rising vortex intensity pattern with increasing
We, up to their Welim (Fig. 6a). NM_T solutions attain the largest Welim

(=16) amongst these micellar models, with indications of approach
to an upper limiting plateau. Up to its first turning point at We = 2
(local maximum), EPTT results exhibit a similar trend to that of the
thixotropic micellar solutions. Beyond which for We > 2, the EPTT
data-curve indicates departure, initially through a decline to a sec-
ond extremum at We = 100 (local minimum), prior to upturn and
ultimate rise towards its final Welim = 210 (Table 3) [36,37].

4.2.1.2. Non-convoluted solutions, downstream vortex activ-
ity. Downstream vortex activity mirrors, in reverse form, the
changes in upstream vortex activity (Fig. 6b), somewhat acting as
an energy balance and release mechanism. So here, thixotropic
MBM, NM_sp and NM_T data-curves also follow each other closely
in a declining trend up to We = 2. After this stage, NM_sp down-
stream vortex intensity declines suddenly and more rapidly than
apparent with MBM or NM_T, noting that MBM is nearing its limit
in this region at Welim = 3.6, followed by NM_sp with Welim = 4.9.
The NM_T curve continues in its decline up to We = 7, where it ob-
serves a local-minimum. Beyond We > 7, NM_T downstream vortex
intensity then rises up to its corresponding Welim = 16. Conspicu-
ously, the occurrence of this local minimum–extremum in the
NM_T downstream vortex intensity response, roughly coincides
in elasticity level (We = 7) with extrema observed in viscometric-
N1 for this model (We � 5) (Fig. 1). In contrast to micellar data,
non-thixotropic EPTT results also exhibit a declining trend, but at
slightly lower rate (hence, greater intensity), at relatively low elas-
ticity levels (0.5 < We < 5). At We = 5, the EPTT data-curve also lo-
cates a minimum, beyond which for 7 < We < 15, the curve rises
to a local-maximum at We = 15. After this second extremum, the
trend is repeated of a subsequent decline, to find a third extremum
(minimum) at 40 < We < 50. Finally and thereafter, the EPTT-curve
rises up to its corresponding Welim = 210.

Significant difference is apparent in Welim between EPTT and
MBM-solutions under MH: with Welim = O(102) for EPTT, and
Welim = O(10) for micellar data (Table 3). One may argue that this
is due to the explicit presence of k1 (or We, in dimensionless terms)
in the f-functional under the EPTT construction. This discrepancy is
starkly evidenced in MH instances, and through the comparison
between the Welim for MBM and the new micellar model data,
where the presence of k1 increases Welim by one unit for NM_sp,
and increases eight times under NM_T (Table 3). This observation
is not so evident under the SH scenario, yet still present, since
Welim is relatively small for the high extensional viscosity levels
these fluid models can display.

4.2.1.3. Convoluted solutions, vortex intensity. The flow patterns dis-
played by the convoluted micellar solutions are markedly different
to their non-convoluted counterparts; specifically, they inherit the



Vortex Intensity, MH

β =1/9 β =0.9

(a)

(b)

(c)

(d)

Fig. 6. Vortex intensity profiles versus We: top-upstream, bottom-downstream; EPTT, MBM, NM_sp, NM_T and convoluted models; MH (EPTT e = 0.25; Micellar x = 4.0)
response; highly-polymeric (b = 1/9), solvent-dominated (b = 0.9) fluids.

14 J.E. López-Aguilar et al. / Journal of Non-Newtonian Fluid Mechanics 204 (2014) 7–21
behavioural response of the parent-EPTT non-thixotropic predic-
tions. On upstream vortex intensity (Fig. 6a), it is worth highlighting
that (i) the convoluted data-curves follow closely over
0.1 < We < 300 range; and (ii) after We = 200 and for stable EPTT/
NM_T solutions, the upstream vortex reappears and monotonically
grows in strength up to the corresponding Welim, or We = 300+.

4.2.1.4. Convoluted solutions, downstream vortex intensity. In Fig. 6b,
a more complex trend is extracted and relative to EPTT-solutions.
Here, (i) the convoluted data-curves follow the trends for EPTT
and lie between those the non-convoluted micellar data-curves;
(ii) data-curves for convoluted solutions observe a local-minimum
at We = 7, beyond which for 7 < We < 15, they rise to a local-maxi-
mum at We = 15. After this second extrema, the trend is one of
subsequent decline again to find a third extrema (minimum) at
40 < We < 50. Finally, for We > 50, convoluted solutions show a
monotonic rising trend up to their respective Welim, with impres-
sively high-We solutions generated for {EPTT/NM_sp, EPTT/MBM,
EPTT/NM_T} with Welim = {217,224,300+} (Table 3). Compara-
tively, EPTT limitation is Welim = 210, and with MBM is Welim = 3.6,
under the same solvent fraction (b = 1/9) and MH conditions. This
trend also holds for the other convoluted results.

4.2.1.5. Streamline patterns, non-convoluted. The streamline pat-
terns of Fig. 7, provide the counterpart field-structure representa-
tion to Fig. 6 above, in which the columns relate to variation
across models, whilst the rows refer to levels of elasticity (termi-
nating in Welim). Results for non-convoluted forms are shown in
Fig. 7. At low We-levels, We � O(0.1), little difference is apparent
in vortex size across models. Here, upstream and downstream vor-
tex structures are symmetrical about the contraction. At We = 1.0,
for which the elastic and dissipative forces are balanced, asymme-
try is observed in all solutions, with slight differences in vortex
sizes noted. These are clearly exposed in the vortex intensity data
of Fig. 6 with increasing elasticity: whilst the upstream vortex dis-
plays vortex enhancement, the downstream vortex displays vortex
reduction. Reaching the stage We = 2, where elastic effects are
more dominant, this pattern of upstream growth/downstream
shrinkage remains, and is reflected consistently in vortex size/
shape across all solutions. MBM (Welim = 3.6) results are the first
to exhibit numerical breakdown. For higher elasticity levels, NM_sp

(at We = 4.9) and NM_T (at We = 5.0) streamlines reflect upstream
vortex growth, whilst EPTT results show shrinkage – notwith-
standing the relatively even larger shear and extensional viscosi-
ties with EPTT (see N1 and N2 below for justification; nb. in
contrast [36,37]). NM_sp results are the next in the sequence to
show divergence (Welim = 4.9), with an almost vanishing down-
stream vortex at this stage. Increasing elasticity to We = 10, the
trends in vortex size evolution are well established. Consequently,
NM_T (We = 10) results provide an even larger upstream vortex
with We < 10, whilst comparably EPTT manifests vortex decay.
The corresponding downstream vortex tends to disappear under



Non-convoluted results

Streamlines

Fig. 7. Streamlines versus We; EPTT, MBM, NM_sp, NM_T models; MH (EPTT e = 0.25; Micellar x = 4.0) response, highly-polymeric (b = 1/9) fluids.

Convoluted results

Streamlines
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NM_T, whilst that under EPTT prediction remains almost constant
in size-shape as We rises. NM_T solutions locate their Welim = 16.
Finally, EPTT solutions retain tractability up to Welim = 210; an
impressively large level for stable numerical solutions.
4.2.1.6. Streamline patterns, convoluted. The streamlines in Fig. 8 for
convoluted forms and data in Fig. 6 demonstrate that at We = 200,
convoluted solution-fields exhibit the formation of a new up-
stream vortex (Fig. 8, inset). This grows and slightly shifts with
We-rise, travelling towards the lip of the contraction wall. EPTT/
NM_sp data at We = 220 reveals this new upstream vortex growth,
and a further vortex structure appears from the top wall; both
these new features then subsequently tend to join up with further
We rise. In EPTT/NM_T results at We = 300, the upstream vortex
appears completely formed, with comparable size to those at low
elasticity levels (1 < We < 5), though now of one order of magni-
tude reduced in intensity. Meanwhile, as this complex upstream
vortex activity is emerging, the downstream vortex shrinks over
the 0.1 < We < 50 range, and afterwards with further We rise, con-
sistently and continually grows and builds in intensity.
Fig. 8. Streamlines versus We; EPTT/NM_sp, EPTT/NM_T models; MH (EPTT
e = 0.25; Micellar x = 4.0) response, highly-polymeric (b = 1/9) fluids.
4.2.2. Vortex dynamics – high solvent fraction conditions (b = 0.9);
convoluted/non-convoluted results

Vortex intensity, b = 0.9 vortex intensity trends under solvent-
dominated response (b = 0.9) (Fig. 6c and d) are similar, but with
smaller values, to the corresponding highly-polymeric data
(b = 1/9) (Fig. 6a and b). This applies in both upstream and down-
stream vortices.

The upstream vortex intensity results (Fig. 6c) exhibit smooth
rise as We is increased at relatively low elasticity levels
(0.1 < We < 5). Beyond We > 5, EPTT and convoluted solutions de-
part in trend and decline as We increases, with stable solutions
at {We = 300+, Welim = 210} for {b = 0.9, b = 1/9}. In this zone, the
convoluted curves decline smoothly, whilst EPTT data-curve once
more encounters a minimum, but now at We = 200. After this
stage, EPTT suddenly rises up to We = 250, where it locates another
extremum (maximum), and declines sharply-rapidly thereafter.
Contrastingly, again, the non-convoluted thixotropic data-curves
illustrate a rising pattern with increasing We, up to their Welim.
Differently to b = 1/9 results, the NM_T upstream data-curve now
does not asymptote to a plateau. Here, at b = 0.9, {MBM, NM_sp,
NM_T} attain Welim = {4.1,7.6,300+}; in contrast at b = 1/9, {MBM,



Fig. 9. f-Function profiles in simple shear versus We; MBM, EPTT and convoluted
models; MH (EPTT e = 0.25; Micellar x = 4.0) response, highly-polymeric (b = 1/9)
fluids.

N1 - N2 Upstream Vortex results

(a)

(b)

Fig. 10. (a) Maximum N1 and (b) minimum N2 versus We; EPTT, MBM, NM_sp,
NM_T and the convoluted models; MH (EPTT e = 0.25; Micellar x = 4.0) response,
highly-polymeric (b = 1/9) fluids.

N1-fields

N2-fields

(a)

(b)

Fig. 11. (a) N1 and (b) N2 contour fields versus We comparison for EPTT and the
NM_T models for MH (EPTT e = 0.25; Micellar x = 4.0) response and highly-
polymeric (b = 1/9) fluids.
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NM_sp, NM_T} encounter Welim = {3.6,4.9,16}. Consistently, Welim

is notably extended under solvent-dominated predictions
(b = 0.9), specifically in contrast to the highly-polymeric (b = 1/9)
results above (Table 3 data). Recall, the non-linear polymeric part
of the constitutive equation is present in smaller proportion, rela-
tive to the solvent contribution. Notably: (i) the NM_T extreme
case predicts that Welim is some nineteen times larger under
b = 0.9 than b = 1/9; (ii) such major departure in Welim is also
apparent between EPTT and most non-convoluted micellar results;
and (iii) the common trends observed behind these Welim findings
repeat consistently under SH response (Table 3).

On downstream vortex intensity Fig. 6d, a declining trend is
observed at low elasticity levels (0.1 < We < 2). Beyond We > 2,
the following departure is observed: EPTT and convoluted results
exhibit a local minimum at We = 5, and rise to locate a plateau in
20 < We < 50. Beyond We > 50, an ultimate decline is apparent with
the convoluted results, whereas EPTT evolves as with the upstream
vortex data above. Conspicuously, the thixotropic non-convoluted
results generate some alternative trends: {MBM, NM_sp}-data-
curves decline as elasticity is increased up to their
Welim = {4.1,7.6}. In contrast, the NM_T downstream vortex inten-
sity pattern is more complex; resembling the EPTT and convoluted
solutions. The NM_T data-curve plateaus across 2 < We < 5 range;
thereafter, this curve rises with increasing elasticity up to a peak
of We = 30. Subsequently after this local peak, for We > 30, NM_T
downstream vortex intensity ultimately declines, with stable solu-
tions observed as far out as We = 300+ and above.



Table 4
Maximum and minimum f-function values versus We; MH (EPTT e = 0.25; Micellar x = 4.0) response, highly-polymeric fluids (b = 1/9).

We f

EPTT/NM_T EPTT/NM_sp EPTT/MBM EPTT MBM NM_sp NM_T

0.1 Max. 1.15 1.15 1.25 1.14 6.35 2.06 2.17
Min. 0.98 0.98 0.99 1.00 0.99 1.00 1.00

0.5 Max. 2.50 2.49 2.53 2.46 5.82 4.11 5.00
Min. 0.94 0.94 0.95 0.97 0.81 0.87 0.91

1.0 Max. 4.12 4.10 4.11 4.09 5.62 5.62 7.25
Min. 0.91 0.91 0.91 0.96 0.60 0.59 0.69

2.0 Max. 6.86 6.80 6.76 6.81 5.62 7.40 9.77
Min. 0.96 0.96 0.96 1.00 0.11 �0.34 0.05

5.0 Max. 13.55 13.43 13.39 13.24 Db 11.04c 13.74
Min. 0.94 0.94 0.94 0.99 �4.92 �2.76

10.0 Max. 23.37 23.14 23.07 22.86 D 17.73
Min. 0.92 0.92 0.92 0.95 �8.05

15.0 Max. 32.81 32.47 32.39 32.08 19.76
Min. 0.95 0.95 0.95 0.94 �13.66

20.0 Max. 41.93 41.48 41.39 41.01 D
Min. 0.96 0.96 0.96 0.94

50.0 Max. 97.29 98.25 98.46 96.84
Min. 0.93 0.93 0.93 0.91

100.0 Max. 192.22 196.08 196.53 179.78
Min. 0.86 0.86 0.86 0.86

200.0 Max. 380.06 393.88 394.91 360.40
Min. 0.78 0.17 0.07 0.08

220.0 Max. 417.08 433.75 D D
Min. 0.76 0.005

300.0 Max. 564.65 Da

Min. 0.09

a Diverged.
b Diverged at Welim = 3.6.
c Diverged at Welim = 4.9.
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4.3. f-Functional and stress fields (N1)
4.3.1. Low solvent fraction conditions (b = 1/9)
In this section, results for f-functional and normal stress are

considered. Firstly, correspondence between vortex activity (Sec-
tion 4.2) and normal stresses data (i.e. N2) is outlined. Secondly,
f-functional and N1 results are described, in which close correlation
is revealed through theoretical and numerical data. Markedly, an
inverse relation between N1 and f predictions is observed with
the numerical solutions for contraction–expansion flow, similar
to that obtained in simple viscometric shear. Fig. 9 provides shear
viscometric f-functional data, where all curves rise from the Old-
royd-B reference data as We is elevated. Consistently with their
exponential nature, the response for EPTT and convoluted curves
follow each other closely. Differently, (i) MBM-data yield smaller
f-values in the 0:1 < _c < 1:5 range. For larger rates beyond
_c > 1:5, MBM form provides larger f-values than arise for EPTT
and its convoluted analogues. (ii) As We rises, only MBM response
shows decline in the size of f-values at fixed shear-rate.

4.3.2. N2, N1-vortex activity and relationship
Fig. 10 shows maximum N1 and minimum N2 in the upstream

vortex zone across models as We is increased. Here, it is worth high-
lighting the correlation between N2-minima and N1-maxima ob-
served in the upstream vortex region, alongside the location, size
and intensity of the upstream vortices themselves. This provides
concrete evidence as to the influence of elasticity in the flow kine-
matics. Solutions trends in N1-maxima (Fig. 10a) and N2-minima
(Fig. 10b) correspond to those in Fig. 6a for maximum intensity
in the upstream vortex. As above for vortex intensity, MBM, NM_sp
and NM_T curves on N1 and N2 extrema in the upstream vortex,
closely follow one another in a rising pattern with increasing We
up to their Welim. EPTT and convoluted results exhibit similar rising
and further declining trends as We is elevated. Furthermore, N2 re-
sults for convoluted versions (Fig. 10b) evidence larger values over
0.1 < We < 2, and smaller values over 2 < We < 15, in comparison to
EPTT N2-data. Beyond We > 15, a sudden and steeper slope is noted
in the convoluted solutions. The vortex-like structures in N1 and
N2-fields, are absent for We > 20 in the upstream zone, and disap-
pear at low elastic levels in the downstream region. Hence, direct
comparison with vortex patterns loses tractability beyond
We > 20. Fig. 11 contains the counterpart field-structure represen-
tation of Fig. 10, with the key results for EPTT and NM_T solutions.
Particularly, N2 plots render the most illustrative information [47],
providing a signature for vortex development in the corner-region
(Fig. 11b), whilst N1 plots (Fig. 11a) only show its periphery
through location and relative size.

4.3.3. f-Functional expression, size of N1 and impact on Welim

As specified in Section 2, Eq. (3) provides a general form for the
equation of state for stress, where the only essential difference is
given by the f-functional. This functional takes into account depar-
ture from Oldroyd-B-like behaviour. As argued above, the explicit
presence of k1 (or We, in dimensionless terms) in f is most impor-
tant for these new micellar models (NM_sp and NM_T), since it
provides consistent EPD values at low We and produces relatively
large Welim. Hence, it is pertinent to discuss the nature and role
played by this explicit f–We functionality on solutions. As listed
in Table 1, the EPPT model contains an explicit, exponential f–We
relation in its constitutive equation (with Welim = 210 under MH
conditions, see Table 3). In comparison, an explicit, linear f–We



Table 5
Maximum and minimum N1 dimensionless values versus We; MH (EPTT e = 0.25; Micellar x = 4.0) response, highly-polymeric fluids (b = 1/9).

We N1

EPTT/NM_T EPTT/NM_sp EPTT/MBM EPTT MBM NM_sp NM_T

0.1 Max. 8.24 8.25 7.89 8.30 2.41 5.48 5.20
Min. �5.08 �5.08 �4.98 �5.09 �2.18 �4.18 �4.05

0.5 Max. 7.84 7.87 7.79 7.98 3.09 4.83 3.59
Min. �3.08 �3.08 �3.07 �3.09 �2.15 �2.64 �2.50

1.0 Max. 5.71 5.75 5.76 5.84 4.46 4.46 2.95
Min. �2.22 �2.22 �2.22 �2.23 �2.19 �2.20 �2.04

2.0 Max. 3.70 3.75 3.78 3.80 7.44 4.17 2.72
Min. �1.46 �1.46 �1.46 �1.46 �2.98 �1.77 �1.61

5.0 Max. 1.93 1.98 2.00 2.00 Db 4.11c 2.94
Min. �0.93 �0.93 �0.94 �0.94 �3.53 �1.72

10.0 Max. 1.15 1.18 1.20 1.20 D 3.01
Min. �0.66 �0.66 �0.67 �0.67 �2.26

15.0 Max. 0.83 0.87 0.88 0.88 3.03
Min. �0.49 �0.49 �0.50 �0.49 �2.02

20.0 Max. 0.67 0.70 0.70 0.70 D
Min. �0.40 �0.40 �0.40 �0.40

50.0 Max. 0.33 0.34 0.34 0.34
Min. �0.19 �0.20 �0.20 �0.20

100.0 Max. 0.19 0.19 0.19 0.19
Min. �0.11 �0.11 �0.11 �0.11

200.0 Max. 0.11 0.11 0.11 0.11
Min. �0.06 �0.06 �0.06 �0.06

220.0 Max. 0.10 0.10 D D
Min. �0.06 �0.05

300.0 Max. 0.07 Da

Min. �0.04

a Diverged.
b Diverged at Welim = 3.6.
c Diverged at Welim = 4.9.
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functionality appears in the new micellar forms (NM_T with
Welim = 16, and NM_sp with Welim = 4.9). The MBM model, which
attains Welim = 3.6, does not possess an explicit relationship
between f and We. These observations suggest a possible correla-
tion between f and Welim: the stronger the f–We functional
relationship (expressed in powers or rate-rise), the larger the
Welim. Size of f-functional and N1 forms across these micellar models
are provided in Table 4 and 5. NM_sp solutions (with Welim = 4.9)
generate larger N1 (smaller f�) values than under NM_T (with
Welim = 16.0) at comparable elasticity levels. Furthermore, MBM
solutions yields larger N1 (smaller f�) values (with Welim = 3.6)
than under NM_sp prediction (with Welim = 4.9) for 1 < We < 2.
4.3.4. N1 and f-functional fields, non-convoluted
Fig. 12a provides a complete record for the (N1 fields non-convo-

luted) predictions. First, EPTT-N1 results exhibit fields with vanish-
ing negative zones and declining maximum values as We rises.
This is consistent with (i) the inverse, quadratic relation between
the f-functional and N1 in simple shear flow (specifically
N1 ¼ 2k1gp0 _c2=f 2, based upon Eq. (3)), where f-increases with ris-
ing- _c (see Fig. 9); and (ii) the EPTT f-results in complex flow, with
relatively large f = O(360) and large Welim = 210 (cf. Table 4), and
small N1. In contrast, the thixotropic MBM, NM_sp and NM_T results
produce relatively more intense and larger N1 maxima zones
(Fig. 12a), smaller f and Welim. For example, at We = 2, MBM-N1 is
twice as large as for EPTT and NM_sp (cf. Table 5). The non-convo-
luted f-maxima range is from {f = O(1), We = 0.1} to {f = O(20),
We = O(10)} (cf. Table 4). Consequently, critical elasticity levels
are much smaller and lie around Welim = O(10). In Fig. 13a (f-func-
tional fields non-convoluted), notable differences in EPTT f-field
results are apparent relative to the non-convoluted thixotropic
solutions from low We levels (We = 0.5). EPTT data show a red-in-
tense zone with relatively large, positive values about the contrac-
tion. As We is increased, the EPTT red zone grows in size and
magnitude notably, from f = O(10) at We = 0.1, to f = O(102) at
We = 100 (Table 4); until almost filling the region about the con-
traction. Moreover, localised small-f zones are apparent at the re-
entrant and downstream corner for EPTT solutions at We = 50
and onwards. Contrastingly, the micellar MBM, NM_sp and NM_T
f-field results do not exhibit such growth in size and intensity as
We is elevated. Indeed, these results exhibit a blue-light zone with
relatively small, and even negative, values arising from the centre-
line. This is shifted downstream and lies within the red zone. Con-
spicuously and in contrast to EPTT f-fields, the micellar f-fields
reveal that the blue patch at the contraction grows until it touches
the wall, before encountering numerical solution breakdown.
4.3.5. Convoluted versus non-convoluted, f-maximum values at Welim

(Tables 4 and 5), f-fields
In this comparison, significantly larger f-maxima are obtained

for the EPTT and convoluted versions (exponential f), relative to
their non-convoluted thixotropic analogues (linear f) at their
respective Welim: in fact, one order of magnitude larger. Specifi-
cally, EPTT/MBM results render f = O(390), whilst MBM predicts
f = O(7), and EPTT originate f = O(360). Similarly, EPTT/NM_sp and
NM_sp data result in f = O(400) and f = O(10), respectively.
Moreover, EPTT/NM_T solutions evidence f = O(500) at We = 300
and beyond, whilst NM_T results show f = O(20) at its Welim.
Accordingly, the convoluted N1-values are smaller than for the
non-convoluted counterparts (Table 5), and decline as We is



Non-convoluted results

N1 colour-contour fields

Convoluted results
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Fig. 12. N1 fields versus We: (a) EPTT, MBM, NM_sp and NM_T models, (b) EPTT,
EPTT/MBM, EPTT/NM_sp and EPTT/NM_T models; MH (EPTT e = 0.25; Micellar
x = 4.0) response, highly-polymeric (b = 1/9) fluids.

Non-convoluted results

f-fields

Convoluted results
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(b)

Fig. 13. f-Function fields versus We: (a) EPTT, MBM, NM_sp and NM_T models, (b)
EPTT, EPTT/MBM, EPTT/NM_sp and EPTT/NM_T models; MH (EPTT e = 0.25; Micellar
x = 4.0) response, highly-polymeric (b = 1/9) fluids.
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elevated, thus rendering larger Welim. In the f-fields displayed in
Fig. 13b, the convoluted solutions exhibit micellar features at low
elasticity levels (0.1 < We < 2.0): a blue relatively small zone that
disappears as We is increased, when EPTT characteristics emerge,
with the growing large-f red zone for We > 5.0 onwards. Accord-
ingly, the convoluted N1-fields exhibit the inverse relationship
with f-functional as We is elevated (Fig. 12b).

All above findings can be related to the corresponding materials
functions (Figs. 1 and 2) and their impact on flow kinematics
(Figs. 6a, 7, 8 and 10). Both constitutive representations, the
time-independent network-based EPTT, and the time-dependent
micellar models, provide shear-thinning in steady simple shear
and strain-hardening/softening effects in steady simple uniaxial
extension (Fig. 1). Moreover, they exhibit an inverse, quadratic
relation between N1 and f in viscometric simple shear flow
(Fig. 12). Nevertheless, EPTT results evidence a more complex kine-
matics than the micellar forms (Figs. 6a, 8 and 10). Major differ-
ences in f-results between the EPTT and non-convoluted micellar
forms become apparent. Therefore, one may argue that the
manifestation of the strain-hardening and softening characteristics
(on vortex size/intensity, and N1) is influenced by the magnitude of
the f-functional predicted in complex flow, which seems to be lar-
gely dictated by the f–We functionality. Specifically, as noted for
EPTT and convoluted models, and in contrast with the strain-hard-
ening effects observed exclusively in the thixotropic non-convo-
luted micellar solutions. The exponential f-functional of EPTT and
convoluted forms (Table 1) provide impressively larger f-results,
which generate relatively smaller N1 values, and consistently, lar-
ger Welim in complex flow. Alternatively the linear f-expression,
as in NM_sp and NM_T models, yields relatively smaller f-predic-
tions, with larger N1 and smaller Welim than those of EPPT. These
trends become even more noticeable for the MBM predictions, a
model devoid of f–We explicit functionality.
5. Conclusions

A new set of constitutive models based on the MBM model [3]
for wormlike micellar solutions has been presented, involving the
viscoelasticity in the structure construction/destruction mechan-
ics. Solutions are compared between time-dependent thixotropic
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MBM models and network-based time-independent EPTT models.
Complex flows for a 4:1:4 rounded contraction/expansion are con-
sidered, under relatively moderate and strong strain-hardening re-
sponse, and highly-polymeric and Newtonian like instances.

Analysis for the MBM model in the complex axisymmetric 4:1:4
contraction/expansion flow has provided information based on
phenomenological observation (EPD attainment). Here, feedback
between viscometric theory and complex flow analyses comple-
ment and improve the micellar constitutive approach, reflecting
the new physics involved. In this study, this point is illustrated
through the observation of the EPD underprediction at low elastic-
ity levels, for which the MBM model provides inconsistent results,
and upon which a correction is performed.

The new constitutive framework provides (a) consistent EPD
predictions at low elasticity levels (contrary to the MBM model),
(b) larger limiting We to those obtained with the MBM model, by
the explicit presence of We in the micellar f-functional, and (c) ris-
ing EPD tendency at high-elasticity instances for Newtonian-like,
moderate hardening fluids.

Moreover, impressively high-We results, of interest for indus-
trial applications and microfluidics/nanotechnology (We � 300+),
have been obtained for the models characterising micellar
solutions. This was achieved through the convolution of the f-func-
tional of the micellar and EPPT models. The analysis of the f-func-
tional across models evidences notable trends as to the level of
attainable Welim. Here, models with stronger explicit mathematical
functionality between f and k1 (We) provide larger Welim. Further-
more, the effects of these large-f results are reflected, firstly, on the
N1 magnitude predicted. These obey the inverse, quadratic func-
tionality between N1 and f, found in simple shear flow. Secondly,
as demonstrated in this study and elsewhere [47], the vortex
dynamics proves to be a function of the N2-minima, as located in
the vortices generated. Moreover, the relative size of f-predictions
influences the manifestation of strain-softening/hardening charac-
teristics through the vortex dynamics. Thus, outstandingly definite
trends are established regarding the various constitutive models
proposed. Significantly, the EPTT and its convoluted solutions evi-
dence relatively complex kinematical behaviour with We rise,
based on the relatively large f-values generated. Here, increasing
vortex growth to a maximum is reported for the low-to-moderate
elasticity range, with further decrease to a minimum over the
moderate-to-high elasticity range, and ultimate rise in the high
elasticity range. In particular, this rise in vortex intensity at high
We is related to the formation and enhancement of a second up-
stream vortex, which is observed with the convoluted models. In
contrast, solutions with non-convoluted micellar models and rela-
tively smaller f-values, provide only vortex enhancement before
their earlier numerical breakdown.
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