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ABSTRACT: Adiabatic processes in the liquid−vapor two-phase region were studied with several equations of state. The
comparison of the resulting isentropes, particularly their patterns in quality (fraction of vapor phase) vs temperature diagrams,
indicates that there are two different classes of fluids: One class shows a simple pattern where isentropes entering the two-phase
region never leave it again; the other shows a more complicated pattern with reentrant isentropes, which may either cross the
entire two-phase region or exhibit a retrograde behavior. The existence of these two classes can be related to the shapes of
entropy−volume or temperature−entropy curves, and these in turn to the temperature dependence of ideal-gas heat capacities.
The two-phase isentrope that runs to the critical point approaches it with an infinite slope in the quality−temperature diagram.
The slope is positive for reference equations of state, but negative for all other equations of state used in this work.

1. INTRODUCTION

Adiabatic processes involving gases or supercritical fluids occur
within many heat engines, from internal combustion engines to
turbines, and their optimization is essential for the energy
efficiency of motors, power plants, or refrigeration machinery.
Of course, true adiabatic processes, i.e., processes during which
the heat exchange with the environment is exactly zero, are
idealizations only. But processes involving large amounts of
substance or rapid changes of thermodynamic states can come
close to the ideal case.
A special subset of adiabatic processes is the two-phase

adiabatic processes during which a liquid and a vapor phase are
in equilibrium. An example is the adiabatic expansion of a
compressed, hot liquid or a supercritical fluid: The process can
eventually lead to a state on the vapor pressure curve; further
expansion then causes the formation of a vapor phase,
accompanied by rapid cooling of the system.
The Clausius−Rankine cycle, the model process upon which

most thermal power plants are based, involves an adiabatic
expansion of the superheated working fluid which may take it
into the two-phase region.1 As the original (and still the
predominant) working fluid for Clausius−Rankine cycles is
water, most of the thermodynamic studies were made for this
fluid. Over the previous decades, however, other substances
have been investigated as working fluids in the context of
“organic Rankine cycles” (ORC) in order to recover energy
from low- and intermediate-temperature heat reservoirs.2,3

An example of an adiabatic two-phase expansion from the
field of equipment safety is the escape of hot, pressurized

cooling water in a power plant from a broken pipe;4 at least the
early phase of such an accident can be considered adiabatic.
The scenario may be complicated by metastability issues
(superheating or subcooling). Examples are the LOCA (“loss of
coolant accident”) in a nuclear power plant, which involves so-
called flash-boiling, and the BLEVE (“boiling-liquid expanding-
vapor explosion”), which can occur after a fast depressurization
of liquefied natural gas.5,6

Adiabatic two-phase decompression can also take place in
volcanic eruptions, where water gets into contact with hot
magma and rapidly evaporates, and the superheated steam thus
produced seeks an outlet. The explosivity of water has been
extensively discussed by Thieŕy and Mercury.7

One should suppose that two-phase adiabatic processes have
been studied exhaustively and thatas they (in pT space)
follow the vapor pressure curvetheir computation is a trivial
problem. But this is not quite the case. While adiabatic
compressions or expansions of fluids in the single phase state are
discussed in most textbooks on thermodynamics (at least for
ideal gases), two-phase adiabatic processes are either not
mentioned at all or treated superficially, i.e., their discussion is
reduced to their courses in temperature−entropy diagrams.
In this work, we propose calculation methodsa differential

and an algebraic equationfor adiabatic processes in two-
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phase systems and then compute isentropes for several fluids of
technical importance, using some equations of state of varying
complexity, which are relevant for chemical engineering.
Furthermore, we investigate the question whether a two-
phase adiabatic expansion can result in a single-phase state.

2. EQUATIONS OF ADIABATIC PROCESSES
In this section, equations for reversible adiabatic expansions and
compressions of pure fluids are derived. For simplicity’s sake,
only expansion processes are mentioned, but the following
derivations can be applied to compression processes as well.
2.1. Single-Phase Isentropes. Before tackling the problem

of computing adiabatic processes in the liquid−vapor two-
phase region, it may be useful to briefly review the case of
adiabatic processes in a single-phase fluid.
In the course of an adiabatic expansion, there is no heat

exchange with the environment

= =Q T Sd d 0 (1)

and the entropy is constant (assuming that the process is
carried out reversibly). The system gives off mechanical work to
its environment; the required energy is taken entirely from its
internal energy. According to the first law, and if no other forms
of energy are exchanged, such a process in a closed system is
described by

= −U p Vd d (2)

for a pure fluid. The total differential of U in terms of
temperature and volume is
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Combining these two equations leads to the well-known
differential equation for the adiabatic expansion or compression
of a pure fluid:
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or, using the density instead of the volume and switching to
molar variables,
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Assuming (∂p/∂T)V = R/Vm and CV = const leads to the
well-known isentropic formula for ideal gases. But it is not
necessary to make such approximations. CVm and (∂p/∂T)V can
be obtained from an equation of state of the fluid, p(ρ,T), and
its ideal-gas heat capacity function, Cpm

id (T). Then, eq 5 can be
integrated numerically.
2.2. Two-Phase Isentropes. In this work, the special case

is considered where the system is a fluid in a liquid−vapor two-
phase state. It is assumed that the phase equilibrium is
maintained throughout the expansion process, i.e., that there is
no overheating or subcooling, and that liquid and vapor always
have the same temperature.
2.2.1. Algebraic Equation. A simple and straightforward way

to calculate two-phase isentropes can be based on the
constancy of entropy during an adiabatic process. The total
entropy of a two-phase system is of course the sum of the
contributions of the two phases:

ρ ρ= − +S q S T qS T(1 ) ( , ) ( , )m m
l

m
g

(6)

where the ρϕ with ϕ = {l,g} denote the molar densities of the
coexisting liquid and vapor phase, respectively. q is the fraction
of the system that is in the vapor phase, q = ng/(nl + ng); this
property is often called the quality or the dryness of the system.
Equation 6 holds at the initial state of the two-phase isentrope,
(q0,T0), too. Hence q at any other temperature can be obtained
by

ρ
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A result outside of the range 0 ≤ q ≤ 1 indicates that the
two-phase state is no longer stable, and that a single-phase
isentrope should be computed instead.
For the evaluation of eq 7, it is necessary to know the full

Helmholtz energy function, which we write here as

ρ ρ
ρ
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where ρ⊖ = RT⊖/p⊖ is a reference density, namely the density
of an ideal gas at standard temperature, T, and standard
pressure, p⊖. The Helmholtz energy function consists of the
density-independent part of the ideal-gas contribution, its
density-dependent part, and the residual term. The first term
can be calculated from ideal gas heat capacity data, as described
in the Appendix. The residual term can be obtained from a
thermal equation of state, p(ρ,T):

∫ρ ρ
ρ ρ
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In principle, any thermal equation of statefrom simple cubic
equations to high-precision reference equationscan be used.
From the Helmholtz energy function, all other thermody-

namic functions can be obtained by well-known standard
relations. For the readers’ convenience, the relations needed in
this work are listed in the Appendix.
The orthobaric densities and the vapor pressure pσ can then

be obtained by numerically solving the phase equilibrium
conditions:
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for the given temperature T. For this, fast and reliable
algorithms exist (e.g., ref 8, section 5.2.3 or the area method
of Elhassan et al.9). Once the orthobaric densities are known,
the heat of vaporization and the isobaric heat capacities can be
computed in a straightforward manner.
For completeness’ sake, we wish to point out that eq 7 can

also be applied to solid−vapor (sublimation) equilibria after
merely replacing Sm(ρ

l,T) by its counterpart for solid phases.
The entropies of the solid phasesthere can be more than
oneof most substances that can be used in adiabatic
processes have been tabulated. Such tabulations are usually
for a fixed pressure of 0.1 MPa, but pressure effects in the
typical range of sublimation pressures tend to be negligible.
Alternatively, the entropies can be obtained from the
sublimation pressure curves: As the Gibbs energy of the solid
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and the vapor are the same along the sublimation pressure
curve, the Helmholtz energy of the solid can be expressed as

ρ
ρ ρ

= + −
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1 1
m
s

m
g sg

g s
(11)

where ρg and ρs denote the molar densities of the vapor and the
solid at the sublimation pressure psg. The Helmholtz energy of
the vapor is of course given by eq 8. Differentiation with respect
to temperature yields the solid-phase entropy.
2.2.2. Differential Equation. Alternatively, and in analogy to

section 2.1, it is possible to obtain two-phase isentropes from a
differential equation.
Let Vm

l and Vm
g denote the orthobaric molar volumes of the

liquid and the vapor, respectively. Lowering the temperature by
the infinitesimal amount dT liberates the heat

=ϕ ϕ
σ
ϕQ n C Td dm (12)

from the phase ϕ = {l,g}, where nϕ is the amount of substance
of the phase ϕ and Cσm

ϕ denotes the molar heat capacity along
the saturation curve, i.e., the heat capacity of the liquid in the
presence of an infinitesimal amount of vapor, or that of the
vapor in the presence of an infinitesimal amount of liquid.
This heat is then used to move a small amount of substance

from the liquid to the vapor phase. The heat balance of the
process is therefore

+ + Δ =Q Q H nd d d 0l g
vap m (13)

where ΔvapHm denotes the enthalpy of vaporization.
The saturation heat capacities can be related to more

common thermodynamic derivatives by invoking the second
law (assuming that the expansion process is reversible) and
considering the total differential of the entropy of a phase
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The required pressure change is given by Clapeyron’s equation:
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Insertion into eq 14 and observing the relation (∂Sm/∂p)T =
−(∂Vm/∂T)p leads to
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from which the definition of the saturation heat capacity
immediately follows:
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Here, αp
ϕ denotes the isobaric thermal expansivity. Equation 17

as well as some alternative expressions can be found in the
textbook of Rowlinson and Swinton [ref 10, section 2.1].
With the saturation heat capacities, eq 13 can be written as

+ = −Δσ σn C T n C T H nd d dl
m

l g
m

g
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Introducing the quality q (fraction of the amount of
substance that is in the vapor phase) leads to
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This is an ordinary differential equation for q(T), which can
be conveniently solved numerically, for example by the method
of Runge and Kutta.11

For practical purposes, it may be desirable to study a
modified adiabatic process in which the experimental apparatus
provides an additional (constant) heat capacity, perhaps the
heat capacity of the wall material of the pressure vessel. This
case can be modeled by including an additional, “environ-
mental” heat capacity term in eq 19:

−
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Ce = 0 evidently corresponds to the original adiabatic process
and Ce → ∞ to an isothermal process.
All numerical calculations in this work were carried out with

the ThermoC software package.12

3. CALCULATION OF ISENTROPES
3.1. Simple Behavior. Figure 1a and b show the adiabatic

expansion of liquid, compressed propane and carbon dioxide,
respectively, calculated with the Peng−Robinson equation of
state.13,14 Starting at state A, the system follows the single-phase
isentrope to the phase boundary at B, then switches to the two-
phase isentrope, which of course coincides with the vapor
pressure curve in this pT projection.
The single-phase isentrope can be extendedat least

theoreticallyinto the metastable and then through the
unstable region of the phase diagram; it exhibits a kind of
van der Waals loop. For propane, this loop is easily discernible,
whereas for carbon dioxide the maximum lies at very low
temperatures. In practice, however, the system must switch
from the single-phase to the two-phase isentrope at the latest
where the former meets the spinodal curve. This transition is
indicated in the diagrams by arrows; it is accompanied by a
significant pressure increase and is potentially dangerous.
The relationships between single-phase and two-phase curves

are perhaps easier recognizable in a pressure−density diagram,
Figure 2: The adiabatic expansion takes the system along a
single-phase isentrope from A to Bl, where it splits into a liquid
and a vapor phase. In this representation, the two-phase
isentrope consists of two branches, which of course coincide
with the boundary of the vapor−liquid two-phase region. Inside
this region, the isotherms of the equation of state exhibit van
der Waals loops; their minima and maxima are the spinodal
states. The single-phase isentrope, if extended into the two-
phase region, exhibits a van der Waals loop, too. But at the
osculation point of the isentrope with the spinodal, a phase split
is unavoidable; the arrows in the diagram show the effect of an
adiabatic−isochoric spinodal decomposition.
It should be noted that the single-phase isentrope, after

passing through the unstable region, does not intersect the two-
phase isentrope again. Consequently, the system does not
completely evaporate when the expansion proceeds but remains
in a two-phase state.
This fact is easier to see in a qT representation, Figure 3a.

The initial liquid state corresponds to q = 0. When the
expansion sets in, some liquid evaporates (q increases). But at
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the same time, the temperature decreases, and so does the
vapor pressure. As a consequence, q never exceeds 0.5 for this
example, and for large expansions even decreases. This behavior
can be explained with eq 7: As the vapor pressure decreases, the
molar volume and therefore the molar entropy of the vapor
phase grow without bounds, whereas the molar entropy of the
liquid changes slowly. Consequently, q must approach zero.
Below the triple point temperature of carbon dioxide

(approximately 216 K), crystallization is possible, and thus
the vapor−liquid isentropes become metastable. At the triple
point, the solid−vapor equilibrium and the vapor−liquid
equilibrium have the same pressure. As the solid has a lower
molar entropy than the liquid, eq 7 yields a higher q value for
the solid−vapor equilibrium. But as the sublimation pressure
decreases with decreasing temperature more rapidly than the

vapor pressure, the vapor entropy of the solid−vapor
equilibrium is larger, and therefore its q drops to zero faster.
The other curves in Figure 3a show the influence of the

environmental heat capacity. For approximately Ce > 150 J/
(mol K), complete evaporation can be achieved by adiabatic
expansion.
Figure 3b shows the corresponding TS diagrams. The

entropy is that of the carbon dioxide only, without the
environmental contribution. In this representation, the
expansion paths are the same for liquid−vapor and solid−
vapor equilibria, but of course, the molar entropies of the
coexisting phases differ, and so do the qualities along the
expansion curves. If the environmental heat capacity is zero, the
entropy of the carbon dioxide (i.e., the sum of the contributions
of the two phases) is constant, and hence the expansion path in
the diagram is vertical. A positive environmental heat capacity
makes the expansion path bend away from the vertical, so that
it can eventually touch the phase envelope. An infinite
environmental heat capacity would cause the expansion path
to become horizontal, which means that the expansion would
become isothermal.
Figure 4a and b show the adiabatic expansion of a saturated

vapor state (initially q = 1). In contrast to an isothermal
process, an expansion is needed to enter the two-phase region.
Below the triple point temperature, the liquid−vapor two-phase
isentrope becomes metastable with respect to the solid−vapor
isentrope. In both cases, stable or metastable, the systems
remain in a two-phase state. For an environmental heat capacity
Ce ≈ 60 J/(mol K), however, the expansion curve turns back to
the vapor axis of the diagram. This means that, during the
expansion, a transient condensation occurs. This phenomenon
will be discussed in more detail in section 3.2.
Figure 5 gives an overview over the two-phase isentropes of

carbon dioxide. Adiabatic expansions of saturated liquid (q = 0)
or vapor (q = 1) states always lead to a two-phase state; it is not
possible to reach a single phase state. The isentrope starting at

Figure 1. Adiabatic expansion of a fluid, starting at a compressed liquid
state, calculated with the Peng−Robinson equation of state:13,14

pressure−temperature relation. () Single-phase isentrope, stable
portion; (−−) meta- and unstable portions; (bold ) two-phase
isentrope (gray: vapor-pressure curve); (···) spinodal; (arrow)
isochoric spinodal decomposition; (○) critical point. (a) Adiabatic
expansion of compressed, liquid propane. (b) Adiabatic expansion of
compressed, liquid carbon dioxide.

Figure 2. Adiabatic expansion of propane, starting at a compressed
liquid state, calculated with the Peng−Robinson equation of state:13,14

pressure− density relation. () Single-phase isentrope, stable portion
(gray: single-phase isotherm); (−−) single-phase isentrope, meta- and
unstable portions; (bold ) two-phase isentrope (gray: boundary of
two-phase region); (···) spinodal, (arrow) isochoric spinodal
decomposition; (○) critical point.
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the critical point (at q = 0.5; see section 4 for the proof) runs to
q = 0.5958 at 210 K.
This isentrope pattern can be explained with entropy−

volume or temperature−entropy diagrams. Carbon dioxide
belongs to a class of substances which has been named “wet
working fluids,” because the adiabatic expansion step of the
ORC leads to a two-phase state. Figure 6a shows the SV
diagram of methane, another “wet fluid,” along the liquid−
vapor phase boundary, together with its constituents, namely
• the equation of state part, which consists of the residual

entropy plus a volume term, R ln(Vm/Vm
⊖) with Vm

⊖ = 1 cm3/
mol; the residual term is negligible for the larger part of the
vapor branch
• and the “intrinsic” term, which is obtained by integrating

the isochoric heat capacity of the ideal gas

∫= + ⊖
⊖

S T
C T

T
T S T( )

( )
d ( )

T

T V
m
id ,m

id

m
id

(21)

The curves were computed with the van der Waals equation
of state15 in order to show that the phenomena discussed here
are not due to features of a particular equation of state but can
be reproduced with all equations of state.
The equation of state term increases monotonically with

volume. The intrinsic term exhibits a weak maximum; the total
entropy still increases monotonically. From a state on the phase
boundaryeither liquid or vaporan expansion (which
corresponds to a horizontal displacement to the right in Figure
6a) takes the system into the two-phase region and further
expansion cannot get it out again. The same can be seen from
the TS diagram in Figure 6b, where an adiabatic expansion
corresponds to a vertical downward movement.

Figure 3. Adiabatic expansion of carbon dioxide, starting at a saturated
liquid state, calculated with the Peng−Robinson equation of state:13,14

() stable expansion path; (− −) metastable. Parameter: environ-
mental heat capacity Ce/(J mol−1 K−1). (a) Quality−temperature
relation (solid−vapor and liquid−vapor equilibria; an expansion
corresponds to a temperature decrease). (b) Temperature vs entropy
of carbon dioxide (i.e., without the environmental contribution). Gray
curves: boundaries of two-phase regions (solid−vapor and liquid−
vapor).

Figure 4. Adiabatic expansion of carbon dioxide, starting at a saturated
vapor state, calculated with the Peng−Robinson equation of state.13,14

See Figure 3 for an explanation of the line types. (a) Quality−
temperature relation (solid−vapor and liquid−vapor equilibria; an
expansion corresponds to a temperature decrease). (b) Temperature
vs entropy of carbon dioxide (i.e., without the environmental
contribution).
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3.2. Isentropes Crossing the Two-Phase Region.
Benzene exhibits a rather different pattern of isentropes, as
shown in Figure 7: Isentropes starting at saturated liquid states
run to lower temperatures; i.e., they are expansion isentropes,
and they lead to two-phase states. This is similar to the
situation for carbon dioxide, but now the isentropes reach much
larger q values. Isentropes starting at saturated vapor states are
expansion isentropes at low temperatures only; at high
temperatures, they exhibit negative slopes; i.e., they are
compression isentropes.
Comparing the entropy values associated with the isentropes

leads to the insight that there are three different kinds of
isentropes in this diagram:
• There are “normal” isentropes starting from two-phase

states with q ≤ 0.9 at 250 K. Adiabatic compression along these
isentropes leads to saturated liquid states. This behavior is the
same as in the previous section.
• For q > 0.9 at 250 K, there are “re-entrant” isentropes:

They run toward a saturated vapor state (as the isentropes of
carbon dioxide in the previous section), pass virtually through
the single phase region, and re-enter at higher temperatures.
“Virtually” means that the two-phase isentropes can be
computed but reach q values above 1; in reality, the two stable
portions of the two-phase isentrope are connected by a single-
phase isentrope. Isentropes running below the critical isentrope
(i.e., the isentrope that passes through the critical point) of this
kind then run to a saturated liquid state. Consequently, these
are “crossing” isentropes; i.e., they cross the entire two-phase
region, and hence it is possible to achieve a complete
evaporation of a liquid by expansion, or a complete
condensation of a vapor, along one of these isentropes.
• Finally, there are re-entrant isentropes above the critical

isentrope. After reappearing in the diagram at high temper-
atures, they turn back and end in saturated vapor states.
Consequently, the compression of a saturated vapor state in
this region would show a “retrograde” behavior; i.e., there
would be a transient condensation.
In Figure 7, the critical isentrope beginsat 240 Kat q =

0.9814. The isentrope just below it, with an initial q of 0.95, is

of the re-entrant crossing type, and the one above it, with an
initial q of 0.99, is of the re-entrant retrograde type.
Around 350 K, there is a saturated vapor state from which

adiabatic compression or expansion will both take the fluid into
the two-phase region.
The qT map of decane, Figure 8, corresponds to that of

benzene, but without the low-temperature part. In the
temperature range considered here, all isentropes starting at
vapor states are of the re-entrant type. Consequently, there is
now a wide range of temperatures with “crossing” isentropes,
and complete evaporation of liquid decane by adiabatic
expansion is the normal behavior above 480 K initial
temperature.
This is illustrated by Figure 9a and b: Starting at a

compressed liquid state (A), the single-phase isentrope passes
through a kind of van der Waals loop to a single-phase vapor
state, intersecting the two-phase isentrope (in the pT diagram
coinciding with the vapor pressure curve) twice (states B and
C). This means that the system will follow the single-phase

Figure 5. Overview over two-phase isentropes of carbon dioxide:
quality (fraction of substance in the vapor phase) vs temperature,
calculated with the Peng−Robinson equation of state.13,14 () Two-
phase isentropes; (bold ) two-phase isentrope ending in the critical
point (○). Inset: magnification of the critical region.

Figure 6. Molar entropy of methane along the vapor−liquid phase
boundary, computed with the van der Waals equation of state.15 (a)
Dependence of the molar entropy on molar volume (logarithmic
volume scale). () Total molar entropy; (− −) equation of state
contribution (gray curve: without the residual entropy); (−·−)
intrinsic contribution; (○) critical point. (b) Temperature−molar
entropy relation.
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isentrope to the first intersection point B, then follow the two-
phase isentrope to C, and finally switch back to the single-phase
isentrope and run to D.
If the adiabatic expansion is done quickly, it may be possible

to follow the single-phase isentrope into the metastable portion
of the two-phase region. But the system has to switch to the
two-phase isentrope at the latest at the osculation points with
the spinodals.
Again, the explanation for the behavior of the isentropes can

be found in the SV or TS diagrams. Benzene, octane, and
decane are so-called “dry fluids.” Figure 10a, the SV diagram of
octane, shows that the maximum of the intrinsic term is so high
that the total entropy passes through a maximum. The TS
diagram contains a vapor branch with a positive slope.

Consequently, an adiabatic expansion of a saturated liquid
can take the system to a single-phase (“dry”) vapor state.
We can therefore conclude that the intrinsic term decides to

which class“dry” or “wet”a substance belongs.
A closer inspection of the critical region in Figure 10a reveals

that the maximum of the entropy curve is on the vapor branch
(see the inset). This is due to the fact that the maximum of the
intrinsic term coincides with the critical point (Tc is the highest
temperature along the vapor pressure curve, and here the
integral in eq 21 covers the widest range), while the equation of
state term increases monotonically with volume. Consequently,
isentropes originating at saturated vapor states with an entropy
below the critical entropy pass through the two-phase region
and reach states on the liquid branch: these are the “crossing
isentropes” characteristic of dry fluids; isentropes with an
entropy above the critical entropy pass through the two-phase

Figure 7. Overview over two-phase isentropes of benzene: quality vs
temperature, calculated with the Peng−Robinson equation of
state.13,14 For an explanation of the curves, see Figure 5. Dashed
curves: the portions of the isentropes below the triple point
temperature (278.5 K) are metastable with respect to crystallization.

Figure 8. Overview over two-phase isentropes of decane: quality
(fraction of substance in the vapor phase) vs temperature, calculated
with the Peng− Robinson equation of state.13,14 For an explanation of
the lines, see Figure 5.

Figure 9. Adiabatic expansion of compressed liquid decane (state A),
calculated with the Peng−Robinson equation of state.13,14 (a)
Pressure−temperature relation. See Figure 1 for an explanation of
the symbols. (b) Quality−pressure−temperature relation. Surface,
vapor pressure relation; red, spinodals (bold, relevant branch); bold
green, path of the adiabatic process (AB, CD, single-phase isentrope;
BC, two-phase isentrope); thin green, metastable and unstable
portions of single-phase isentrope.
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region and reach states on the vapor branch: these are the
“retrograde isentropes.”
It is possible that the SV curve of a fluid, after passing

through the maximum, exhibits a shallow minimum and then
increases again. An example is benzene (see Figure 11). For a
vapor state at this minimum, an adiabatic expansion or
compression would drive the fluid into the two-phase region.
Evidently, this is the explanation for the behavior shown in
Figure 7.
3.3. Substance Classes. The distinction between “wet”

and “dry” fluids, which have been used here, is usually based on
the slope of the vapor branch in a TS diagram.2 This criterion is
not quite sharp, however, for even a substance like octane must
have a portion of that branch with a negative slope close to the
critical point (see the inset of Figure 10b). It would be better to
base the distinction on whether the vapor branch exhibits an
entropy maximum in the SV or TS diagram. We will adopt this
definition henceforth.

3.3.1. Qualitative Classification. We thus can distinguish
two classes of isentropic behavior:
“wet”: Adiabatic expansion of saturated liquid states (q = 0)

as well as expansion of saturated vapor states (q = 1) drives the
system into the vapor−liquid two-phase region. The expansion
never leads to a single-phase state; the isentropes do not leave
the two-phase region again. Adiabatic compression of saturated
vapor states leads to single-phase states only. The vapor branch
in the SV diagram has a positive slope and in the TS diagram a
negative slope. Examples of such fluids are argon, methane,
carbon dioxide, or water.
“dry”: Fluids of this class exhibit “crossing” two-phase

isentropes, so that it is possible to achieve complete
evaporation of saturated liquid states or complete condensation
of saturated vapor states by adiabatic processes. Adiabatic
compression of saturated vapor states close to the critical
temperature may cause transient condensation (“retrograde”
isentropes). The crossing and retrograde isentropes are the
high-temperature portions of re-entrant isentropes; their low-
temperature parts may be experimentally accessible (dry-1:
butane, benzene) or not (dry-2: hexane, octane, decane).
In Figure 12, the TS curves along the liquid−vapor two-

phase boundary are compared for some small alkanes. It is easy
to see whether (or how often) an isentropic (vertical) path
from a given initial state will cross the phase envelope. The
trend from “wet” to “dry” behavior with increasing chain length
is evident.
Figure 13 indicates the class memberships of several

substances in relation to their critical pressures and temper-
atures. The isentrope patterns were calculated with the Peng−
Robinson equation of state. Evidently, the distribution is not
random: The “dry” substances can all be found at high critical
temperatures and relatively low critical pressures.

3.3.2. Semiquantitative Classification. These considera-
tions can be used for a semiquantitative classification of
substances: The slope of the total entropy function with respect
to volume along the two-phase boundary is

Figure 10. Molar entropy of octane along the vapor−liquid phase
boundary, computed with the van der Waals equation of state. See
Figure 6a for an explanation of the symbols and lines. (a) Dependence
of the molar entropy on molar volume. (b) Temperature−molar
entropy relation.

Figure 11. Molar entropy of benzene along the vapor−liquid phase
boundary, computed with the Peng−Robinson equation of state, as a
function of molar volume (logarithmic volume scale). (○) Critical
point.
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as Vm
ϕ and T are not independent.

dT/dVm
ϕ along the phase boundary can be obtained from the

total differential of Vm by substituting Clapeyron’s equation, eq

15,
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where κT denotes the isothermal compressibility. For the vapor
phase, dT/dVm

g is always negative.
Sufficiently far away from the critical point, the vapor

pressure is low, and the vapor phase therefore behaves as an
ideal gas (Cpm

g → Cpm
id , κT

g → Vm
g /(RT), and αp

g → T−1);
moreover, the orthobaric liquid volume can be neglected
against the vapor volume. Then, eq 17 becomes
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and hence eq 22 turns into
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Here, Tb denotes the normal boiling temperature. ΔvapHm/Tb is
Trouton’s constant, which amounts to about 90 J/(mol K) for
many nonpolar or weakly polar fluids. As ΔvapHm/(RT) > 1 for
subcritical systems far away from the critical point, the sign of
the whole expression thus depends mostly on the ideal gas heat
capacity Cpm

id .
For a small nonlinear molecule at a low temperature at which

vibrations are still not excited, Cpm
id amounts to 4R ≈ 33 J/(mol

K), which is considerably less than Trouton’s constant; for
noble gases or linear molecules, the isobaric heat capacity is
even lower. Thus, argon has a Cpm

id of about 20.8 J/(mol K), and
methane one of 33.3−33.4 J/(mol K) in the temperature range
0.5−1 Tc. Consequently, the slope of the entropy function must
be positive for these substances, and hence they are “wet.”
Large molecules, however, have low-frequency bending

vibrations and librations which can be excited to a significant
extent even at low temperatures. Octane, for instance, has a Cpm

id

of about 181−315 J/(mol K) in the temperature range 0.5−1.0
Tc (285−569 K), which evidently outweighs Trouton’s
constant: it belongs to class “dry-2” (see Figure 14). Butane
has 79−131 J/(mol K) and is therefore in class “dry-1”.
These considerations are crude approximations only; for an

accurate classification of isentrope behavior, SV or TS diagrams
should be constructed.
Figure 15 shows the distribution of substances with respect

to their isobaric ideal-gas heat capacities and enthalpies of
vaporization, both computed at 0.7Tc. In agreement with the
previous considerations, “wet” substances occupy the lower part
of the diagram. The diagram depends to some extent on the
equation of state used for the calculcation of isentropes (here:
the Peng−Robinson equation); for other equations, the
locations of the points and the class assignments might be
slightly different. For instance, propane is “dry” if the van der
Waals equation is used.
The boundary of the shaded area in Figure 15 merely

indicates a trend; it was calculated by setting the parameters of
the equation of states and the heat capacity function to rather
artificial values. Most fluids have a ΔvapHm/(RT) in a rather
narrow range of 8−12 (at 0.7Tc); for them, the boundary
between “wet” and “dry” runs at Cpm

id (0.7Tc)/R ≈ 11.
At sufficiently low temperatures, the excitation of vibrations

becomes unlikely, and then even large molecules must
theoretically exhibit a constant ideal-gas heat capacity Cpm

id of

Figure 12. Reduced temperature vs reduced entropy along the liquid−
vapor two-phase boundary for some alkanes computed with the Peng−
Robinson equation of state. () ethane, (− −) butane, (−·−) hexane,
(−··−) decane.

Figure 13. Critical pressures and temperatures of some technically
important fluids, and classification of their isentrope pattern, based on
the Peng−Robinson equation of state. (○) “wet” fluids, (●) “dry”
fluids.
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merely 4R ≈ 33.25 J/(mol K) (assuming a nonlinear molecule).
Then the equation of state contribution to the entropy
necessarily causes a positive slope in the SV diagram.
Consequently, all “dry” fluids must in principle conform to
the SV diagram (Figure 11) and to the isentrope pattern Figure
7: Adiabatic expansion will ultimately lead to a two-phase state,
but for some substances the minimum of the entropy curve
may be practically inaccessible because of crystallization or
because the vapor pressure is too low.

4. ISENTROPES AT THE CRITICAL POINT
Figures 5, 7, and 8 show that the “critical isentrope,” i.e., the
isentrope that passes through the critical point, approaches this
point in a qT diagram with a large negative slope. In order to
analyze the limiting behavior of the critical isentrope, it is useful
to consider the Taylor series expansion of the molar entropy
around a state (T,Vm) in the vicinity of the critical point with

respect to the reduced temperature and volume deviations, δT̃
= T/Tc − 1 and δṼ = Vm/Vmc − 1, respectively. The entropy at
the critical point can then be expressed as
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Close to the critical point, the thermodynamic properties of
fluids can be described by power laws,10,16 for example the
isochoric heat capacity

δ= − ̃α
α−C RB T( )V m (28)

the orthobaric densities
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the isothermal compressibility along the critical isochore
(negative for subcritical temperatures)
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the isochoric pressure coefficients on the phase boundary
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and the curvature of the vapor pressure curve
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α−θ are so-called critical exponents, Bα−Bϵ (dimensionless)
critical amplitudes. Equations 29−32 are valid for subcritical
conditions, δT̃ ≤ 0, but some can be extended to supercritical
conditions (but then may have different amplitudes). The
upper signs in eqs 29 and 31 refer to the liquid, the lower to the
vapor. Equations 29−32 are not independent, but can be
derived from an underlying “scaling equation of state” [ref 17,
eq 1.22]. The critical exponents are connected by “scaling
equalities”

γ α β

ε α β

θ α β

= − −

= − −

= +

2 2

1

(33)

Classical theories of the fluid state yield α = 0 and β = 0.5.
Experiments as well as renormalization group theory give
exponents in the range 0 ≤ α ≤ 0.15 and 0.32 ≤ β ≤ 0.36.10,16

With these power laws, it is possible to express some of the
coefficients in eq 27:

Figure 14. Isobaric ideal-gas heat capacities of various substances as
functions of temperature.

Figure 15. Isobaric ideal-gas heat capacities, Cpm
id /R, and heats of

vaporization, ΔvapHm, of some technically important fluids at T =
0.7Tc, and classification of their isentrope pattern, based on the Peng−
Robinson equation of state. (○) “wet” fluids, (●) “dry” fluids.
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Inserting these relations as well as the density power law, eq 29,
into the entropy series, keeping the relevant terms only, then
leads to
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The derivation of this equation is complicated by the fact
that the third- and higher-order terms of the series expansion of
Sm contain terms proportional to (−δT̃)1−α, too. These terms,
however, are smaller and do not change the outcome
significantly. So the α series in eq 35 converges against (1 −
α)−1 and the γ series to γ2γ−2. With these results, eq 7 can be
turned into
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From this equation, it is evident that qc = (1/2) at the critical
point. Furthermore, q − qc vanishes as (−δT̃)1−α−β, and
consequently the slope of the critical isentrope diverges as
(−δT̃)1−α−β.
The leading factor in the numerator of eq 36 contains a

negative term. For cubic equations, it tends to be small; hence q
> (1/2) close to the critical point and (dq/dT) → −∞. More
accurate equations of state usually have rather large Bβ

amplitudes in order to represent the fluctuation-caused
widening of the phase boundary; consequently such equations
may generate critical isentropes with q > (1/2) and (dq/dT) →
+∞.

So the reference equation of state of carbon dioxide by Span
and Wagner18 yields a qT diagram, Figure 16, that is very

similar to that of the Peng−Robinson equation. The critical
isentrope has a slightly lower initial q of 0.5645; here, however,
the critical isentrope turns upward close to the critical point
and ends there with a positive-infinite slope.
The isentropes of water show a similar behavior, as can be

seen in Figure 17. The calculations were made with the IAPWS

reference equation of state by Wagner and Pruß.19 In contrast
to carbon dioxide, the initial quality of the “critical isentrope” is
lower, about 0.4813; furthermore, near-critical isentropes
exhibit a maximum at relatively high reduced temperatures.
That indeed the ability of an equation of state to represent

the near-critical behavior decides the terminal slope of the
critical isentrope can be seen in Figure 18: This diagram was
computed with the “short Span−Wagner” equation,20−22 a

Figure 16. Overview over two-phase isentropes of carbon dioxide:
quality vs temperature, calculated with the reference equation of state
of Span and Wagner.18 For an explanation of the lines, see Figure 5

Figure 17. Overview over two-phase isentropes of water: quality vs
temperature, calculated with a reference equation of state.19 For an
explanation of the lines, see Figure 5.
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simplified version of the Setzmann−Wagner reference equation
for methane.23 The short equation represents the thermody-
namic properties of methane very well, and thus the critical
isentrope shows the typical approach “from below,” but very
close to the critical point the classical behavior dominates,
causing a negative infinite terminal slope.

5. CONCLUSION
The adiabatic expansion or compression of a fluid in the
vapor−liquid two phase region has to follow the vapor pressure
curve, if phase equilibrium is maintained during the process.
The “quality” (fraction of substance that is in the vapor phase)
can be calculated either from an ordinary differential equation
orperhaps more efficientlyfrom the entropy balance, using
arbitrary equations of state in combination with the ideal-gas
heat capacity function.
A systematic survey of quality vs temperature isentrope

diagrams for many substances reveals that there are two
different isentrope patterns, namely,

• a simple pattern (called here the “wet” fluid pattern, after
the classification of ORC fluids), where two-phase
isentropes starting at all-liquid or all-vapor states never
reach the opposite state; i.e., the adiabatic expansion of a
liquid never leads to complete evaporation,

• and a complicated pattern (called here the “dry”fluid
pattern), where two-phase isentropes can cross the
vapor−liquid coexistence region, so that the adiabatic
expansion of a liquid can achieve a complete evaporation,
or an adiabatic compression of a vapor, a complete
condensation. The crossing isentropes are the high-
temperature portions of re-entrant isentropes. For
expansions or compressions of saturated vapor states
close to the critical temperature, the calculations predict
transient condensation.

These two classes can be found for all equations of state,
from simple cubic to reference equations. They can be
explained with the shape of entropy−volume curves along the
phase boundary, which may or may not exhibit a maximum, or
with temperature−entropy diagrams. A crude test can be based

on the ideal-gas heat capacity function: substances with
Cpm
id (0.7Tc)/R > 11 are likely to belong to the “dry” class.
For a more accurate test, the heat of vaporization should also

be taken into account. But its influence is positively inferior to
that of the ideal-gas heat capacity.
The critical isentrope (i.e., the isentrope that runs through

the critical point) approaches the critical point with an infinite
slope, dq/dT → ±∞. For simple equations of state, the slope is
usually negative; more accurate equations that account for
critical fluctuations, in particular reference equations, may
exhibit a positive terminal slope. Hence, simple equations of
state and reference equations give qualitatively dif ferent
predictions close to the critical point: A small adiabatic
expansion of a critical fluid will result in either a depression
of the meniscus (simple equation of state) or a rise (reference
equation of state).

■ APPENDIX. AUXILIARY EQUATIONS

1. Ideal-Gas Functions
The isochoric heat capacity function of the ideal gas, CVm

id (T),
can be conveniently set up by constructing a natural cubic
spline function over a tabulation of experimental heat capacities
(Cpm

id (T) − R), but of course other functions can be used, too.
In some modern reference equations of state (e.g., the IAPWS
equation for water19), the ideal-gas heat capacity is modeled
after the heat capacity function of the harmonic oscillator.
Once CVm

id (T) is given, the other thermodynamic functions of
the ideal gas (density-independent parts only) are obtained as
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Here, p⊖ = 0.1 MPa and T⊖ = 298.15 K are the thermodynamic
standard conditions. If a cubic spline function is used for CVm

id ,
the integrations can be carried out analytically.
2. Functions of the Real Fluid
Let the residual Helmholtz energy be given by eq 9. Then the
other thermodynamic functions required in this work are
obtained as
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Figure 18. Overview over two-phase isentropes of methane: quality vs
temperature, calculated with the “short Span−Wagner” equation of
state.20−22 For an explanation of the lines, see Figure 5.
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The heat of vaporization is then
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■ SYMBOLS
A = Helmholtz energy
Bx = critical amplitude (of a “power law”) associated with the
critical exponent x
C = heat capacity
H = enthalpy
n = amount of substance
p = pressure
Q = heat
q = “quality”, q = ng/n
R = gas constant
S = entropy
T = temperature
U = internal energy
V = volume
α = critical exponent of the isochoric heat capacity along the
critical isochore
αp = isobaric thermal expansivity
β = critical exponent of the orthobaric densities
βV = isochoric pressure coefficient
γ = critical exponent of the isothermal compressibility
δX̃ = relative deviation of property X from its critical value,
(X − Xc)/Xc
ϵ = critical exponent of the isochoric pressure coefficient
along the phase boundary
θ = critical exponent describing the curvature of the vapor
pressure curve and the isochoric pressure coefficient along
the phase boundary

κT = isothermal compressibility
ρ = molar density, ρ = 1/Vm

Subscripts
b = normal boiling point
c = critical point
e = environmental heat capacity
m = molar
p = derivative at constant pressure
T = derivative at constant temperature
V = derivative at constant volume
vap = vaporization
σ = along the vapor pressure curve, at saturation
0 = initial state, starting point of an isentrope

Superscripts
g = gas, vapor phase
l = liquid
id = ideal gas
r = residual
s = solid
ϕ = arbitrary phase
⊖ = reference state
X̃ = reduced (dimensionless) property X

■ REFERENCES
(1) Baehr, H. D. Thermodynamik, 8th ed.; Springer: Berlin, 1992.
(2) Hung, T. C.; Shai, T. Y.; Wang, S. K. A review of organic Rankine
cycles (ORCs) for the recovery of low-grade waste heat. Energy 1997,
22, 664.
(3) Chen, H.; Goswami, D. Y.; Stefanakos, E. K. A review of
thermodynamic cycles and working fluids for the conversion of low-
grade heat. Renewable Sustainable Energy Rev. 2010, 14, 3059.
(4) Takamasa, T.; Kondo, K.; Aya, I. Flashing of high-pressure
saturated water into the pool water. J. Atom. Energy Soc. Jpn. 1997, 39,
78.
(5) Pinhasi, G. A.; Ullmann, A.; Dayan, A. Modeling of flashing two-
phase flow. Rev. Chem. Eng. 2005, 21, 133.
(6) Abbasi, T.; Abbasi, S. A. Accidental risk of superheated liquids
and a framework for predicting the superheat limit. J. Loss Prev. Process
Ind. 2007, 20, 165.
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