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The nonlinear instability of a thin film flowing down a heated, sinusoidally deformed thick wall of finite thermal conduc-
tivity is investigated. The stabilizing resonant effects of topography obtained in the isothermal case by Dávalos-Orozco
(2007, 2008) are investigated along with the stabilizing effects of the thickness and thermal conductivity of the wall
found by Dávalos-Orozco (2012). In contrast to the case of a very good thermal conducting wall, the Benney type evo-
lution equation obtained here allows for the presence of topographic effects in the thermocapillary term. In the particular
conditions of the problem investigated here, the important result is found that, due to the finite thickness and thermal
conductivity of the wall, the film response to the wall deformation decreases in amplitude when the Marangoni number
increases. This is due to the extra deformations which appear in the film response in the region near the thinnest part of
the wall where its relative thermal conductivity is very high. By contrast, the amplitude of the time-dependent pertur-
bations applied on the free surface increases with the Marangoni number Ma. That is, for fixed initial amplitude, they
evolve in time and space to reach a saturation amplitude which increases with Ma. Furthermore, it is shown that it is
still possible to stabilize those perturbations in the range of Marangoni numbers investigated when spatial resonance
occurs.

KEY WORDS: thin liquid film, inclined plane, deformed thick wall, Marangoni effect, thermocapillarity

1. INTRODUCTION

The interest on thin liquid films has increased in recent years due to important applications found in the problems of
coating and heat transfer, for example. In the first case it is of interest to have a flat free surface. In the second case,
the free surface perturbations might be of interest because the larger the free surface is, the more easily the heat is
dissipated [see, for example, Deng et al. (2013)]. The goal of the present paper is to find a way to stabilize a thin fluid
layer in the presence of destabilizing thermocapillarity effects due to a temperature gradient across the layer.

Here, in particular, it is of interest to investigate the effects the deformations of a thick wall have on the flow
instability. Some papers on this subject have been published in past years in the literature. Experiments have been
developed for large-amplitude wall deformation by Zhao and Cerro (1992) and Shetty and Cerro (1993), who found
that the position of the liquid free surface has the same period as the wavy wall and a phase shift which depends on the
parameters of the flow. The experimental results had good agreement with those obtained from a nonlinear ordinary
differential equation for the surface deformation. The theory is checked with experiments by Wierschem et al. (2002).

An analytical linear model has been proposed by Bontozoglou and Papapolymerou (1997) to understand the
resonant phenomenon appearing at the free surface due to a particular wavelength of the wall wavy deformations.
Wierschem and Aksel (2003) found by a linear stability analysis that the waviness of the wall increases the effective
critical Reynolds number in comparison to that of the flow in a flat wall.

Some analytical solutions to the problem with small Reynolds number are proposed by Scholle et al. (2004). They
found the creation of vortices when the film thickness and waviness exceed a limit. Numerical boundary-integral
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NOMENCLATURE

A air jet maximum time-dependent pressure Re Reynolds number
a air jet time-dependent pressure dispersion S scaled surface tension number
B wall deformation amplitude T fluid temperature
Bi Biot number Tambient ambient atmosphere temperature
c phase velocity TL wall lower-face temperature
d dwall/h0 Twall wall temperature
dwall wall thickness T0 zeroth-order fluid temperature
h(x, y, t) film local thickness u velocityx-component
H(x, y, t) film local perturbation U representative velocity
h0 unperturbed film thickness v velocityy-component
Hh heat-transfer coefficient w velocityz-component
kc critical wavenumber
kf fluid heat conductivity Greek Symbols
km maximum growth wavenumber β wall inclination angle
ks subcritical wavenumber Γ growth rate
kwall wall heat conductivity ∆ mean difference
kx wavenumberx-component ε wave slope smallness parameter
ky wavenumbery-component ζ wall deformation
L wall wavelength over perturbation κ thermal diffusivity

wavelength ratio λ wavelength
Ma Marangoni number ν kinematic viscosity
p pressure ρ fluid density
Pp surface external pressure σ surface tension
Pr Prandtl number Σ surface tension number
Qc wall-over-fluid conductivity ratio ω frequency of oscillation

methods are presented by Pozrikidis (1988) for creeping flow. Malamataris and Bontozoglou (1999), by means of
numerical analysis, found conditions for flow reversal and a resonance for large Reynolds numbers.

The flow down vertical heated wavy cylinders has been investigated theoretically and experimentally by Negny
et al. (2001a,b). Trifonov (1998) uses an integral model to investigate the flow down a wavy wall and found that the
numerical solution of this model and that of the Navier-Stokes equations agree for moderate Reynolds number where
the instability is due to surface tension.

Valluri et al. (2005) used the integral balance method and found suppression of growth when the wall is corrugated.
Kalliadasis et al. (2000) investigated the thin-film response to mounds and cavities with an emphasis on the magnitude
of ridges formed at small curvature (steep) regions of the deformed wall. Bielarz and Kalliadasis (2003) present results
of films flowing down walls with topography and include the effects of intermolecular forces.

Usha and Uma (2004) made a longwave approximation for the evolution of a viscoelastic thin film down a wavy
wall and then used a multiple scale analysis to obtain an evolution equation which has nonlinearity only in one term.
Alleborn and Rasziller (2004) investigate a thin film down a wall with topography and under the action of an external
localized pressure. D́avalos-Orozco (2007) found, in a numerical analysis in space and time of a Benney-type equation
including smooth wall deformations, that it is possible to stabilize the time-dependent perturbations imposed on the
free surface by means of sinusoidal wall deformations. This phenomenon is a spatial resonance due to the large-
amplitude response of the free surface to the waviness of the wall. This resonance produces a local decrease of the
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thickness of the layer that takes the time-dependent perturbations into a region where the flow is stable. The important
point is that the stabilizing effect is so strong that the perturbations cannot recover in the next crest of the free surface
response and the perturbation fades away in space and time. Dávalos-Orozco (2008) has shown that this effect can also
occur for finite spatial extension of the waviness of the wall and that even a small deformation like a one-dimensional
pit or hole may have an important influence on stability in a long spatial range. This problem has been extended to
a viscoelastic upper-convected fluid layer by Dávalos-Orozco (2013b). Note that by means of an integral method,
Trifonov (2007a) also found stabilizing results due to sinusoidal deformation of the wall. Trifonov (2007b) confirmed
this by means of the the numerical solution of the Navier-Stokes equations and found instability when the wave and
wall wavelength are similar.

Other papers have appeared in the literature discussing the stabilizing effect of the wavy wall. Oron and Heining
(2008) used the weighted-residual integral boundary layer model for this problem. Wierschem et al. (2008) found new
results regarding the spatial resonance due to a wavy wall by means of linear theory. Heining et al. (2009a), by solving
numerically the full steady nonlinear Navier-Stokes equations, found bistable resonance and the coupling of lower
harmonics and wall deformation to generate higher harmonics. D’Alessio et al. (2009) present an approximation to
the problem which is combined with the weighted-residual integral boundary layer model and find that for weak and
moderate surface tension the wavy wall stabilizes, but for strong surface tension it destabilizes. Heining and Aksel
(2009b), based on the free surface deformations, propose a method to determine the bottom profile. Hacker and Uecker
(2009) propose a weighted-residual integral boundary layer equation for the solution of the problem. They are able
to describe vortices in the troughs of the wavy wall with a better precision than before. Pascal and D’Alessio (2010)
present a combination of the effects on stability of the waviness of the wall and its permeability. Heining and Aksel
(2010) apply the effects of a sinusoidal wall to the stability of a non-Newtonian power-law fluid. The formation and
presence of eddies due to the wall deformation was investigated by Scholle et al. (2008). The possible stabilization
of the vortices was studied by Wierschem et al. (2010). They found that the increase of Reynolds number produces
a decrease in the size of the vortices, which may disappear if its magnitude is large enough. Gambaryan-Roisman
et al. (2011) used the integral boundary layer method to investigate the stability of the film under three-dimensional
meandering wall deformations. Heining et al. (2012) investigated the effects of corrugations of the wall on pattern
formation and on laminar mixing. The stability of the film was investigated by Veremieiev et al. (2012) under the
action of an external electric field. Cao et al. (2013) present experiments with the goal to understand even more
the behavior of thin films falling down a deformed wall. They found a new instability mode due to short traveling
waves. Pollak and Aksel (2013) present experimental results of the linear stability of a film going down a wavy wall.
They use steep undulations to calculate the stability branches. Heining et al. (2013) investigated the inverse problem
of calculating the wall topography and free surface deformation by measuring one component of the free surface
velocity.

Some papers have been published in relation to the Marangoni instability. Alexeev et al. (2005) present experi-
ments and numerical analysis on Marangoni phenomena with a horizontal deformed wall. They found the possibility
of rupture of the film, as well as in the paper by Kabova et al. (2006). Saprykin et al. (2007) made a lubrication
approximation and found an accumulation of liquid in the troughs due to the higher surface tension.

Recently, D’Alessio et al. (2010) calculated the stability of a thin film falling down a heated wavy wall. It was
assumed that the wall is a very good heat conductor. Use was made of the weighted-residual method to calculate a
nonlinear equation to describe the evolution of the free surface perturbations. They also present in their appendix a
Benney-type equation, including topography and thermal Marangoni effects, under the assumption of a very good
thermal conducting wall; however, they do not present solutions of that nonlinear equation. The numerical solutions
have been calculated and presented in Dávalos-Orozco (2013a). Ogden et al. (2011) extended this problem to include
porosity in the wavy wall.

The thickness and thermal conductivity of the wall have been used by a few authors. Oron et al. (1996) needed
to use the thickness of the wall to eliminate singularities at the rupture point in a problem of thermal and evaporative
instabilities. Kabova et al. (2006) included in their thermal Marangoni problem wall topography and finite thickness
and conductivity of the wall. Gambaryan-Roisman et al. (2010) investigated a thermocapillary problem of a liquid
layer over a thick wall with variable thermal conductivity. The variation of the thickness of the wall is only done as-
suming a relation with the thermal conductivity nonuniformity. Gambaryan-Roisman and Stephan (2009) investigated
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the formation of rivulets in thin films flowing down a heated thick wall with topography and taking into account the
Lennard-Jones potential, but only longitudinal undulations are used.

Dávalos-Orozco (2012) investigated extensively the problem of Kabova et al. (2006) and Gambaryan-Roisman
(2010) in the case of a thin film flowing down a flat wall with finite thickness and thermal conductivity. It is shown
that the ratiod/QC of the wall-liquid thicknesses ratiod over the wall-liquid conductivities ratioQC plays a very
important stabilizing roll with regard to the flow.

Here, the goal is to investigate the combined effects of wall topography, finite thickness, and thermal conductivity
of the wall. It is of interest because, as shown first by Kabova et al. (2006) in the lubrication approximation, when
the wall is thick the deformations introduce a new factor in the thermocapillary term of the evolution equation. This
factor disappears when the wall is a very good conductor. Therefore the thermocapillary term reduces to the same one
found in the evolution equation for a flat, thick, very well conducting wall calculated by Dávalos-Orozco (2012) and
found in Eq. (A3) of D’Alessio et al. (2010).

In the present paper it is of great concern to find the parameter range where the spatial resonance occurs and the
possibility of stabilizing the flow, including the thickness of the wall. Rupture phenomena is not taken into account
(see, for example, Ajaev, 2013). The evolution equation will be calculated under the lubrication approximation (Ben-
ney, 1966; Joo, et al., 1991a,b; Joo and Davis, 1992; Dávalos-Orozco et al., 1997; Dávalos-Orozco and Busse, 2002;
Dávalos-Orozco, 2007, 2008), including a thermocapillary term. Therefore the stabilizing effect of the isothermal
sinusoidal wall at spatial resonance might be more difficult to attain (Dávalos-Orozco, 2007, 2008). The limitations
of the lubrication approximation model have been investigated in Schied et al. (2005).

The paper is structured as follows. In the next section, the perturbed Benney equation is calculated, including
thermocapillarity, wall deformation, finite thickness, and thermal conductivity. In Sec. 3, numerical solutions of the
equation are presented. Sections 4 and 5 are the Discussion and Conclusions, respectively.

2. PERTURBED BENNEY EQUATION WITH THERMOCAPILLARITY, WALL DEFORMATION, FINITE
THICKNESS, AND THERMAL CONDUCTIVITY

In this section the perturbed Benney equation is calculated, including the effects of the thick wall deformation and
thermocapillarity. The coordinate system used is related with that of the flow down a flat wall, where the main velocity
component is in thex-direction, which is perpendicular to thez-direction crossing the film thickness and pointing
outwards from the fluid film (see Fig. 1). The lower face of the wall is located atz = −dwall, wheredwall is the
thickness of the wall. They-direction is perpendicular to these two, assuming the system is right handed. This is
used as a reference coordinate system to set the wall deformations and the free surface deformations appearing as a
response to the wall profile.

The approximation is based onε = 2πh0/λ ≪ 1, which is the small parameter. Here, the thickness of the layer
is represented byh0 and the effective wavelength byλ, which is supposed to be very long. Therefore the slope of the
free surface deformations is small. It is assumed that the wall deformations satisfy the same conditions. The nondi-
mensionalization is done by means ofh0 for distance in thez-direction,λ/2π for distance in thex- andy-directions,
h0λ/(ν2π) for time,ν/h0 for velocity,ρν2/h2

0 for pressure, and△T = (TL − Tambient) > 0 for temperature. Here,
ν is the kinematic viscosity andρ is the density. Besides,TL is the temperature at the lower face of the wall, and
Tambient is the temperature of the ambient atmosphere above the fluid free surface.

If the unperturbed free surface is set atz = ζ(x, y)+ 1, then the perturbed free surface is located atz = ζ(x, y)+
1+H(x, y, t) = ζ(x, y) + h(x, y, t). The functionH(x, y, t) is the film local perturbation. Here,ζ(x, y) is the wall
deformation. The wall lower face is found atz = −d = −dwall/h0.

If the angle of inclination of the wall isβ, Re= gh3
0/ν

2 is the Reynolds number and the Prandtl number is
Pr = ν/κ (whereκ is the fluid thermal diffusivity). The nondimensional and scaled Navier-Stokes, continuity, and
heat diffusion equations are

εut + εuux + εvuy + wuz = −εpx + ε2uxx + ε2uyy + uzz + Resinβ, (1)

εvt + εuvx + εvvy + wvz = −εpy + ε2vxx + ε2vyy + vzz, (2)
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FIG. 1: Vertical wall and thin film system. The mean non dimensional wall thickness isd = 0.11, (1) Wall sinusoidal
deformation (solid), (2) Mean height of the wall (dashed), (3) Lower side of the wall located atz = –0.11 (dashed) with
non dimensional temperature 1, larger than that of the atmosphere above the free surface, (4) Free surface response
to the wall deformation, (5) Mean height of the unperturbed free surface (dotted), (6) Time dependent perturbations
excited atx = 0 and running on the free surfaces response. They have a local heighth(x, t) with respect to the wall
deformation. The largest and smallest thickness of the wall are 0.21 and 0.01, respectively.

εwt + εuwx + εvwy + wwz = −pz + ε2wxx + ε2wyy + wzz − Recosβ, (3)

wz = −εux − εvy, (4)

Pr (εTt + εuTx + εvTy + wTz) = ε2Txx + ε2Tyy + Tzz. (5)

ν

kwall
εTwallt = ε2Twallxx + ε2Twallyy + Twallzz. (6)

Subindexesx, y, z, andt indicate partial derivatives. The variables in the equations are as follows:(u, v, w) are the
velocity components in the(x, y, z) directions,p is the pressure,T is the temperature,Twall is the wall temperature,
andkwall is the wall thermal diffusivity. The boundary conditions are evaluated at the wall and at the free surface. At
the wall, the nonslip condition is

u = v = w = 0 atz = ζ(x, y), (7)

whereζ(x, y) is the smooth wall deformation [see Dávalos-Orozco (2007)]. Note that whenζ(x, y) = 0 the wall is
flat. The normal stress boundary condition is

− p+
1

N2

[
ε3(uxf

2
x + vyf

2
y ) + ε3(uy + vx)fxfy − ε(vz + εwy)fy − ε(uz + εwx)fx + wz

]
= Pp(x, y, t)

− 3

N3
S[(1 + ε2f2

y )fxx + (1 + ε2f2
x)fyy − 2ε2fxfyfxy] at z = ζ(x, y) + h(x, y, t), (8)

wheref(x, y, t) = ζ(x, y) + h(x, y, t) andN =
√

1+ ε2f2
x + ε2f2

y . Heref(x, y, t) is the total height of the free

surface with respect to the origin of the coordinate system.h(x, y, t) is the location of the free surface relative to
the local wall deformation and its magnitude varies around the nondimensional thickness 1. In the absence of time
periodic perturbations [see Eq. 14)],h(x, y, t) is a response of the fluid layer due to surface tension and shear stresses
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appearing whenζ(x, y) ≠ 0. The tangential shear stresses are not zero due to the shear stresses produced by the
changes of surface tension caused by the imposed temperature gradient. They are

ε(wz − εux)fx − 1

2
ε2(uy + vx)fy +

1

2
(uz + εwx)(1− ε2f2

x)−
1

2
ε2(εwy + vz)fxfy =

Ma
Pr

(εTx + εhxTz)

at z = ζ(x, y) + h(x, y, t), (9)

and

ε(wz − εuy)fy −
1

2
ε2(uy + vx)fx +

1

2
(vz + εwy)(1− ε2f2

y )−
1

2
ε2(εwx + uz)fxfy =

Ma
Pr

(εTy + εhyTz)

at z = ζ(x, y) + h(x, y, t). (10)

The temperature conditions are

Twall = 1, at z = −d

Twall = T and QcdTwall/dz = dT/dz, at z = 0 (11)

Tz + Bi(T + 1) = 0 at z = ζ(x, y) + h(x, y, t), (12)

where S= ε2Σ andΣ = σh0/(3ρν2) is the nondimensional surface tension number withσ the surface tension. The
ratio of the wall and fluid heat conductivities is represented byQc = kwall/kf . The Biot number is Bi= Hhh0/kf ,
whereHh is the coefficient of heat transfer. The Marangoni number is defined as Ma= (−dσ/dT )△Th0/(ρνκ).
The scaling used in the definition of S implicitly assumes that surface tension is very strong. The kinematic boundary
condition is

w = εht + εufx + εvfy at z = ζ(x, y) + h(x, y, t). (13)

Notice that a pressurePp(x, y, t) appears in the normal stress boundary condition Eq. (8). This pressure is supposed
to be applied on the free surface from the ambient air in the form of a turbulent jet. The goal is to use it to control
locally the position and frequency of the time-dependent perturbations applied on the thin film. That pressure will be
assumed to have the form

Pp(x, y, t) = A
∣∣∣sin ω

2
t
∣∣∣ exp[−a(x2 + y2)]. (14)

In the numerical calculations, this turbulent air jet will be striking periodically on the free surface around the origin.
For applications of a nonoscillating turbulent air slot jet (plane jet) see Lacanette et al., (2006). In a turbulent air jet
the impingement pressure profile on the free surface has the form of a Gaussian (Lacanette et al., 2006). The meaning
of the constantsA anda of the pressurePp in Eq. (14) is the following.A represents the maximum air jet pressure
on the surface, and the inverse of the square root ofa represents the spreading range of the jet on the surface. As
will be seen below in the evolution Eq. (19), this pressurePp(x, y, t) is operated by a second derivative in space.
Therefore the constantsA anda will appear multiplied asAa2. In the numerical analysis of Eq. (19), this product may
produce large-amplitude deformations on the free surface. This effect avoids the fast saturation of the time-dependent
perturbation in a short space interval, mainly when the saturation amplitude is small. For this reason, and after some
trial numerical calculations, the decision was to fix the magnitudes of those constants asA = 0.0001 anda = 0.05.
Here,ω is the frequency of oscillation, which is divided by two because a jet has no suction (therefore the absolute
value of the sine function), and it will be effective only when it strikes again (with positive sign) on the surface.

Now, the variables are expanded as

u = u0 + εu1 + · · ·, v = v0 + εv1 + · · ·, w = ε(w1 + εw2 + · · ·),
p = p0 + εp1 + · · ·, T = T0 + εT1 + · · ·, Twall = Twall0 + εTwall1 + · · ·. (15)

The above expansions are used in the equations of motion, continuity, heat diffusion, and boundary conditions. Here,
due to their importance, only the results for the main temperature profiles are presented. They are

Tw0 =
QC [1 + Bih(x, y, t)]− Bi [z − ζ(x, y)]

QC [1 + Bih(x, y, t)] + Bi [d+ ζ(x, y)]
(16)

Interfacial Phenomena and Heat Transfer



Nonlinear Instability of a Thin Film 61

T0 =
QC [1 + Bih(x, y, t)]− BiQC [z − ζ(x, y)]

QC [1 + Bih(x, y, t)] + Bi [d+ ζ(x, y)]
(17)

Notice thatTw0 equals one at−d and equalsT0 at z = ζ(x, y). The heat flux boundary condition is also satisfied at
z = ζ(x, y). At the lowest order the free surface deformation satisfies

ht = −Resinβh2 ∂h

∂x
at z = ζ(x, y) + h(x, y, t). (18)

At the next order, the result is an evolution equation of the Benney type for the free surface deformation of a thin film
flowing down an inclined thick wall with smooth deformations. That is

ht + Resinβh2hx + ε

{
(Resinβ)2

(
2

15
h6hx

)
x

+
1

3
∇ ·

[
h3
[
−Recosβ∇(ζ+ h) + 3S∇2∇(ζ+ h)−∇Pp

]

+
3

2

Ma
Pr

Bih2

[
∇h+

1

QC
∇ζ

]
(
1 + Bi

[
h+

1

QC
ζ+

d

QC

])2

]}
= 0. (19)

Here,∇ = (∂/∂x, ∂/∂y) is the horizontal nabla operator. It is clear that whenζ(x, y) = 0, this equation reduces
to that obtained by D́avalos-Orozco (2012). However, whenQC → ∞ (very good conducting wall), this equation
reduces to Eq. (A3) in the appendix of D’Alessio et al. (2010). Notice that there the wall deformation is missing in
the thermocapillary term. In the same limit but when the wall is flat,ζ = 0 and Ma= 0, the equation reduces to a
perturbed Benney equation (Dávalos-Orozco et al., 1997). Moreover, if alsoPp = 0 the equation reduces to that of
Benney (1966) (see also Joo et al., 1991; Joo and Davis, 1992). In the casePp = 0 and Ma> 0, the equation reduces
to that used by Joo et al. (1991) when their evaporation numberE = 0 (no evaporation). They use a parameterK
which is 1/Bi, the inverse of the Biot number.

The smoothness required by the wall deformations becomes clear from Eq. (19), whereζ(x, y) must have con-
tinuous derivatives until the fourth order. This restriction is satisfied by a sinusoidal function. Equation (19) will be
solved numerically in the next section for the particular sinusoidal wall profile and a fixed wall thickness.

The linear problem is solved as in Dávalos-Orozco (2012), that is, assuming small perturbations of the form
H(x, t) = A1 exp i[kx − (iΓ + ω)t], whereA1 is a small constant amplitude. Here,k is the wavenumber,Γ is
the growth rate, andω is the frequency of oscillation. In this way, the result is that the linear phase velocity is
c = ω/k = Resinβ, which depends on the Reynolds number and that the linear growth rate is

Γ = k2

(
2Re2 sin2 β

15
− 1

3
Recosβ− k2Σ+

1

2

Ma
Pr

Bi[
1 + Bi + Bi

(
d

Qc

)]2
)
. (20)

When the growth rate is zero, the curve of criticality is

kc =

√√√√√√ 1

Σ

(
2

15
Re2 sin2 β− 1

3
Recosβ+

1

2

Ma
Pr

Bi[
1 + Bi + Bi

(
d

Qc

)]2
)
. (21)

It is easy to show that the wavenumber of the linear maximum growth rate iskm = kc/
√

2, the same relation as
in the isothermal case. Gjevik (1970) calculated the nonlinear curve of subcriticality below which the solutions of
Eq. (19) could not saturate. Gjevik [see also Dávalos-Orozco and Busse, 2002; Dávalos-Orozco, 2012)] has shown
the nonlinear resultks = kc/2. The nonlinear calculations including the Marangoni effect and wall properties have
been done by D́avalos-Orozco (2012), who found the same relationks = kc/2 [see Eq. (21)] as in the isothermal case.
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It has been shown numerically (Joo et al., 1991; Dávalos-Orozco et al., 1997) in the isothermal case that saturation
can be found below but near the curve of subcriticality. The presence of thermocapillary effects makes it more difficult
to attain saturation below subcriticality for large enough Marangoni numbers. The above results are reviewed as
follows:

kc =
√
2km = 2ks. (22)

The importance of the factorf(d/QC ,Bi) = Bi/[1+Bi(1+ d/QC)]
2 has been examined in Dávalos-Orozco (2012).

That function is plotted in Fig. 2(a). Curves for Bi= 0.1 and Bi= 1 are shown in Fig. 2(b). As can be seen in
Fig. 2(b), when Bi= 1 the magnitude of this term is larger for smalld/QC , in particular, whend/QC = 0. Above
the magnituded/QC = 2.162, the curve is lower than that of Bi= 0.1. This means that when Bi= 1, the linear
perturbations are easier to stabilize ford/QC > 2.162. All this is valid in the problem of the flat wall. When the wall
presents sinusoidal deformations, new terms appear in the thermocapillary factor of Eq. (19), one in the numerator
∇ζ(x, y)/QC and another one in the denominatorζ(x, y)/QC . Note in Eq. (19) that the thermocapillary factor still
needs to be operated by the∇ found in front of the large brackets. Therefore the new Eq. (19) in fact has two extra
terms in comparison with that found by Dávalos-Orozco (2012) and with Eq. (A3) in the appendix of D’Alessio et
al. (2010). One corresponds to the spatial derivative of the numerator and another one to the spatial derivative of the
denominator. It is important to observe that in those extra terms the derivatives ofζ(x, y)/QC appear in the numerators
and that they may have an important influence on the nonlinear stability. In particular,ζ(x, y)/QC becomes important
whenQC is small, and its derivatives are more important for small but relatively large magnitudes of the wave number
of the wavy wall. The discussion of the numerical results is given below, where calculations are done for particularly
relevant magnitudes of the parameters.

3. NUMERICAL ANALYSIS OF EQ. (19)

The numerical analysis of Eq. (19) is done in space and time using finite differences of first order in time and centered
finite differences of second order in space. Only variations in thex-direction are assumed in the calculations. The
initial conditions for the numerical calculations are thatH(x, t) = ∂H(x, t)/∂x = 0 at the beginning and at the end
of the spatial interval. At each time step the full spatial range is calculated. The results at a given time are recovered

(a) (b)

FIG. 2: (a) Graph of the function f(d/QC , Bi) = Bi/(1 + Bi + Bid/QC)
2; (b) Plot of f(d/QC , Bi) for the particular

values of Bi= 0.1 (dashed) and Bi= 1 (continuous).
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as initial conditions for the next time step. In this way, the time-dependent perturbations are found to travel in space
and time.

The following parameters are fixed to the values Pr= 7, S= 1, andβ= 90◦ (for a vertical wall) in all the calcula-
tions. The wall deformation will always be sinusoidal, and its wavelength will be changed in relation to the wavelength
of the time-dependent perturbation imposed on the free surface. The wall sinusoidal wavelength is determined as in
ζ(x) = B sin[xk/L], wherek = ω/Resinβ is the wavenumber corresponding to a givenω, Re andβ. As will
be shown below,ω and Re will be selected, just for reference, as those corresponding to the maximum growth rate
of the isothermal problem. It is clear that the wavelength of the wall deformation is taken asL times (withL a real
number) the wavelengthλ = 2π/k = 2πResinβ/ω produced by the time-dependent surface perturbation.B is the
wall deformation amplitude which will be fixed as 0.1. The goal of taking the wall wavenumber asL timesλ is to have
an easy way to find the spatial resonance where perturbations are damped and stabilized, as found by Dávalos-Orozco
(2007) in the isothermal case. It is assumed that the wall deformation is zero atx = 0, where the time-dependent
perturbation is applied. The numerical calculations are in space and time, and will start in a spatial locationx = –100
until a location Resinβ∆t + 100 determined by the Resinβ, which is the phase velocity, and by the time interval
∆t required. Therefore, it is necessary to determine from the onset the evolution time interval needed to investigate
a particular perturbation in order to know the spatial distance required for the numerical calculations. The added 100
spatial units are necessary to avoid artificial reflection of the perturbations at the end of the interval.

Spatial resonance occurs when a particular magnitude ofL produces a free surface response with a very large
amplitude, which locally reduces the film thickness in such a way that the local Reynolds number is so small that
the time-dependent perturbations enter a region where they are stable and unable to grow again in space and time
(Dávalos-Orozco, 2007). As in the previous paper, the resonance stabilizing effects can be found for any Reynolds
number if the Marangoni number is not too large, and the Biot number is not very important in the new complex
thermocapillary term of Eq. (19).

In the numerical results, only Reynolds numbers corresponding to the maximum growth rate of the isothermal case
will be used as a reference for the given frequencyω of the time-dependent perturbation. The calculations show that
when the ratiod/QC is large, the Marangoni effects are stabilized as in Dávalos-Orozco (2012), even when the factor
1/QC of the wall deformation is large. Therefore, after checking different regions of the parametersω and Re, it was
decided to fix Bi= 0.1 andd = 0.11 in order to understand the behavior of the factorζ(x, y)/QC and its derivatives
in the thermocapillary term. Besides, two examples will be provided for Bi= 1. The two magnitudesQC = 0.01 and
QC = 0.05 are used. This means that the wall thermal conductivity is 100 and 20 times smaller than that of the fluid,
respectively. As explained above, the amplitude of the waviness of the wall is fixed asB = 0.1 and consequently
the thickness of the wall oscillates between 0.01 and 0.21. This contrast is relevant in the phenomena shown in
the following figures. The assumed magnitude ofB is a consequence of the introduction of the wall-fluid interface
deformation into the lubrication approximation. Table 1 helps to separate the fixed from the varying parameters used
in the numerical calculations. Notice that in each pair of figures presented below, the first one corresponds toL out
from resonance and the second one to (stabilizing) resonance.

3.1 Results for Bi = 0.1

The results are given starting from small frequenciesω of the time-dependent perturbations imposed on the free
surface. They correspond to a perturbation frequencyω = 0.5,ω = 1, andω = 2.

3.1.1 Case forω = 0.5 and Re= 1.391

In this way, Fig. 3 shows results whenω= 0.5 and Re= 1.391, forQC = 0.01 and 0.05. In this case the wavenumbers
are above the curve of subcriticality for the Marangoni numbers used. Notice that for the sake of presentation, a

TABLE 1: Fixed and Variable Parameters
Fixed A = 0.0001 a = 0.05 B = 0.1 d = 0.11 Pr= 7 S= 1 β = 90◦ ε = 0.1

Variable Bi L Ma QC Re ω

Volume 2, Number 1, 2014
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FIG. 3: Pr = 7, S= 1, Bi = 0.1, d = 0.11. ω = 0.5, Re= 1.391,L = 8. (1) Wall. QC = 0.01: (2) Ma= 10,
(3) Ma = 50, (4) Ma= 100. QC = 0.05: (5) Ma= 10, (6) Ma= 50, (7) Ma= 100. Notice pure responses from
x = –100 to 0.

number of free surface numerical results are plotted in only one figure. The mean distance of the wavy wall to the
deformed free surface is 1 in all the figures of the paper, as shown in Fig. 1. The wavy wall profile is shown as an
important reference with respect to its own influence on the free surface deformations, isothermal and nonisothermal.
Both magnitudes ofQC are very small and the wall is relatively a bad heat conductor with respect to the liquid layer.
As discussed in D́avalos-Orozco (2012) for a flat wall, the flow stabilizes whend/QC increases, as shown in Fig. 2.
However, here the stability and response of the free surface to the wall waviness depends not only onQC , but also on
the ratio[ζ(x)+d]/QC , which in some places is small, as can be seen in curve 1 of Fig. 3 representing the wavy wall.
In other places the wall is thicker than the mean. To each magnitude ofQC corresponds three curves for Ma= 10,
50, and 100. The time-dependent perturbations are applied atx = 0 on the free surface. Notice that the pure response
of the free surface to the wavy wall can be seen to the left ofx = 0, the origin of thex-axis. One hundred space
units, from –100 to 0, are given to observe with detail the response without the superposition of perturbations. It is
interesting that for each magnitude ofQC the amplitude of the response decreases when Ma increases, in contrast
with the numerical results presented in Dávalos-Orozco (2013a) for a very good conducting wall. This is due to the
deformation (the bump) which appears in the free surface response near the thinnest part of the wall and near the
valley of the response. That thinnest part is where the wall presents the highest effective thermal conductivity, which
as seen, has a relevant influence on the film response. Therefore the finite thickness and the low conductivity of the
wall are responsible for these phenomena. It is important to note in Fig. 4 that even under these circumstances, it is
still possible to stabilize the time-dependent perturbations by means of spatial resonance forL = 5 (lower than that of
Fig. 3).

3.1.2 Case forω = 1 and Re= 1.967

Figures 5 and 6 correspond toω = 1 and Re= 1.967. The wavenumbers are above the curve of subcriticality for
the three magnitudes of Ma. As can be seen, the free surface response also decreases with Ma. The bump due to the
thinnest part of the wall appears again in Fig. 5 withL = 9. In contrast, in Fig. 6 forL = 6, it appears to the right of
the valley of the response. It is clear from Fig. 6 that the time-dependent perturbations are considerably reduced due
to spatial resonance.
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FIG. 4: The same as Fig. 3, butL = 5. The free surface response decreases with Ma. Resonance. Notice pure
responses fromx = –100 to 0.

FIG. 5: Pr = 7, S= 1, Bi = 0.1, d = 0.11. ω = 1, Re= 1.967,L = 9. (1) Wall. QC = 0.01: (2) Ma= 10,
(3) Ma = 50, (4) Ma= 100. QC = 0.05: (5) Ma= 10, (6) Ma= 50, (7) Ma= 100. Notice pure responses from
x = –100 to 0.

3.1.3 Case forω = 2 and Re= 2.783

An increase toω = 2 and Re= 2.783 leads to the results of Figs. 7 and 8. Here, too, the wavenumbers are above the
curve of subcriticality. As before, the amplitude of the free surface response decreases with Ma. It is evident that the
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FIG. 6: The same as Fig. 5, butL = 6. The free surface response decreases with Ma. Resonance. Notice pure
responses fromx = –100 to 0.

FIG. 7: Pr = 7, S= 1, Bi = 0.1, d = 0.11. ω = 2, Re= 2.783,L = 10. (1) Wall. QC = 0.01: (2) Ma= 10,
(3) Ma = 50, (4) Ma= 100. QC = 0.05: (5) Ma= 10, (6) Ma= 50, (7) Ma= 100. Notice pure responses from
x = –100 to 0.

effect of the thinnest part of the wall is to create a bump which widens the valley of the free surface response when
Ma increases. Observe in Fig. 8 that the perturbations for Ma= 100 are easier to stabilize whenQC = 0.05 (curve 7)
than whenQC = 0.01 (curve 4).
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FIG. 8: The same as Fig. 7, butL = 7. The free surface response decreases with Ma. Resonance. Notice pure
responses fromx = –100 to 0.

3.2 Results of Bi = 1

In the case of Bi= 1, the bumps in the free surface response are larger. Two examples of numerical calculations are
presented to observe this phenomenon and its consequences. They correspond to a perturbation frequencyω = 0.5
andω = 2.

3.2.1 Case forω = 0.5 and Re= 1.391

Here, despite the Biot number increase to Bi= 1, the wavenumbers remain above subcriticality. Then, for the fre-
quencyω = 0.5 and Re= 1.391, it is shown in Fig. 9 that the larger bump has an important influence on the free
surface perturbations even whenL = 8. For example, forQC = 0.01, the free surface perturbations almost have the
same amplitude in the range of Ma. This is not only due to the bad conducting properties of the wall, it is also a
consequence of the important change of the free surface response, which presents two notorious depressions which
increase with Ma. Observe the contrast with the immediate increase in height of the other curves 5, 6, and 7 for
QC = 0.05. This is a stabilizing effect of the surface response. When spatial resonance occurs atL= 5, Fig. 10 shows
that it is easier to stabilize the free surface perturbations than in Fig. 4. It is important to note that also for Bi= 1, the
increase of Ma decreases the amplitude of the free surface response. Again, this is a result of the sudden increase of
the effective thermal conductivity of the wall around its thinnest part.

3.2.2 Case forω = 2 and Re= 2.783

Another example is give forω = 2 and Re= 2.783. The results are presented in Figs. 11 and 12. In Fig. 11 it is clear
that the time-dependent perturbations have difficulty in saturating whenQC = 0.05 and Ma= 100 (curve 7). This
occurs despite that the wavenumbers are above the curve of subcriticality. Again, this is reflected in Fig. 12, where
curve 7 is shown to be the exception when the other curves present spatial resonance (withL = 8) and therefore have
effective stability. It is evident again that the relative height of the bump decreases with the increase ofω and Re, and
that the stabilizing effect of the widening of the valley is not possible.

Volume 2, Number 1, 2014
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FIG. 9: Pr = 7, S= 1, Bi = 1, d = 0.11. ω = 0.5, Re= 1.391,L = 8. (1) Wall. QC = 0.01: (2) Ma= 10,
(3) Ma = 50, (4) Ma= 100. QC = 0.05: (5) Ma= 10, (6) Ma= 50, (7) Ma= 100. Notice pure responses from
x = –100 to 0.

FIG. 10: The same as Fig. 9, butL = 5. The free surface response decreases with Ma. Resonance. Notice pure
responses fromx = –100 to 0.

4. DISCUSSION

For all the numerical calculations, certain magnitudes of the parametersd andQC were selected. The thickness ratiod
was selected small to avoid the stabilizing effects of large values of the ratiod/QC found in D́avalos-Orozco (2012).
At the same time, the conductivity ratio was assumed small. This, of course, makesd/QC large but not very large.

Interfacial Phenomena and Heat Transfer



Nonlinear Instability of a Thin Film 69

FIG. 11: Pr = 7, S= 1, Bi = 1, d = 0.11. ω = 2, Re= 2.783,L = 11. (1) Wall. QC = 0.01: (2) Ma= 10,
(3) Ma = 50, (4) Ma= 100. QC = 0.05: (5) Ma= 10, (6) Ma= 50, (7) Ma= 100. Notice pure responses from
x = –100 to 0.

FIG. 12: The same as Fig. 11, butL = 8. The free surface response decreases with Ma. Resonance. Notice pure
responses fromx = –100 to 0.

Fixing d = 0.11 andQC = 0.01 and 0.05 results ind/QC = 11 and 2.2, respectively. However, due to the wall
waviness with amplitudeB = 0.1, the parameter which appears in the denominator of the thermocapillary term of
Eq. (19),[ζ(x) + d]/QC fluctuates, in one wavelength of the wall, between 1 and 21 forQC = 0.01 and between 0.2
and 4.2 forQC = 0.05. Thus the effectiveness of heat conduction changes from small to large in the span of a wall
wavelength. When taking the spatial derivative of the thermocapillary term in Eq. (19), the terms with the derivatives
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of ζ(x) will appear in the numerators. These terms are relevant when the ratio of the wavenumber of the wall overQC

becomes important. These features of the problem are influential in the results presented in this paper.
It is found that when increasing Ma a bump appears in one or the other side of the valley of the free surface

response. WhenL is large and far from spatial resonance, the bump appears to the left of the valley. WhenL decreases
near to or into the spatial resonance, the bump appears to the right of the valley.

The reason for the appearance of the bump can be understood by looking carefully, for example, to the curves for
Ma= 100 in Figs. 3 and 4. These curves show that near the thinner part of the wall a bump appears at the free surface
response. Clearly, it is caused by the local increase of the thermocapillary terms when[ζ(x) + d]/QC decreases.
In other words, it appears near to the place (the thinnest section) where the wall presents its largest effective heat
conductivity. This bump seems to disappear whenQC increases from 0.01 to 0.05. However, this is not the case.
In fact, it is evident in curves 5, 6, and 7 of all the figures that the valley of the response is higher near the thinner
part of the wall. This explains the amplitude decrease of the free surface response when Ma increases, in contrast
with the numerical results of the Benney-type equation whenQC → ∞ (very good conducting wall) and calculated
by Dávalos-Orozco (2013a). There, the amplitude of the free surface response increases with Ma. Thus the finite
thickness and low conductivity of the wall are responsible for these phenomena.

The appearance of the bump to the left of the valley may be related to the bump found in experiments at the
beginning of a heated plate (see, for example, Frank and Kabov, 2006; Kabova et al., 2014; and a review in Dávalos-
Orozco, 2013a). However, it is unclear why the bump appears to the right of the valley whenL is decreased until
resonance is achieved.

Even though the amplitude of the response decreases with Ma, it is still possible to stabilized the time-dependent
perturbations by means of spatial resonance, as observed in the figures for the smallestL used (with few exceptions
in the range of parameters investigated). Naturally, the relatively bad conductivity of the wall helps to attain this goal.

An interesting phenomenon is found in Fig. 7 whenQC = 0.01 and the magnitude ofL is far from spatial
resonance. That is, the amplitude of the time-dependent perturbations decreases when Ma increases from curve 2 to
4. This can be understood by observing the widening of valley when the response approaches the thinnest part of
the wall. The width of the valley is so large due to the bump that the time-dependent perturbations remain for a long
time and for a large space interval in a lower height region (locally thinner film). The consequence is that the local
Reynolds number is reduced and the time-dependent perturbations decrease their amplitude even for large Ma (which
at the same time produces a larger bump). It is important to point out, that this far from a resonance stabilizing effect
of the widening of the valley, this is also a consequence of the increase of both the frequency of oscillation and the
Reynolds number.

When Bi= 1, Fig. 9 shows that the influence of the bump on the stability of the time-dependent perturbations is
important even forL = 8, far from resonance. Clearly, forQC = 0.01, the free surface perturbations nearly have the
same amplitude in the range of Ma investigated (curves 2, 3, and 5). Here, the bad thermal conductivity of the wall is
in part responsible. Another source of this interesting result is the large change which the free surface response suffers
with the appearance of two valleys with depths increasing as Ma does. This also has a stabilizing effect, as is done by
the widening of the valley of the free surface response. The results are in contrast with those of curves 5, 6, and 7 for
QC = 0.05, where there is only one valley.

It is important to point out that numerical calculations have also been done for magnitudes ofQC > 0.05. It is
found that the amplitude of the free surface response is very similar but a little small in comparison to the results of the
very good conducting wall of D́avalos-Orozco (2013a). The time-dependent perturbations, except for a slight change
of phase, propagate in almost the same form. In this way, the decrease ofd/QC leads to the results of the very good
conducting wall.

The isothermal problem of D́avalos-Orozco (2007) deserves some discussion too. It is found that the free surface
response for Ma= 10 andQC = 0.01 has almost the same amplitude as that of the isothermal problem. However, the
time dependent perturbations have notable differences. The curves of the free surface response for Ma= 50 and 100
both have smaller amplitude than those of the isothermal case. If the conductivity ratio is increased toQC = 0.05, the
amplitude of the response when Ma= 10 is larger than that in the isothermal problem (as expected). However, when
Ma= 50 and 100 the response is smaller than when Ma= 0. In all cases the time-dependent perturbations differ from
those of the isothermal problem.
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Notice that the thermocapillary term of Eq. (19) does not depend on the angle of inclination. Therefore this has no
influence on the Marangoni effect found when the thickness of the wall is very thin. A bump should appear for any
angle of inclination.

An experiment is proposed using a mixture of 60% glycerol and 40% water. At 20◦C its properties areρ= 1153.8
kg/m3, ν = 9.36× 10−3 m2/s,σ = 0.06764 N/m,−dσ/dT = 0.000096 N/m◦C, kf = 0.3805 W/m◦C, Hh = 152
W/m2◦C, and specific heatcp = 3096 J/kg◦C. The wall can be made with silica aerogel, a very bad conductor with
kwall = 0.0145 W/m◦C and which can be made with thicknesses as small as 0.1 mm. Assumingh0 = 1.73× 10−3 m
andε = 0.1, then S= 3.858 and Re= 0.502, Pr= 87.8, Bi= 0.691, andQC = 0.0381 (between the 0.01 and 0.05
used here). The Ma value of the ratio Ma/Pr has to be adapted to the ratios Ma/7 used in the paper. Two magnitudes
of d/Qc = 11 and 2.2 were used withd = 11 QC = 0.4191 andd = 2.2 QC = 0.0838. Therefore, The ratio
dwall = 0.4191h0 = 0.7250× 10−3 m anddwall = 0.0838h0 = 0.1449× 10−3 m.

5. CONCLUSIONS

An evolution equation in three dimensions was obtained to describe the time-dependent perturbations propagating
on the free surface of a thin film flowing down a thick, badly conducting wavy wall subjected to a temperature
gradient perpendicular to the film. It is shown that it is still possible to stabilize the perturbations by means of spatial
resonance in the presence of thermocapillary effects. Surprising results were obtained in the free surface response
to the wall deformations which are a consequence of the very thin section of the wall. An important result is found
that the response amplitude decreases with the increase of the Marangoni number. In some cases the valley of the
response widens in such a way that the time-dependent perturbations show some stabilization for certain frequencies
and Reynolds numbers, even far away fromL for resonance. Notice that due to the magnitude of the ratiod/QC ,
all the film instabilities investigated stay above the curve of subcriticalitykS , even though the Marangoni number is
increased up to Ma= 100.

It is found that the film response is very similar to that of the isothermal flow for Ma= 10 because the wall is a
bad conductor. But whenQC is increased above the magnitudes used here, the film response becomes very similar to
that of the very good conducting wall. Notice that the time-dependent perturbations differ in both cases.

It is shown again, under nonisothermal conditions, the importance that the wall topography has on the stability of
thin films. Here it is demonstrated that the thickness of the wall also plays a significant roll, not only on the stability,
but also on the free surface response which here presents extra deformations. Further research on this problem will be
done, testing the thin film under different conditions.
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Dávalos-Orozco, L. A., Instabilities of thin films flowing down flat and smoothly deformed walls,Microgravity Sci. Technol., vol.
20, nos. 3-4, pp. 225–229, 2008.
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