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a b s t r a c t

In this paper, we analyze the effects of site and bond impurities on the electrical conductance of periodic
and quasiperiodic systems with macroscopic length by means of a real-space renormalization plus a
convolution method developed for the Kubo–Greenwood formula. All analyzed systems are connected to
semi-infinite periodic leads. Analytical and numerical conductivity spectra are obtained for one and two
site impurities in a periodic chain, where the separation between impurities determines the number of
maximums in the spectra. We also found transparent states at the zero chemical potential in Fibonacci
chains of every three generations with bond impurities, whose existence was confirmed by an analytical
analysis within the Landauer formalism. For many impurities, the spectral average of the conductivity
versus the system length reveals a power-law behavior, when the distance between impurities follows
the Fibonacci sequence. Finally, we present an analysis of the conductance spectra of segmented periodic
and Fibonacci chains and nanowires.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the most basic topics in condensed matter physics beyond
crystals is the presence of impurities in solids. They produce a wide
variety of effects, particularly relevant in the conductivity, optical
properties and specific heat. For example in nano-electronics, the
effects of impurities are essential for the development of molecular
devices such as novel computer architectures [1,2], chemical sensors
[3] and biomedical sensors [4]. In fact, the inclusions of impurities in
such systems could significantly alter the electronic transport, open-
ing the possibility of design materials according to the requirements.

Nowadays, it is possible to create truly low-dimensional sys-
tems via a variety of methods, for example, by individually placing
atoms one by one in a substrate [5,6]. Free-standing finite one-
dimensional (1D) monoatomic chains of Ir [7], Pt [8], and Au
[9–11] break junctions have been obtained. These systems would
test theoretical results of low-dimensional systems. In particular,
experimental data of the electronic transport through single atoms
[12,13], molecules [14], and nanowires [15] have been reported.

Even though defects are virtually present in all solids, they are not
easy to treat theoretically, since the presence of defects in a crystal
breaks down the Bloch theorem and the reciprocal space. In the past,
perturbative methods were frequently used for their analysis. For a

more rigorous study of defects, it should be carried out in a full real
space. However, the time necessary to solve quantum mechanical
equations through conventional diagonalization methods grows
cubically with the system size, making it computationally expensive
to perform full real-space calculations. Consequently, only small
clusters can be treated in an exact way by direct diagonalization or
inversion methods. Nevertheless, the real-space renormalization
procedure could be an efficient alternative, since the calculation time
grows logarithmically with the number of atoms, making it possible
to reach truly macroscopic systems.

In this article, we use a previously developed real-space renormal-
ization method for the Kubo–Greenwood formula to analyze effects of
site and bond impurities on the electrical conductivity in periodic and
quasiperiodic systems, as well as in segmented nanowires.

2. The model

A typical one-dimensional quasiperiodic system is the Fibo-
nacci chain, which can be modeled in different forms, for example,
by using two sorts of bonds (bond problem), two kinds of atoms
(site problem) or a combination of both (mixing problem) [16]. In
this article, let us consider a bond problem consisting of null self-
energies (ε¼ 0) and two hopping integrals, tA and tB, and they
could follow the Fibonacci sequence (Fn) defined as F1 ¼ A, F2 ¼ AB
and Fn ¼ Fn�1 � Fn�2. For example, F5 ¼ ABAABABA. For the case
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of periodic chains, we have tA ¼ tB. We additionally include site
(εimp) and bond (timp) impurities, as shown in Fig. 1 for the case of a
single (a) site and (b) bond impurity located at the border
of generation 3 and generation 2 of the Fibonacci chain connected
to periodic leads with hopping integrals t. In order to isolate
the quasicrystalline effects on physical properties, a single band
tight-binding Hamiltonian is taken

H¼∑
j
½εjjj〉〈jjþtj;jþ1jj〉〈jþ1jþtj;j�1jj〉〈j�1j� ð1Þ

where tj;j71 denotes the hopping integral between nearest-
neighbor atoms and jj〉 are Wannier states.

It is well known that the electrical conductivity can be calcu-
lated within the linear response theory by using the Kubo–
Greenwood formula given by [17]

sðμ;ω; TÞ ¼ 2e2ℏ
Ωπm2

Z 1

�1
dE

f ðEÞ� f ðEþℏωÞ
ℏω

Tr½pImGþ ðEþℏωÞpImGþ ðEÞ�

ð2Þ
where Ω is the volume of the system, Gþ ðEÞ ¼ GðEþ iηÞ is the
retarded one-particle Green's function and f ðEÞ ¼ f1þexp½ðE�mÞ=
ðkBTÞ�g�1 is the Fermi–Dirac distribution with the Fermi energy
μand temperature T , and p is the projection of the momentum
operator along the applied electrical field, which for the Hamilto-
nian is given by Eq. (1) and x¼∑jxjjj〉〈jj can be expressed in terms
of Wannier states as

p¼ im
ℏ
½H; x� ¼ ima

ℏ
∑
j
ftj;jþ1jj〉〈jþ1j�tj�1;jjj〉〈j�1jg; ð3Þ

where a constant interatomic distance (a) is considered because
the variation of interatomic distances can be absorbed by the
parameters tj;jþ1. As a limiting case of a periodic chain, when T ¼ 0
and ω-0, the conductivity is [18]

sP ¼ sðμ;0;0Þ ¼ e2a
πℏ

ðN�1Þ; ð4Þ

where Ω¼ ðN�1Þa is the length of the system. In all the numerical
calculations of this article, the impurities are included at the
border of generations n�1 and n�2 when the Fibonacci chain
of generation n is built, through the renormalization method for
the Kubo–Greenwood formula developed in Ref. [19].

3. Conductivity in 1D systems

In Fig. 2, the electrical conductivity (s) versus the chemical
potential (m) of a periodic chain with (a) site impurities of energy
εimp ¼ 0:5jtj and (b) bond impurities with timp ¼ 0:5 t is shown for
the cases of one (red lines) and two (dark yellow lines) impurities.
The number of atoms in these chains is N ¼ 433;494;438, whose
ends are connected to semi-infinite periodic leads with hopping
integrals t. The imaginary part of the energy used in these
calculations was η¼ 10�13jtj. In general, the spectrum of a single
impurity does not depend on the position of the impurity. For the
case of two impurities, the spectrum depends only on the distance
between them, which is chosen to be 512a in Fig. 2. Observe that
the presence of a single impurity decreases the conductivity, but

such effect is more remarkable when the impurity is of bond
nature. In both cases, the inclusion of two impurities produces a
highly oscillating spectrum, whose amplitude is larger for bond
impurities than for site ones. It is worth to mention that there is a
localized state outside the band when we have site impurities,
whose conductivity is very small in comparison with the con-
ductivity spectrum and it can be visualized only in a logarithm
scale due to the size of the system. The width of this conductivity
peak depends on η, but the magnitude does not.

In order to obtain an analytic solution for the conductivity
of a single impurity, we use the Landauer formula [20] in which
for a single channel the electrical conductance gðμÞ ¼ g0TðμÞ
being g0 ¼ 2e2=h. In consequence, the conductivity (s) for one-
dimensional chains is sðμÞ ¼sP TðμÞ, whose transmittance (T) can
be calculated by [18]

TðμÞ ¼ 4�ðμ=tÞ2
½τ21�τ12þðτ22�τ11Þμ=2t�2þðτ22þτ11Þ2ð1�μ2=4t2Þ

ð5Þ

where τi;j are elements of the transfer matrix

τðμÞ ¼
τ11 τ12

τ21 τ22

 !
¼ TNTN�1 U U UT1 with

Tl ¼
ðμ�εlÞ=tl;lþ1 �tl;l�1=tl;lþ1

1 0

� �
: ð6Þ

In particular, the transfer matrix ðτimpÞ of a periodic chain
with N atoms containing a single site impurity with energy εimp

accomplishes

τimpðμ;NÞ ¼ τðμ;NÞ�εimp

t
τðμ;N�1Þ�εimp

t

τ11ðμ;N�3Þ 0
τ11ðμ;N�4Þ 0

 !
; ð7Þ

where τðμ;NÞ is the transfer matrix of a periodic chain of N atoms
without impurities, whose first element satisfies

τ211ðμ;NÞþτ211ðμ;N�1Þ�μ τ11ðμ;NÞ τ11ðμ;N�1Þ=t ¼ 1: ð8Þ
Therefore, the transmittance of a periodic chain with N atoms

and a single site impurity with energy εimp is

TðμÞ ¼ 4�ðμ=tÞ2
4�ðμ=tÞ2þðεimp=tÞ2

: ð9Þ

Notice that the red curve of Fig. 2(a) inside the band can be
alternatively obtained from Eq. (9).

Fig. 1. Schematic representation of Fibonacci chains with a single (a) site and
(b) bond impurity in the fourth position, corresponding to the border of Fibonacci
chains of generation 3 and generation 2, as an example.

Fig. 2. Conductivity (s) versus chemical potential (m) spectra of a periodic chain
with one (red lines) and two (dark yellow lines) impurities for the cases of (a) site
and (b) bond impurities in comparison to that of a periodic chain without
impurities (blue lines). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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In addition, Fig. 2 shows that the conductivity spectra of two
impurities are composed of many resonant peaks, whose number
is the number of atoms between these two impurities. This fact
can be better seen in Fig. 3 for the cases of (a) 5, (b) 13 and (c) 60
atoms between site impurities with εimp ¼ 0:5jtj and for the cases
of (d) 6, (e) 16 and (f) 64 atoms between bond impurities with
timp ¼ 0:5t. In all the cases, the system size and η are the same as in
Fig. 2. For the case of site impurities, the spectrum is asymmetric
with respect to the zero chemical potential and has always a peak
of conductivity outside the band at μ42jtj. In contrast, for bond
impurities, the spectrum remains symmetrical because the lattice
is bipartite.

In order to verify analytically the conductivity of a periodic
chain with two site impurities, whose transfer matrix can be
written as τ2impðμ;NÞ ¼ τimpðμ;NÞτimpðμ;NÞ, we obtain the transmit-
tance given by

Tðμ;NÞ ¼ 4�ε2

4�ε2þ4~ε2þ ~ε2ð~ε2�2~εεþε2�4Þτ211ðN�1Þþ4~ε3τ11ðN�1Þτ11ðN�2Þ:
ð10Þ

where ε¼ μ=t, ~ε ¼ εimp=t and τ11ðNÞ ¼∑ N=2b c
l ¼ 0 ð�1ÞlðN� lÞ!εN�2l=

½l!ðN�2lÞ!�.
The conductivity of Fig. 3(a) and (b) obtained by means of real-

space renormalization methods coincides with the analytical
solution given by Eq. (10). Moreover, Fig. 3(a) is similar to that
presented in Ref. [21, Fig. 2], while Fig. 3(d) is similar to that
reported in Ref. [22, Fig. 6].

The position of conductivity resonant peaks for the case of two
bond impurities depend on the value of timp. In particular, when
timp-0, these peaks are located at the eigenvalues of a periodic
chain with Ni� i atoms, being Ni� i the number of atoms between
these two bond impurities. For finite values of timp, the position of
the resonant peaks follows the relation:

Ekðtimp;Ni� iÞ ¼ Ekð0;Ni� iÞþakðNi� iÞ t2impþbkðNi� iÞ t3imp: ð11Þ

where k enumerates each peak, Ekð0;Ni� iÞ is the corresponding
eigenvalue of the periodic chain with Ni� i atoms, akðNi� iÞ ¼
AkN

�αk
i� i and bkðNi� iÞ ¼ BkN

�β k
i� i , being Ak; Bk; αk and βk constants.

Fig. 4 shows the dependence of electrical conductivity (in color
scale) on εimp and timp for a single impurity in the same systems
of Fig. 2. Notice that the conductivity spectrum of Fig. 4(a) is
symmetrical with respect to εimp ¼ 0 for the site impurity case
and asymmetric around timp ¼ t in the bond impurity one.

By comparing Fig. 4(a) and (b), we observe that the conductivity
is more (less) suppressed when the impurity is caused by a bond
impurity with timp smaller (larger) than one. Particularly, the
conductivity is null for timp close to zero.

Fig. 5 shows the dependence of electrical conductivity (in color
scale) on (a) εimp and (b) timp for the same systems of Fig. 3(b) and
(e), respectively. Notice that Fig. 5(a) is asymmetric with respect to
the zero chemical potential, contrary to the symmetry observed in
Fig. 5(b) which is in turn asymmetric with respect to timp ¼ t. In
both cases, the conductivity is almost null if the values of εimp or
timp are very different from 0 or t correspondingly. It is worth to
mention that when jtimp=tj41 we found two localized states
outside the band, symmetrically placed with respect to the zero
chemical potential, whose width depends on η but its magnitude
does not.

Fig. 6 shows electrical conductivity (s) of Fibonacci chains with
hopping integrals tA ¼ 0:9 t, tB ¼ t and (a) one site impurity (red
lines), (b) two site impurities separated by 512 atoms (red lines),
(c) two site impurities separated 1024 atoms (red lines), (d) one
bond impurity (blue lines), (e) two bond impurities separated 512
atoms (blue lines) and (f) two bond impurities separated 1024
atoms (blue lines), using the same N and η of Fig. 2 and εimp ¼ jtj or
timp ¼ 0:3 t. All these spectra are compared to that of the Fibonacci
chain without impurities (gray lines). Observe that for site impu-
rities the spectra are asymmetric with respect to the zero chemical
potential, which is even noticeable for the case of a single site
impurity as shown in Fig. 6(a), contrary to the periodic case given
by Eq. (9). In general, the diminution of conductivity is less for site
than for bond impurities.

It is well known that the bond-Fibonacci chains have a
transparent state (transmission coefficient equal to one) at the
zero chemical potential every six generations [19]. This fact does
not remain for long when site or bond impurities are present. In
particular, site impurities always destroy the transparent state at
the zero chemical potential in bond-Fibonacci chains. On the other

Fig. 3. Conductivity (s) versus chemical potential (m) spectra of a periodic chain
with two site impurities separated by (a) 5 (b) 13 and (c) 60 atoms, and two bond
impurities separated by (d) 6, (e) 16 and (f) 64 atoms, using the same parameters of
Fig. 2.

Fig. 4. Conductivity spectra (in color scale) of a periodic chain with a single (a) site
or (b) bond impurity as a function of the chemical potential (m) and εimp or timp for
the same systems of Fig. 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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hand, bond impurities only annihilate this transparent state when
the number of such impurities is odd for any value of the hopping
timp, while an even number of them makes the apparition of
transparent states every three generations when timp ¼ tB sub-
stitutes a tA bond. This fact can be verified by observing that the
transfer matrix elements (i,j) as a function of the generation (n)
can be written as

τi;jðnÞ ¼ ð�1Þnþ i γf ðnÞ
timp

tB

� �ðj� iÞ
δ3;iþ j δx;2

þ ð�1Þnþ1 γf ðnÞ
timp

tA

� �ð3�2iÞ
δx;0�

timp

tB

� �ð3�2iÞ
δx;1

( )
δ0;i� j;

ð12Þ
where x¼ n ðmod 3Þ, f ðnÞ ¼ 1�ð�1Þn and γ ¼ tA=tB. The corre-
sponding transmittance is

From Eq. (13) we conclude that Tðμ¼ 0;nÞ ¼ 1 when timp ¼ tB
and x¼ 1.

Recently, segmented nanowires were fabricated and they
possess unique properties [23]. Hence, we further study segmen-
ted periodic and Fibonacci chains, which can be built by joining
blocks of atoms and ordering them following a periodic or
Fibonacci sequence, as shown in Fig. 7. The corresponding periodic
and quasiperiodic nanowires with finite cross section will be
analyzed in the next section.

Fig. 8 shows the conductivity (s) versus chemical potential (m)
spectra for a segmented periodic chain of 144,946,903 atoms,

blocks of four atoms (NA ¼NB ¼ 4), η¼ 10�13jtj, hopping integrals
tB ¼ t and (a) tA ¼ 0:9 t, (b) tA ¼ 0:8 t, (c) tA ¼ 0:7t and (d)
tA ¼ 0:6 t. Notice that a larger difference between tA and tB
produces wider energy gaps in the conductivity spectra and the
number of band depends on the total number of bonds in the
unitary cell. For example, in Fig. 8 there are six conductivity bands,
because we have three bonds in each block.

The conductivity spectra of a segmented Fibonacci chain with
117,264,508 atoms are shown in Fig. 9(a–d) with the same
parameters of Fig. 8(a–d), while Fig. 9(e–h) corresponds to con-
ductivity spectra of bond-Fibonacci chains without block structure
ðNA ¼NB ¼ 2Þ. It is observed that when the difference between tA
and tB increases, the band width diminishes. Moreover, there are
more high-conductivity states in segmented Fibonacci chains than
in the corresponding Fibonacci chain without block structure.

In order to analyze the global behavior of systems studied
in this section, we present in Fig. 10 spectral averages of the
conductivity (os4) given by

os4 ¼
R
sðμ;0;0ÞDOSðμÞdμR

DOSðμÞdμ ; ð14Þ

for segmented periodic chains with blocks of four (blue open
triangles) and 90 (blue open squares) atoms, and periodic chains
with 377 site (magenta solid circles) and bond (red open circles)
impurities. The parameters of this figure are tA ¼ timp ¼ 0:7t,
tB ¼ t, εimp ¼ 0:7jtj and η¼ 10�15jtj. The numerical integration
was performed by using the Simpson algorithm with a fixed step
of Δμ¼ 5� 10�7jtj. Site and bond impurities are introduced in
such a way that the distance between impurities follows the
Fibonacci sequence. For instance, in the case of 377 site impurities
in a periodic chain of 1598 atoms, the distance between impurities
is dA ¼ 5 a and dB ¼ 3 a. Let us put the first impurity at the fourth

Fig. 5. Conductivity spectra (in color scale) of a periodic chain with two (a) sites or
(b) bond impurities as a function of the chemical potential (m) and εimp or timp for
the system of Fig. 3(b) and (e), respectively. (For interpretation of the references to
color in this figure legend,the reader is referred to the web version of this article.)

Fig. 6. Conductivity (s) versus chemical potential (m) spectra of Fibonacci chains
with (a) one, (b) two separated by 512 atoms, (c) two separated by 1024 atoms site
impurities (red lines), (d) one, (e) two separated by 512 atoms and (f) two separated
by 1024 atoms bond impurities (blue lines), in comparison to that of the Fibonacci
chain without impurities (gray lines). All the systems have tA ¼ 0:9 t and tB ¼ t.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Tðμ¼ 0;nÞ ¼ 4
½ðγ� f ðnÞðtimp=tBÞÞþððtB=timpÞγf ðnÞÞ�2δx;2þ½ðγf ðnÞðtimp=tAÞÞþððtA=timpÞγ� f ðnÞÞ�2δx;0þ½ðtimp=tBÞþðtB=timpÞ�2δx;1

: ð13Þ
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atom, the second one at the ninth atom, the third one at the
twelfth atom, and next impurities are located following the
Fibonacci sequence; for example, the eighth impurity is located
at a distance of dAþdBþdAþdAþdBþdAþdB ¼ 29a from the first
impurity.

Notice in Fig. 10 that os4=sP is unity for any number of
atoms in a periodic chain (gray balls). This constant behavior
remains for segmented periodic chains, having only small fluctua-
tions when the number of atoms is low, because we have extended
wave functions. For chains with bond or site impurities located

after the Fibonacci sequence, o s 4 decays with the number of
atoms following a power law ðo s 4 p N� sÞ with a smaller
exponent (s) in comparison to the pure Fibonacci chain (green
rhombs), whose s is a function of γ ¼ tA=tB. This power-law
behavior is related to the critical nature of wavefunctions [24].
It would be worth mentioning that fluctuations observed in the
results of the pure Fibonacci chains and at the end of impurity
cases could be due to the finite value of Δμ in the Simpson
integration.

In Fig. 10, we also present os4 for a mixed Fibonacci chain
(dark cyan solid rhombs) whose sites follow the Fibonacci
sequence. For example, for generation five the chain is ABAABABA,
where A and B indicate the nature of atoms with self-energies εA
and εB, respectively. In consequence, the bonds of this chain are
ordered as tItItAAtItItItI , where tI (tAA) is the hoping integral
between atoms A and B (A and A). In particular, os4 of a mixing
Fibonacci chain was calculated by means of the renormalization
method described in Ref. [25] using the parameters εA ¼ εB ¼ 0,
tAA ¼ 0:7t, tI ¼ t and the same η and Δμ. It is worth to mention that
the ratio between the numbers of tI and of tAA is 2τ when the chain
length tends to infinite, being τ¼ ð

ffiffiffi
5

p
þ1Þ=2 the golden mean.

Notice that os4 of the mixing problem as a function of the
system length decays following an almost power law, since its
ordering of bonds does not satisfy the quasiperiodic criteria [26].

4. Electrical conductance of nanowires

This study is further extended to quantify the effects of
impurities in nanowires, whose conductance (g) can be calculated
by gðEÞ ¼sðEÞW=L, where L is the length and W is the cross
sectional area of the sample. In general, electrical conductance is

Fig. 7. Schematic representation of segmented Fibonacci and periodic chains. Each block contains NA �1 A-type bonds or NB �1 B-type bonds.

Fig. 8. Conductivity (s) versus chemical potential (m) spectra of a segmented
periodic chain with blocks of NA ¼NB ¼ 4 atoms, tB ¼ t and (a) tA ¼ 0:9 t, (b)
tA ¼ 0:8 t, (c) tA ¼ 0:7tand (d) tA ¼ 0:6 t.

Fig. 9. Conductivity (s) versus chemical potential (m) spectra of a segmented
Fibonacci chain with blocks of NA ¼NB ¼ 4 bonds, tB ¼ t and (a) tA ¼ 0:9 t, (b)
tA ¼ 0:8 t, (c) tA ¼ 0:7tand (d) tA ¼ 0:6 t in comparison to the corresponding
Fibonacci chains without block structure (NA ¼NB ¼ 2) for tB ¼ t and (e)
tA ¼ 0:9 t, (f) tA ¼ 0:8 t, (g) tA ¼ 0:7tand (h) tA ¼ 0:6 t.

Fig. 10. Spectral average of the conductivity (o s 4) as a function of the number
of atoms (N) in segmented periodic chains with blocks of four (blue open triangles)
and 90 (blue open squares) atoms, periodic chains with 377 site (magenta solid
circles) and bond (red open circles) impurities, in comparison to o s 4 of pure
periodic (gray solid balls), bond (green open rhombs) and mixing (dark cyan solid
rhombs) Fibonacci chains. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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commonly expressed in units of g0 ¼ 2e2=h. All the nanowires
analyzed in this section have the same hopping integral t in the
transversal planes. In Fig. 11, the electrical conductance of a
periodic nanowire with N¼ 433;494;438� 6� 6 atoms is illu-
strated, using η¼ 10�15jtj, for the cases of (a) one plane of site
impurities, (b) two planes of site impurities, (c) one plane of bond
impurities and (d) two planes of bond impurities, taking corre-
spondingly εimp ¼ 0:2jtj (blue lines), 0:3jtj (green lines), 0:4jtj (dark
yellow lines), 0:5jtj (magenta lines), 0:6jtj (orange lines) and 0:7jtj,
(violet lines); or timp ¼ 0:7t (violet lines), 0:6 t (orange lines), 0:5 t
(magenta lines), 0:4 t (dark yellow lines), 0:3 t (green lines) and
0:2 t (blue lines). A sketch of plane impurities can be found in Ref.
[27, Fig. 1]. In addition, the conductance spectrum of the corre-
sponding periodic nanowire without impurities is shown as gray
lines. Observe that when a single plane of site or bond impurities
is introduced, the quantized conductance spectra of pure periodic
systems are smoothed and decreases when εimp grows or timp

reduces. In fact, this effect is more remarkable when the impurity
is of bond nature. For the case of two planes of impurities,
oscillating spectra are found. Notice that the conductance spec-
trum of two site-impurity planes is lower than that of a single
plane of site impurities. Such a fact is not found for planes of bond
impurities.

Fig. 12 shows the electrical conductance (g) as a function of
chemical potential (m) varying the on-site impurity energy (εimp)
from 0 to 4jtj, for the same nanowires of Fig. 11 with (a) one site-
impurity plane, two site-impurity planes separated by (b) 13
atoms and (c) 60 atoms. Notice that the conductance spectra are
asymmetric with respect to the zero chemical potential for the
cases of two site-impurity planes. Moreover, the quantization
of the conductance is destroyed if the number of impurity planes,
the distance between them or εimp increase. When the number of
site-impurity planes is greater than one, the conductance spectra
become composed by very thin peaks, observed as black lines in
Fig. 12(b) and (c). For negative values of εimp, we always obtain
antisymmetric spectra with respect to εimp ¼ 0.

For the case of bond impurities, similar results of Fig. 12 are
shown in Fig. 13 for nanowires with (a) one bond-impurity plane,

two bond-impurity planes separated by (b) 16 and (c) 64 atoms,
whose impurity hoping integrals (timp) vary between 0 and 3 t.
In contrast to Fig. 12, the conductance spectra is symmetric around
the zero chemical potential. Furthermore, the conductance is more
rapidly diminished when timp=to1 in comparison to timp=t41.

Fig. 11. Conductance (g) versus chemical potential (m) spectra of periodic nano-
wires of N ¼ 433494438� 6� 6 atoms containing (a) one site-impurity plane,
(b) two site-impurity planes, (c) one bond-impurity plane and (d) two bond-
impurity planes, taking εimp ¼ 0:2jtj (blue lines), 0:3jtj (green lines), 0:4jtj (dark
yellow lines), 0:5jtj (magenta lines), 0:6jtj (orange lines) and 0:7jtj, (violet lines); or
timp ¼ 0:7t (violet lines), 0:6 t (orange lines), 0:5 t (magenta lines), 0:4 t (dark yellow
lines), 0:3 t (green lines), 0:2 t (blue lines), and η¼ 10�15jtj. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Conductance (g) spectra as functions of the chemical potential (m) and the
on-site impurity energy (εimp) for periodic nanowires with (a) one site-impurity
plane, two site-impurity planes separated by (b) 13 atoms and (c) 60 atoms.

Fig. 13. Conductance (g) spectra as functions of the chemical potential (m) and the
impurity hopping integral (timp) for periodic nanowires with (a) one bond-impurity
plane, two bond-impurity planes separated by (b) 13 atoms and (c) 60 atoms.
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In similitude to the site-impurity cases of Fig. 12, the conductance
quantization is also quickly destroyed when the number of
impurity planes or the distance between them increase.

We further extend this study to quasiperiodic nanowires. In
Fig. 14, the conductance spectra are shown for nanowires of N¼
433;494;438� 6� 6 atoms, whose hopping integrals tA ¼ 0:9 t
and tB ¼ t along the longitudinal axis follow the Fibonacci sequ-
ence, η¼ 10�15jtj, and one site-impurity plane with (a) εimp ¼
0:5jtj, (b) εimp ¼ 1:5jtj, and two site-impurity planes separated by
64 atoms with (c) εimp ¼ 0:5jtj and (d) εimp ¼ 1:5jtj. These spectra
are compared with those of a periodic (blue line) and of a
Fibonacci nanowire without impurities (gray line). Notice that
these conductance spectra of quasiperiodic nanowires are always
asymmetric for any number of impurity planes. Moreover, the
conductance diminish when εimp increases.

In parallel to Fig. 14 for site-impurity cases, Fig. 15 reveals the
conductance spectra of Fibonacci nanowires containing one bond-
impurity plane with (a) timp ¼ 0:5 t, (b) timp ¼ 0:3 t, two bond-
impurity planes separated by 64 atoms with (c) timp ¼ 0:5 t and (d)
timp ¼ 0:3 t. The same parameters of Fig. 14 are used in the
calculations for Fig. 15 and the obtained conductance spectra are
also compared to those of periodic (blue line) and Fibonacci (gray
line) nanowires without impurities. Observe that the conductance
quickly decrease when timp diminishes for any number of impu-
rities. It is worth to mention that while the separation between
bond-impurity planes is larger, the decrease of the conductance is
slower. The inclusion of bond-impurity planes with timp=to1 has
significantly stronger effects over the conductance spectra of
Fibonacci nanowires than the addition of site impurities, as occurs
in periodic nanowires.

For the case of segmented nanowires, Fig. 16 shows their
conductance spectra versus the chemical potential of periodically
segmented nanowires with blocks containing four atoms, total
number of atoms N¼ 144;946;903� 6� 6, η¼ 10�15t, tB ¼ t and
(a) tA ¼ 0:9 t, (b) tA ¼ 0:8 t, (c) tA ¼ 0:7t and (d) tA ¼ 0:6 t. It can
be noticed that the quantized spectrum behavior is still preserved
in the case (a) but not in the other cases, where such quantization
is only present in both band extremes.

On the other hand, in Fig. 17 the electrical conductance spectra
are illustrated for quasiperiodically segmented nanowires whose

blocks follow the Fibonacci sequence with the same parameter of
Fig. 16 and (a) tA ¼ 0:9 t, (b) tA ¼ 0:8 t, (c) tA ¼ 0:7t and (d)
tA ¼ 0:6 t. Note that the destruction of the quantization in this
case is remarkable due to the presence of the Fibonacci ordering.
Moreover, the spectra do not have well defined gap structure as in
the 1D systems, finding only pseudogaps. The conductance of
quasiperiodically segmented nanowires is higher than the corre-
sponding one of the non-segmented Fibonacci nanowire (gray
lines in Fig. 15).

5. Conclusions

In this paper, we analyze in detail the effects of site and bond
impurities on the electrical conductivity of periodic and bond-
Fibonacci systems with macroscopic length, by using the real-
space renormalization method for the Kubo–Greenwood formula.

Fig. 14. Conductance (g) spectra as functions of chemical potential (m) for Fibonacci
nanowires containing one site-impurity plane with (a) εimp ¼ 0:5jtj and (b)
εimp ¼ 1:5jtj, as well as two site-impurity planes separated by 64 atoms with (c)
εimp ¼ 0:5jtj and (d) εimp ¼ 1:5jtj, in comparison to the conductance spectra of
periodic (blue lines) and Fibonacci (gray lines) nanowires without impurities. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 15. Conductance (g) spectra as functions of the chemical potential (m) for
Fibonacci nanowires containing one bond-impurity plane with (a) timp ¼ 0:5t, (b)
timp ¼ 0:3t, two bond-impurity planes separated by 64 atoms with (c) timp ¼ 0:5t
and (d) timp ¼ 0:3t, in comparison to the conductance spectra of periodic (blue
lines) and Fibonacci (gray lines) nanowires without impurities. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. Conductance (g) spectra as functions of the chemical potential (m) for
periodically segmented nanowires with (a) tA ¼ 0:9 t, (b) tA ¼ 0:8 t, (c) tA ¼ 0:7t
and (d) tA ¼ 0:6 t, in comparison to those of a periodic nanowire without
impurities (gray lines).
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For three-dimensional systems the convolution theorem is also
employed. It is worth to mention that the method by combining
renormalization and convolution does not add extra approxima-
tions and it is extremely efficient, whose computing time grows
logarithmically with the system length.

For a single impurity in periodic chains, we found that the
conductivity spectra are symmetric around the zero chemical poten-
tial inside the band, even for a site impurity, which can be seen in the
analytic solution of the transmittance for energies within the band
given by Eq. (9). In fact, there is an exponentially localized state
outside the band, whose conductivity is small enough to be seen in a
linear-scale conductivity spectrum. In contrast, for Fibonacci chains,
the conductivity spectra are only symmetric with respect to the zero
chemical potential when the impurities are of bond nature, while any
site impurity produces a notable asymmetry.

In the case of two impurities in periodic chains, we found that
the conductivity spectra oscillates and the number of maximums
is equal to the number of atoms between the impurities. In fact,
the analytical solution of the transmittance obtained in this article
for periodic chains with two site impurities confirm this relation-
ship. For Fibonacci chains, the conductivity reduction caused by
two impurities is more remarkable when the distance between
them is shorter.

The transparent state at the zero chemical potential in Fibo-
nacci chains is always destroyed when site impurities are present.
In contrast, for bond impurities, there are transparent states at the
zero chemical potential for every three generations when timp ¼ tB
and the number of impurities is even.

The spectral average of the conductivity depends strongly
on the location of the site and bond impurities in periodic
chains. Particularly, when the distance between impurities follows
the Fibonacci sequence we found that the spectral average falls
following a power law as the number of atoms in the system
grows. This fact can be understand if one renormalizes all the
atoms between impurities obtaining two effective hopping para-
meters ~t ðμ; dAÞ and ~t ðμ; dBÞ. These new hopping parameters are
ordered following the Fibonacci sequence and then one obtains a
power-law decay behavior with the system length. For segmented
periodic chains, the spectral average of the conductivity has a
constant behavior with respect to the number of atoms in the
system, and has a lower value than that of a periodic chain without
block structure.

In the case of periodic nanowires, the conductance quantized
spectrum is less destroyed for a single site-impurity plane than for
a single bond-impurity one. This destruction is enhanced when
two impurity planes are introduced. At the same time, we found
resonant conductance peaks for the case of two bond-impurity
planes, whose conductance is higher than that of a single impurity
plane. For quasiperiodic nanowires, their conductance spectra are
less sensitive to site-impurity planes than bond-impurity ones.
Finally, the quantization behavior of the conductance in segmen-
ted periodic nanowires remains at extremes of the band and it is
easily destroyed at the center of the band. In fact, such quantiza-
tion disappears in quasiperiodically segmented nanowires.

In summary, the renormalization plus convolution method allows
a detailed analysis of the impurity effects on the electronic transport
in macroscopic periodic and quasiperiodic chains as well as in
nanowires, beyond perturbative studies. This analysis reveals that
the position of the impurities could be essential and possesses global
effects on the electrical conductivity of whole band, such as the
power-law decay of the conductivity when the impurities were
placed at sites with separations following the Fibonacci sequence.
This fact only can be seen clearly in this analysis carried out in
systems with macroscopic length. This study can be extended to
multiband models, as developed in Ref. [24] for Fibonacci super-
lattices, and it was found that the single orbital results could be
observed only in the vicinity of the superlattice Γ point.
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