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1. Introduction

Due to their widespread presence in many practical situations,
heat transfer problems in fluid systems have attracted the attention
of researchers for a long time. While the original focus was on
Newtonian fluids (a classical reference is the work by Shah and
London [1]), more recently interest in non-Newtonian fluids has
increased [2—8]. This has been provoked by the importance for
many industries (including polymer processing and the food in-
dustry) of thermal conditions in the flow of such systems through
pipes, ducts and devices of different shapes. For instance, when
dealing with polymeric materials, a key factor for the quality of the
final product is a proper temperature control. Since the actual
operating conditions are in general very complex, the analysis of
relatively simple but tractable problems is usually taken as a useful
resource to gain some insight. So it is not surprising that many such
developments have appeared in the literature, even quite recently,
which include fluid flow and heat transfer in cylindrical conduits or
between parallel plates under different thermal boundary
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conditions [9—18]. Another tool which has become rather popular
in recent times (see for instance Refs. [14—19]) for the analysis of
these problems is the use of the second law of thermodynamics, in
particular in what concerns the generation of entropy within the
system. This generation is caused by the various irreversibilities
present in the process under investigation and so a detailed
knowledge of the parameters determining such irreversibilities
may prove crucial for specifying the best operating conditions. In
fact, as Bejan has pointed out [20], good engineering heat transfer
design in problems where either heat transfer augmentation or
thermal insulation are required usually involves the minimization
of entropy generation. Interestingly enough the same approach has
been recently used in different contexts by several authors, see for
instance Ref. [21].

A few years ago, using the Entropy Generation Minimization
method [20,22] two of us [23] showed that the entropy generation
in the viscous flow between parallel plates with asymmetric
convective cooling displayed a minimum for given values of the
ambient temperature and the upper and lower plate Biot numbers.
The same effect has also been found for other problems [24] that
involve the flow of Newtonian fluids. The question then naturally
arises as to whether the consideration of a non-Newtonian fluid
will affect, and if so to what extent, the features that stem out of
previous investigations. In fact, the analysis [25] of the heat transfer
problem in the zero-mean oscillatory flow of a Maxwell fluid
flowing between parallel plates with convective cooling suggests
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that the effects of viscoelasticity may produce heat transfer
enhancement with respect to that of a Newtonian fluid under
similar operating conditions. To further address the question posed
above, in this paper we have examined the problem of heat transfer
and entropy generation in the fully developed parallel plate flow of
a power-law fluid with asymmetric convective cooling. The choice
of the power-law fluid to carry out this analysis is due to two rea-
sons. On the one hand, it includes the Newtonian fluid as a special
case. On the other hand, although it has also been used to analyze
heat transfer and entropy generation in different kinds of flow [26—
47], the parallel plate flow under asymmetric convective cooling
has not been examined to our knowledge so far.

The paper is organized as follows. In the next Section, we pro-
vide a brief description of the power-law fluid and of the as-
sumptions under which our problem will be set, including all the
governing equations. This is followed in Sec. 3 by the explicit
determination of the velocity and temperature fields and hence of
the corresponding local and global entropy generation and their
analysis for both pseudoplastic and dilatant fluids The paper is
closed in Sec. 4 with some further discussion and concluding
remarks.

2. The model fluid and the governing equations

In this Section we will start by stating the problem under
consideration. This involves writing down the equations that
determine the velocity and temperature fields in the fully devel-
oped parallel plate flow of a power-law fluid with asymmetric
convective cooling. A power-law fluid is a type of generalized
Newtonian fluid for which the shear stress 7 is given by Ref. [48]
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where y is the transversal coordinate, u the axial fluid velocity, m is
the flow consistency index, du/dy is the shear rate or the velocity
gradient perpendicular to the plane of shear and n is the flow
behavior index. If n < 1 the fluid is pseudoplastic (e.g. styling gel)
while if n > 1 it is dilatant (rarely encountered, e.g. an uncooked
paste of cornstarch and water). If n = 1, then it is the Newtonian
fluid. In Fig. 1 we show a schematic diagram of the system we want
to examine.

For the sake of deriving analytical results, we will take the
following simplifying assumptions. We consider a steady laminar
flow of an incompressible power-law fluid that takes place between
parallel rigid plates separated by a distance b = 2a. The flow is
driven by a constant pressure gradient, dp/ox, in the axial x-
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Fig. 1. Schematic representation of the problem under analysis.

direction. We assume that the parallel plates are infinite so that
border effects are neglected and the velocity and temperature
profiles are fully developed. For the solution of the momentum
balance equation we assume that the velocity satisfies the no slip
condition at the plates. In turn, the heat transfer equation is solved
using boundary conditions of the third kind that indicate that the
normal temperature gradient at any point in the boundary is
assumed to be proportional to the difference between the tem-
perature at the surface and the external ambient temperature T,
which is assumed constant. With these conditions the amount of
heat entering or leaving the system depends on the external tem-
perature as well as on the convective heat transfer coefficient. A
fundamental assumption in this problem is that the heat transfer
coefficient of each plate is different and therefore, we have an
asymmetric convective cooling. We also assume that natural con-
vection is absent and that the thermal conductivity of the fluid, k, is
constant.

Given the previous assumptions, let us now express the balance
equations for momentum and energy along with their boundary
conditions. In dimensionless terms, upon substitution of the
expression for the shear stress as given in Eq. (1), the momentum
balance equation turns out to be the following

d "y
@( ) 0 (2)

dy”
where the dimensionless velocity u* is normalized by the
maximum axial fluid velocity ug = ((1/m)(@p/ox))'/"b"+1/n while
the dimensionless transversal coordinate is given by y* = y/b. The
solution of Eq. (2) must satisfy the no slip boundary conditions

du”
dy*

u'(1/2) = u'(-1/2) = 0. (3)
In turn, the energy balance equation results
_ 2
&1 jdu’ " (du”
dy dy dy
where the dimensionless temperature is defined as

T" = k(T — To)b" 1 /mui*l.

According to our assumptions, we now consider boundary
conditions of the third kind for the thermal problem. As mentioned
earlier, this has to do with the fact that the amount of heat going
into or out of the system depends on the external temperature as
well as on the (effective) convective heat transfer coefficients. The
latter include both the thermal resistance of the plates and the
external convective heat transfer coefficients. Therefore, the
boundary conditions associated to our heat transfer problem [c.f.
Eq. (4)] are given by

dT* . * *

dy BiiT =0, aty = 1/2 (5)
and

j—;*—BizT* _ 0, aty = 172 6)

In Egs. (5) and (6) the Biot numbers Bi; = (heff)1b/k and
Biy = (hefr)2b/k are the dimensionless expressions of the effective
convective heat transfer coefficients of the upper and lower plates,
(hefr)1 and (hefr)2, respectively, which, due to our former assump-
tions, turn out to be different and k is the heat conductivity of the
fluid. The effective heat transfer coefficients are defined as
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where d,, and k,, are the thickness and thermal conductivity of both
plates which have further been assumed to be the same. In addi-
tion, (he)1 and (he), are the external heat transfer coefficient of the
upper and lower walls, respectively.

As a final point in this section and due to our interest in per-
forming a second-law analysis, we have to specify the entropy
generation rate. In general, the derivation of the form of the entropy
generation of a simple fluid within the framework of irreversible
thermodynamics goes as follows (for details see Refs. [49—52]). One
starts from the assumption of local equilibrium and the local (in
space and time) Gibbs equation for the material time derivative of
the local entropy density. In this latter, apart from the local tem-
perature and the local pressure, the material time derivatives of the
mass density and the internal energy density also appear. By
eliminating these material time derivatives (using the continuity
equation and the energy equation) and comparing with the alter-
native form for the time derivative of the entropy density (written
as a balance equation involving the divergence of the entropy flux
given by the quotient of the heat flux divided by the local tem-
perature and the local entropy generation), one ends up with the
following expression for the local entropy generation rate

7q.grad T . gradv

g = T2 T s

(8)

where q is the heat flux, 7 is the (shear) stress tensor (the super-
index T denoting its transpose) and v the (vectorial) velocity field.
The first term on the right-hand side is due to heat conduction and
the second one to fluid friction. Note that Eq. (8) holds irre-
spectively of whether the fluid is Newtonian or non-Newtonian. It
contains the sum of the usual flux times force terms of irreversible
thermodynamics [50], namely, the fluxes are q and 7 and the cor-
responding forces are grad T/T?> and grad v/T, respectively. The
global entropy generation is finally obtained from integration over
the spatial and time domains. Of course the above expression for
the local entropy generation is only formal and is useless until one
specifies the constitutive equations for both q and 7. Here we will
take Fourier’s law for the former (q = —k grad T) and the stress
tensor for the power-law fluid. Hence, the dimensionless form of
the local entropy generation rate reads
n-1 du” 2
dy* bl

(9)

where s* = gb?[k, T, = kb"'/mul*'T, and the global entropy
generation rate is
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As is clear from the above, if one can determine the velocity and
temperature fields by solving Eqgs. (2) and (4), together with the
boundary conditions Egs. (3), (5) and (6), substitution of the results
in Egs. (9) and (10) will allow us to use the Entropy Generation
Minimization method for the parallel-plate flow of the power-law
fluid with asymmetric convective cooling. This will be presented
in the next Section.

3. Results

The solution to Eq. (2) with the boundary conditions (3) is a
dimensionless generalization of the Poiseuille flow velocity profile
given by (see Eq. (22) in Ref. [43])

1in

¢ () = T (-2, an

to which it reduces for the Newtonian fluid, that is when n = 1
[48]. It is important to remark that care must be taken in reporting
results for power-law fluids in this geometry, since some authors
(see for instance Ref. [45]) take the velocity profiles without the
absolute value which, for some values of n (in particular n = 1/2)
do not satisfy the ‘no slip’ boundary conditions. Various dimen-
sionless velocity profiles both for pseudoplastic (n < 1) and
dilatant (n > 1) fluids are displayed in Fig. 2, where the dimen-
sionless Poiseuille flow profile for the Newtonian fluid has also
been included for comparison. Note that in all cases the profiles
are symmetrical with respect to y* = 0 and vanish at y* = +1/2 as
they should.

Using Eq. (11) to compute du”/dy* and subsequent substitu-
tion of the result in Eq. (4) leads to a second order linear dif-
ferential equation whose solution has to satisfy the boundary
conditions (5) and (6). We have solved such an equation using
Mathematica and obtained the following dimensionless tem-
perature field
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Fig. 2. Dimensionless velocity profiles. a) Different pseudoplastic fluids. b) Different
dilatant fluids. The Newtonian fluid corresponds to the flow behavior index n = 1.
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Again, as it should be, we recover the result of Ref. [23] in the
Newtonian fluid case, namely n = 1. Note that Eq. (12) is valid for
any value of Bi; and Bi; except for the case Bi; = Bi; = 0 (insulating
plates) in which the mathematical problem is ill-posed. Illustra-
tive examples of the dimensionless temperature field for given
values of the Biot numbers Bi; and Bi, in the case of various
pseudoplastic and dilatant fluids, together with a comparison
with the case of the Newtonian fluid are presented in Figs. 3 and 4,
respectively.

As the above graphs indicate, for fixed (but different) values of
Bi; and Biy, the dimensionless temperature fields are not sym-
metrical with respect to y* = 0 and their values increase as n in-
creases. Also, for Bi, > Bij, and for every power-law fluid, the
values of T*(1/2) are higher than those of T*(—1/2). Although not
shown, the converse is true if Biy < Bi;. Only when Bi; = Bi, the
temperature fields become symmetrical around the origin and
then of course T°(1/2) = T*(—1/2). On the other hand, fixing Bi; =1
for both pseudoplastic and dilatant fluids one finds that the values
of the dimensionless temperature field decrease as Bi, (taken to
be greater than 1) increases (c.f. Fig. 4).

Egs. (11) and (12) allow us to compute du*/dy* and dT*/dy",
respectively. In turn, use of such results in Egs. (9) and (10) yields
the global (dimensionless) entropy generation rate per unit
length in the axial direction <s*> as a function of the flow
behavior index n, the external dimensionless ambient tempera-
ture T;, and the two Biot numbers Bi; and Bi,. The explicit
expression is not very illuminating and so will be omitted. Suffice
it to state here that it is readily amenable for numerical evalua-
tion. Without loss of generality and since in our previous study
for the Newtonian fluid [23] we considered mainly the case
where T, = 7, we will in what follows also fix this value for the
dimensionless external ambient temperature. As can be clearly
seen in Figs. 5—8, the qualitative trends already observed for
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Fig. 3. Dimensionless temperature fields for different pseudoplastic and dilatant fluids
when Bi; =1 and Bi, = 3. The Newtonian fluid corresponds to the flow behavior index
n=1
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Fig. 5. Dimensionless global entropy generation rate (normalized with its value at
Bi; = 0) for pseudoplastic and dilatant fluids as a function of Bi; when Bi, = 2 and
T, = 7. The result for the Newtonian fluid corresponds to the flow behavior index
n=1

Newtonian fluids (c.f. Ref. [23]) are also present for all power-law
fluids. To begin with, although not shown we find that when the
two Biot numbers are equal the global entropy generation does
not display a minimum value with respect to Biot number. On the
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Fig. 6. Dimensionless global entropy generation rate (normalized with its value at
Bi; = 0) for pseudoplastic and dilatant fluids as a function of Bi; when Bi, = 3 and
T, = 7. The result for the Newtonian fluid corresponds to the flow behavior index
n=1
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Fig. 7. Dimensionless global entropy generation rate (normalized with its value at
Bi; = 0) for pseudoplastic and dilatant fluids as a function of Bi; when Bi, = 20 and
T, = 7. The result for the Newtonian fluid corresponds to the flow behavior index
n=1

other hand, when the convective cooling is asymmetric there is a
threshold value of the Biot number of the upper plate (which,
except for the Newtonian case that was dealt with in Ref. [23], we
have not been able to determine analytically for all n but, as
follows from Figs. 5 and 6 it should be between Bi; = 2 and
Bi; = 3) beyond which a minimum of the global entropy gener-
ation rate is always present. Given fixed values of the lower plate
Biot number and the external ambient temperature, the corre-
sponding minimum provides the conditions under which the
irreversibilities due to viscous dissipation and/or heat flow are
minimized. As in the Newtonian case, c.f. Figs. 6 and 8, for both
dilatant and pseudoplastic fluids the depth of the minimum in-
creases and its position moves to the right on the lower plate Biot
number Bi; axis as Biy increases.

For the sake of illustration we now take T, = 7 and Bi, = 20,
and display in Fig. 9 the value of the Biot number corresponding to
the minimum of the global entropy generation rate Bijmin as a
function of the flow behavior index n. In this case, no systematic
trend may be discerned.

The availability of the velocity and temperature fields as given
by Egs. (11) and (12) also allow us to consider the global Nusselt
number at the upper plate. In this case it is given by

T,*=7, Bi,=20

0.5 1.0 1.5 2.0 2.5 3.0

n

Fig. 9. Optimum Biot number Biynmi, as a function of the power-law index n when
Bi; =20and T, = 7.
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where the dimensionless bulk temperature (the cross-section
averaged dimensionless temperature of the stream) is defined as

1/2
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In Fig. 10 we display the behavior of the global Nusselt number
at the upper plate (computed in each case with the value of the
lower plate Biot number Bimi, corresponding to the minimum of
the global entropy generation) as a function of the upper plate Biot
number Bi, with T, = 7 and different values of the power-law
index n.

As the above figure indicates, the behavior of the global Nusselt
number at the upper plate Nu(Bijmin) as a function of Bi; is similar
irrespective of whether the fluid is pseudoplastic, Newtonian or
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Fig. 8. Dimensionless global entropy generation rate (normalized with its value at
Bi; = 0) for pseudoplastic and dilatant fluids as a function of Bi; when Bi, = 3100 and
T, = 7. The result for the Newtonian fluid corresponds to the flow behavior index
n=1

Bi,

Fig. 10. Global Nusselt number at the upper plate Nu(Bijmin) for pseudoplastic and
dilatant fluids as a function of the upper plate Biot number Bi; when T, = 7. The result
for the Newtonian fluid corresponds to the flow behavior index n = 1.
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dilatant. As a general trend, for fixed Biy its value increases as the
power-law index increases and this increase is more pronounced
the higher the value of Biy. Although not shown, we find that the
effect of varying the external ambient temperature on the value of
the global Nusselt number at the upper plate Nu(Biimip) is relatively
small and again more pronounced when both n and/or Bi; increase.

4. Concluding remarks

In this paper we have presented a study of heat transfer and
entropy generation in the parallel plate flow of a power-law fluid
with asymmetric convective cooling. The main contributions of our
work are the analytic results for the temperature profiles (c.f. Eq.
(12)) and the computation of the global entropy generation rate and
global Nusselt number at the upper plate under various conditions.
From the analysis of our results one may conclude that the quali-
tative features of the effect of asymmetric convective cooling on the
fully developed flow of a Newtonian fluid between parallel plates
that we had found before [23] remain for power-law fluids. In
particular, if Biy = Biy or if both Bi; — <« and Bi, — o, the global
entropy generation displays no minimum. In contrast, when the
convective cooling is asymmetric, there is a threshold value of the
Biot number of the upper plate (which unfortunately we were not
able to determine analytically for any given n) beyond which a
minimum of the global entropy generation rate is always present.
Therefore, we have shown that for a power-law fluid minimum
entropy generation rates can be reached by extracting heat in the
system in an asymmetric way. Although this provides the condi-
tions under which the irreversibilities due to viscous friction and/or
heat flow are minimized, the heat transfer at the wall presents an
asymptotic behavior but is not necessarily optimized. This has to do
with the fact that, as pointed out by Shah and Skiepko [53], mini-
mum entropy generation is not always related to the best heat
transfer performance. Addressing this point for the present prob-
lem seems certainly worthwhile but lies beyond the scope of this
paper. In any case, what we have found in connection with heat
transfer at the wall is that the local Nusselt number for minimum
entropy generation conditions displays a monotonic behavior as Bi;
increases and reaches a limiting value as Bip — . Our illustrative
calculations strongly suggest that, in order to reduce the irrevers-
ibilities due to viscous dissipation and/or heat flow in devices using
the parallel-plate geometry, the consideration of power-law fluids
instead of Newtonian fluids under similar operating conditions may
prove advantageous. As pointed out above, good engineering heat
transfer design involves minimizing the losses due to irreversible
behavior. Therefore, the possibility of reaching a minimum in the
entropy generation rate using both asymmetric convective cooling
and this or other non-Newtonian fluids, might be useful also to
optimize operating conditions of different kinds of heat transfer
devices.
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