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a b s t r a c t

In this paper, we find analytically the first order solutions of the Bardeen, Cooper and Schrieffer (BCS)
Hamiltonian with degenerated single-electron energy levels. The results are compared to the Richardson
exact solutions calculated numerically, showing good agreement in the weak interaction limit. Using this
first-order solution, we further calculate the number of pairs at the ground state as a function of
temperature. In particular, the Bose–Einstein condensation (BEC) temperature is found when the
population of ground-state pairs starts growing. This study provides a BEC analysis of the super-
conductivity for weak coupling regime, which traditionally belongs to the BCS side of the BCS–BEC
crossover picture.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of superconductivity has fascinated many physicists
since its discovery. It consists of a lack of electrical resistance and a
total expulsion of magnetic fields inside a material. The first micro-
scopic explanation was given by Bardeen, Cooper and Schrieffer (BCS)
in 1957 [1] as a consequence of the appearance of electron pairs,
named Cooper pairs, given rise from an effective attraction between
electrons. The pairing Hamiltonian proposed by BCS with a constant
interaction has been also applied in fields like nuclear physics, to find
the first nuclear energies of many atoms [2]. However, the BCS theory
is not suitable for systems in which the separation between single-
electron energy levels is large enough to be considered as a con-
tinuum, such as granular or nanostructured superconductors [3,4]. In
particular, when the system dimension is reduced below the super-
conducting coherence length, a critical regime is appeared above the
bulk critical temperature where a superconducting gap is measured by
scanning tunneling microscopy on individual Pb nanoparticles [5].

In 1963, R.W. Richardson achieved to transform the many-
particle Schrödinger problem into a series of coupled non-linear
algebraic equations, whose solutions are the exact eigenstates of
the BCS Hamiltonian [6]. Such coupled equations are as follows:
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where it is assumed that there are L different values of the single-
electron energy (εs) with a degeneracy Ms and n¼ 1;2;⋯;NP ,
being NP the number of pairs in the system. Using the solutions En,
the energy of the system is given by
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where εk is the single-electron energy, ĉ†k;σ and ĉk;σ are respec-
tively the creation and annihilation operators of an electron with
crystal momentum k and spin σ in a crystalline solid. This
Richardson's solution has helped to determine the energy spec-
trum of systems with few pairs [2] and to analyze the spin
susceptibility of a superconducting ultra-small grain [7], even
though the ignorance of a general analytical expression of the
many-pair energy. Thermodynamical properties of small systems
with a fixed particle number have been addressed by a variation
after projection approach [8] and an additional perturbative
procedure is also proposed [9]. Moreover, quantum Monte Carlo
simulations are performed to study the nuclear pairing model [10].

On the other hand, the superconductivity viewed as a Bose–
Einstein condensation (BEC) has been recurrently suggested
through the years [11,12]. It is widely accepted the BCS–BEC
crossover viewpoint, which identifies two limiting behaviors. In
the BCS limit, Cooper pairs overlap due to their large size or high
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density, while the BEC limit shows opposite conditions producing
molecular Cooper pairs which interact with each other like bosons
[13–15]. In fact, we have shown that creation and annihilation
operators of collective Cooper pairs accomplish bosonic commu-
tation relations in the dilute limit, corresponding to the BEC side
[16]. Additionally, we have found recently a coincidence between
BCS and BEC theories in the narrow-band limit [17].

In this paper, we use the BCS Hamiltonian given by [18]

Ĥ¼
X
k;σ

ε kð Þĉ†k;σ ĉk;σ�V
X
k;k0

b̂
†

kb̂k0 ð4Þ

where b̂
†

k ¼ ĉ†k;↑ĉ
†
�k;↓ and b̂k ¼ ĉ�k;↓ĉk;↑ are respectively the crea-

tion and annihilation operators of Cooper pairs. In the next sec-
tions, we give analytically the complete energy spectrum of
Hamiltonian (4) at first order in Vand consequently determine
its condensation properties.

2. First order solutions of the BCS Hamiltonian

Let us consider that all the single-electron energies ε kð Þ can be
grouped in sets Ωswith a constant energy εs and Ms elements in
each set. Then, Hamiltonian (4) can be rewritten as
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Ĥs ¼ εs
X
kAΩs
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Hamiltonian Ĥs can be solved analytically and the solutions are
composed by Qs unpaired electrons, Ps ground-state pairs and Xs

excited pairs, having energy [17]
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and the corresponding eigenfunction given by
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where ~Ωs �Ωs� k1;⋯;kQs

� �
. The degeneration of the energy is
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and the parameters are subject to the constriction of
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Based on the solution (9) and a straightforward calculation, it

can be shown that
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and then the wavefunctions of Hamiltonian (5) can be written as
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with corresponding energy and degeneration at a first order in
V given by
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Fig. 1 shows the linear solutions (red solid lines) of Hamiltonian
(5) given in Eq. (14) as functions of the interaction (V) in
comparison to the exact solutions obtained from the Richardson
equations (blue dotted lines) for the case of L¼ 2, ε1 ¼ ε0, ε2 ¼ 2ε0,
M1 ¼M2 ¼ 4, M¼M1þM2 ¼ 8 and NP ¼ 2. Notice the agreement
between both solutions for small V , as expected for a first order
perturbation solution. Moreover, the degeneracy (14) of first-order
solutions is the same of the exact solutions. In particular, the
degeneracy (3þ3) indicates two configurations, ½P1;X1; P2;X2� ¼
½1;0;0;1� and ½0;1;1;0�, both with the same linearized energy.

It would be worth mentioning that this approximation could be
obtained by making λaν⪡1 in Eq. (13) of reference [19] developed
for the case of non-degenerated systems.

3. Statistical analysis for the weak coupling limit

For the weak coupling regime, the energy spectrum given in Eq.
(14) allows us to write the grand canonical partition function as

Ξ μ; T
� �¼ ∏

L

s ¼ 1
Ξs μ; T

� � ð15Þ

where μ is the chemical potential, T is the temperature and Ξs is
the partition function of each set Ωs, i.e.
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where limits of summations come from constriction (11) and

ΘðQs; Ps;Xs;μ;βÞ ¼DQs ;Ps ;Xs e
�β EQs ;Ps ;Xs �μ Qs þ2Ps þ2Xsð Þ½ �: ð17Þ

It can be noticed that [12]

ln maxΘðQs; Ps;Xs;μ;βÞ
	 


r ln Ξs μ; T
� �	 
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þ3 ln Ms:

ð18Þ
In fact, by applying the Stirling formula to Eq. (10) we obtain that

ln max DQs ;Ps ;Xse
�β EQs ;Ps ;Xs �μ Qs þ2Ps þ2Xsð Þ½ �n oh i

⪢3 ln Ms: ð19Þ

Fig. 1. (Color online) Energy spectrum of Hamiltonian (5) as a function of the
interaction strength (V) calculated from the exact Richardson equations (blue
dotted lines) and the first order solution in V (red solid lines). The degeneracy of
each line is indicated between parentheses.
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Then, the free energy (F) of the system can be written as

F μ; T
� �¼ �kBT ln Ξ μ; T

� �	 
� �kBT
X
s
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�β EQs ;Ps ;Xs �μ Qs þ2Ps þ2Xsð Þ½ �n oh i

: ð20Þ

Eq. (20) means that in the thermodynamic equilibrium the most
probable values of Qs, Ps and Xs are those that maximize the free
energy.

The parameters Qs, Ps and Xs are limited by the condition (11)
and Qs; Ps;XsZ0, delimiting the feasible region of the solution. By
a direct maximization process of Eq. (17), it can be shown that if
the solution is strictly in the interior of the feasible region, the
parameters Qs, Ps and Xs that maximize F are solutions of

2Es ¼ V Ms�Qs�2Xs

� �
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ffiffiffiffiffiffiffiffiffiffiffi
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p
�2Xs
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=2Es

8>>><
>>>:

; ð21Þ

where Es � VPsþεs�μ. In general, Qs, Ps and Xs are numerically
determined by maximizing Eq. (17) within the feasible region
including its boundaries and the results are respectively shown

in Figs. 2–4 as functions of the temperature (T) and the single-
electron energy (εs). For shells with εsoμ, the quantities Qs, Ps

and Xs represent unpaired, ground-state pairs and excited pairs of
holes, respectively. It is worth mentioning that these figures are
independent from specific values of Ms and V. Observe that for
Ps-0þ , we have from Eq. (21)

kBT
MsV

¼ z
ln 1þ2z

1�2z

� �; ð22Þ
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4
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and
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¼ 1
2
�2z2; ð24Þ

where z� εs�μ
�� ��=ðMsVÞ. Eqs. (22)–(24) are represented by gray

lines in Figs. 2–4.
Observe in Fig. 3 that the population of pairs at the ground

state, Ps, becomes zero for temperatures above MsV=ð4kBÞ, hence
we can define the BEC temperature as kBTBEC ¼MV=4.

Now, we calculate the average energy (E) as a function of
temperature (T) by using Eqs. (8) and (14), i.e.

EðTÞ ¼
XNS

s ¼ 1

QsðTÞþ2PsðTÞþ2XsðTÞ
h i

εs�PsðTÞV Ms�QsðTÞ�PsðTÞ
h

�2XsðTÞþ1


; ð25Þ

Fig. 2. Number of unpaired electrons at shell s (Qs) as a function of the temperature
(T) and the single-electron energy (εs).

Fig. 3. Number of ground-state pairs at shell s (Ps) as a function of the temperature
(T) and the single-electron energy (εs).

Fig. 4. Number of excited pairs at shell s (Xs) as a function of the temperature (T)
and the single-electron energy (εs).

Fig. 5. Heat capacity (C) as a function of temperature (T) obtained from Eq. (25).
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and then, the heat capacity (C) defined as ∂E=∂T is showed in Fig. 5.
Notice that there is a linear behavior for T4TBEC , i.e., C ¼ γT
corresponding to a free electron system [20]. For T⪡TBEC , the heat
capacity has an exponential behavior as occurs in the BCS theory
[18]. Moreover, for temperatures just below TBEC the heat capacity
has a smooth decay, which is due to the different null-Ps tem-
perature for each shell s. This is a consequence of the decoupling of
shells caused by the first order approximation.

4. Application to electrons on a spherical surface

The approach presented in this paper can be applied to the case
of non-uniform angular-momentum energy levels of electrons on
a spherical surface, given by [21]

εl ¼
ℏ2

2meR
2lðlþ1Þ ð26Þ

with a constant radio R and a degeneration of 2ð2lþ1Þ. For the case
of a fixed average number of particles, the chemical potential (m) is
adjusted accordingly. In Fig. 6, the heat capacity (C) is showed for
electrons on a sphere with the Fermi angular-momentum level at
LF ¼ 26, NF ¼ 54 electrons in such level and interaction strength
V ¼ 0:01ε1 (solid circles), 0:05ε1 (solid squares), 0:15ε1 (solid tria-
ngles) and 0:5ε1 (solid stars). Beyond the thermodynamic limit
given by Eq. (20), i.e., performing all the summations of Eq. (16),
the corresponding heat capacities are also illustrated in Fig. 6
by open symbols within the grand-canonical ensemble analysis.
These results can be compared with those obtained by means of
the canonical ensemble approach [21], illustrated as dashed lines
in Fig. 6. It is worth mentioning that the abrupt fall of heat capacity
is due to the large separation of energy levels in comparison to the
temperature energy (kBT), which leads to a heat capacity origi-
nated from the single Fermi energy level, in contrast to the case
analyzed in Fig. 5. On the other hand, the macroscopic approxima-
tion of Eq. (20) seems to be far from the exact evaluation (open
symbols), since this system have only LF ¼ 26 levels occupied.

5. Conclusions

In this paper, we have obtained an analytical first-order
perturbation solution of the BCS Hamiltonian for systems with

degenerated single-electron energies, which has a good agreement
with the exact numerical solution obtained from Richardson's
equations at the weak coupling limit. This first-order solution
decouples the shells in the momentum space, where each shell
has a constant single-electron energy, and then allows an analy-
tical study of the BEC for systems with a macroscopic degree of
freedom, in contrast to the small systems addressable by Richard-
son's solution. This study was carried out by considering three
essential components in superconductors: unpaired electrons,
ground-state and excited electron-pairs. It would be important
to stress that there is an universal behavior of Qs, Ps and Xs shown
in Figs. 2–4, since it is independent from the model parameters Ms

and V. The results further show the existence of ground-state pairs
only in a limited number of shells around the Fermi energy, as
illustrated in Fig. 2. The present work supports the viewpoint that
superconductivity in the weak coupling can also be interpreted as
a BEC of Cooper pairs, because the number of ground state pairs
increases when the temperature falls below the superconducting
critical temperature. This solution is particularly valuable for
granular superconductors, where quantum size effects discretize
the energy levels, making useless the BCS theory. Finally, the
smooth decay of the electronic heat capacity observed in Fig. 5 is
due to the decoupling of shells originated by the first order
approximation, which could be improved by considering higher
orders of approximation in spite of losing analytical results.
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