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Abstract We sketch the generalized Bose-Einstein con-
densation (GBEC) formalism of a ternary boson-fermion
(BF) model to study the critical transition temperature Tc

of a superconductor. This ternary model contrasts with the
more familiar binary models of, e.g., Eagles, Ranninger
et al., T.D. Lee et al., etc. The fermions are unpaired
electrons (e) or, without loss of generality, holes (h); the
bosons are Cooper pairs (CPs) each of both these fermions.
In essence, the GBEC is a statistical model, as is the
Bardeen-Cooper-Schrieffer (BCS) theory also, and yields
three condensed chemically- and thermodynamically-stable
phases: two pure phases, one for electron Cooper pairs (2e-
CPs), and the other for hole Cooper pairs (2h-CPs), along
with a mixed phase in arbitrary proportions of each of the
two pure phases. The explicit inclusion of 2h-CPs dramat-
ically increases the Tc of a superconductor with respect to
BCS besides including as special cases all known statistical
models of superconductors.

Keywords Cooper pairs · BCS theory · High-Tc

superconductors · Generalized Bose-Einstein condensation
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1 Introduction

It’s been said that in the twentieth century, there were three
central paradigms in condensed-matter physics (i) the band
theory of solids [1]; (ii) the Landau theory of Fermi liq-
uids [2]; and (iii) the BCS theory of superconductivity (SC)
[3]. One might also add (binary) boson-fermion (BF) mod-
els to describe SC. These were pioneered in 1969 by Eagles
[4], in the late 1970s by Leggett [5], in the mid to late
1980s by Ranninger et al. [6], T.D. Lee et al. [7, 8], and
others. Nonetheless, high-Tc superconductivity remained
altogether unexplained.

A newer approach, based on a ternary BF model with
explicit inclusion of two-hole (2h) Cooper pairs (CPs) leads
to a formalism that generalizes Bose-Einstein condensation
(GBEC) [9–13] and is vastly more general with sizeable
increases in Tc with respect to those predicted by BCS.
The ternary-BF-gas [4, 6–8, 13–15] GBEC formalism sub-
sumes BCS theory as well as ordinary BEC [16, 17] and was
proposed to describe SC in general.

Three crucial elements characterizing GBEC are (i) CPs,
which obey Bose statistics [13], are considered as real
bosons—as opposed to BCS pairs which are strictly not
bosonic as they do not obey Bose commutation relations
[3]; (ii) BF vertex interactions (similar to electron-phonon
vertices) which drive formation/disintegration of CPs; and
(iii) 2h-CPs explicitly accounted for along with two-electron
(2e) CPs. Besides, including as special cases, all known
statistical models of superconductors [9–13] the GBEC
formalism also subsumes the BCS-Bose “crossover” [11]
theory which in turn includes BCS as a special case.
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It is noteworthy that Hirsch [18] has strenuously empha-
sized that upon cooling a SC with either 2h-CPs or 2e-CPs
in its normal phase (as the case may be with a given mate-
rial) CPs first emerge as preformed CPs above Tc but that
only actual 2e-CPs appear below Tc.

2 GBEC Equations

The GBEC [9–13] total Hamiltonian H consists of two parts
H0 + Hint . An unperturbed Hamiltonian

H0 ≡
∑

k1,s1

εk1a
†

k1,s1ak1,s1 +
∑

K

E+(K)b
†
KbK

−
∑

K

E−(K)c
†
KcK (1)

describing a ternary BF ideal gas in 3D where K ≡ k1 + k2

is the total or center-of-mass momentum (CMM) wavevec-
tor of a CP and εk1 ≡ �

2k2
1/2m the energy of each

electron of effective mass m [19] while E±(K) ≡ E±(0) ±
�

2K2/4m are phenomenological energies of the bosonic
2e-/2h-CPs each of effective mass 2m. Here, a

†
k1,s1

(ak1,s1
)

are the creation (annihilation) operators for fermions and
similarly b

†
K(bK), c

†
K(cK) for bosonic 2e- and 2h-CPs,

respectively. The first term in (1) accounts for unpaired
electrons while the second and the third correspond to the
2e-CPs and 2h-CPs, respectively.

The second part Hint of the full GBEC Hamiltonian
describes interactions via four distinct BF interaction ver-
tices each with two unpaired fermions and one boson oper-
ator of creation (annihilation) that represent how unpaired
electrons (subindex +) or holes (subindex -) are involved in
the formation and disintegration of the 2e-/2h-CPs. Specifi-
cally

Hint = L−3/2
∑

k,K

f+(k)

×
(

a
†
k+ 1

2 K,↑a
†
−k+ 1

2 K,↓bK + a−k+ 1
2 K,↓ak+ 1

2 K,↑b
†
K

)

+L−3/2
∑

k,K

f−(k)

×
(

a
†
k+ 1

2 K,↑a
†
−k+ 1

2 K,↓c
†
K + a−k+ 1

2 K,↓ak+ 1
2 K,↑cK

)
(2)

where f±(k) are BF coupling terms of electrons and holes,
respectively. This is depicted in Fig. 1. One can simplify
Hint by ignoring K �= 0 terms in the interaction but not
in the unperturbed Hamiltonian as done in BCS theory [3].
Ignoring excited K �= 0 terms in (2), a simplified, read-
ily diagonalizable, total dynamical operator Ĥ − μN̂ as
appears in Ref. [9, 10] where μ is a Langrange multiplier
and N̂ is the operator for total number of electrons including

Fig. 1 The BF hamiltonian interaction (2) consists of 4-vertices each
with two-fermion/one-boson creation-anihilation operators represent-
ing how unpaired electrons (+) and/or holes (−) bind to form 2e- or
2h-CPs, and disintegrate into two unpaired fermions

the unpaired electrons. Applying the Bogoliubov “recipe”
of replacing b

†
0(b0) and c

†
0(c0), respectively, by

√
N0 and√

M0, where N0 and M0 are the number of composite-boson
2e/2h-CPs with K = 0, leads below Tc to a full simplified
Hamiltonian which is then exactly diagonalizable [12] via a
Bogoliubov-Valatin transformation [20, 21]. This simplifi-
cation can be lifted—see Ref. [22–25] where excited bosons
with K �= 0 are not excluded in the interaction Hamiltonian
of Ĥ −μN̂ which can then be dealt with via two-time Green
functions.

The simplified dynamical operator Ĥ − μN̂ can now be
exactly diagonalized. Thus, the well-known grand canonical
ensemble definition of the grand (or Landau) potential

�
(
T , L3, μ, N0, M0

)
= −kBT ln

[
Tr e−β(Ĥ−μN̂)

]
(3)

can be evaluated explicitly, where Tr stands for “trace.”
Here, T is the absolute temperature and β ≡ 1/kBT , kB

the Boltzmann constant, and μ is the chemical potential of
the many-electron subsystem. The Helmholtz free energy
below Tc is F(T , L3, N0, M0) ≡ � + μN . Taking the par-
tial derivative of (3) with respect chemical potential and
minimizingF(T , L3, N0, M0) over N0, M0 gives

∂�

∂μ
= −N

∂F

∂N0
= 0

∂F

∂M0
= 0. (4)

The first relation is the familiar result of statistical mechan-
ics and here ensures the net charge conservation of the
GBEC formalism, i.e., gauge invariance, in contrast with
BCS theory which lacks it. The last two relations are
necessary to define a stable thermodynamic state.

After some algebra, one arrives at the three transcenden-
tal coupled equations that determine the GBEC formalism:
a “number equation” for the electron number density
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n = 2n0(T )+2nB+(T )−2m0(T )−2mB+(T )+nf (T ). (5)

Here, n0 ≡ N0/L
3 and m0 ≡ M0/L

3 are the number den-
sities of condensed bosonic 2e-/2h-CPs, respectively, while
nB+(T ) and mB+(T ) are the uncondensed-boson number
densities for 2e- and 2h -CPs, respectively. Also, n ≡ N/L3

where L is the length of the “box” of volume L3, and nf (T )

refers to the unpaired-electron number density of the system
at any T which turns out to be

nf (T ) =
∫ ∞

0
dεN(ε)

[
1 − ε − μ

E(ε)
tanh

1

2
βE(ε)

]
. (6)

Here, E(ε) ≡ √
(ε − μ)2 + �2(ε) where the T -dependent

gap�(ε) ≡ √
n0(T )f+(ε) + √

m0(T )f−(ε). The strength
functions f+(ε) and f−(ε) can be constructed as in Ref. [9,
10]. The last two requirements of (4) lead to two “gap-like
equations” associated with 2e-CPs and 2h-CPs [6–8].

Figure 2 shows the five statistical theories that are sub-
sumed as special cases in the GBEC formalism. Keeping
only 2e-CPs eventually leads to ordinary BEC theory. On
the other hand, if one assumes perfect symmetry between
2e-CPs and 2h-CPs, one obtains the BCS theory of SC, inso-
far as the precise gap equation and T = 0 condensation
energy are recovered [13].

3 2h-CPs in GBEC Multiphases and High Tc

In Fig. 3, we plot the total dimensionless Tc/TF versus
dimensionless number density n/nf (where nf is the num-
ber density of unpaired electrons at T = 0, see Fig. 2
below) for the pure 2e-CP phase (with no 2h-CPs in the
ground state), as well as the pure 2h-CP phase (with no
2e-CPs in the ground state), where TF is the temperature
related to the actual Fermi energy EF in the normal state.
These two curves are compared with ordinary BEC and
BCS. Also plotted is the thin-dotted curve for perfect sym-
metry between the number of 2h-CPs and 2e-CPs (50–50
mixture), namely n0(T ) = m0(T ) and nB+(T ) = mB+(T )

implying [13] that μ = Ef . In the larger Inset of Fig. 3, the
BCS value of Tc/TF = 7.64×10−6 is recovered and marked
by the red dot (online) with a number density n/nf = 1
and follows from the standard BCS theory weak-coupling
formula kBTc � 1.134�ωD exp(1/λ) for λ = 1/5 and
�ωD = 10−3EF , the values used in the figure. The light-
blue (online) shaded area between the two pure 2h-/2e-CP
curves corresponds to the mixed phase of GBEC with arbi-
trary proportions of bosonic 2h-/2e-CPs, as well as below
the BCS point (larger Inset in Fig. 3). Clearly, GBEC can
enhance Tc values compared with BCS as high as room
temperature and higher, employing only the BCS model
interaction mimicking the electron-phonon attraction that

Fig. 2 Flowchart illustrating conditions under which the GBEC for-
malism reduces to, or subsumes, all five statistical theories of super-
conductivity (ovals). Here ideal boson-fermion model (IBFM) is the
binary case of GBEC corresponding to the unperturbed hamiltonian
(1). Here ζ(3/2) � 2.612 is the zeta function of order 3/2

overwhelms Coulomb e-e repulsions. Note that with a minor
change in the number density around n/nf = 1, the system
Tc/TF can change substantially, increasing or decreasing as
the case may be.

It has been shown that in the relativistic ideal Bose gas
(RIBG) [26], the inclusion of antibosons produces higher
critical temperatures with respect to an RIBG without anti-
bosons. In SCs, a dramatic increase of Tc with the GBEC
occurs if one includes the 2h-CPs, their intriguing role
having been discussed [27] as a “background” effect in
enhancing Tc.

However, in Fig. 3, the pure 2e-GBEC phase at Tc

is described by n = 2nB+(Tc) − 2mB+(Tc) + nf (Tc)

which contains unpaired electrons as well as uncondensed
2e-/2h-CPs bosons; we found that uncondensed 2e-CPs
predominate over uncondensed 2h-CPs. In ordinary BEC
(dashed-curve in Fig. 3), one has a condensate gas com-
posed of 2e-CPs bosons in which one completely ignores
pairs of holes (rhs of Fig. 2). As expected, the BEC curve is
in the n/nf > 1 region where uncondensed 2e-CPs bosons
predominate, this also being seen in large Inset of Fig. 3,
the BEC curve always remaining in the n/nf > 1 region.
Thus, the physical interpretation when n/nf > 1 is that
uncondensed 2e-CPs bosons predominate over uncondensed
2h-CPs bosons.
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Fig. 3 Dimensionless Tc/TF versus n/nf for pure GBEC phases
2h-/2e-CPs and the ordinary BEC in 3D (thick dashed curve), extrap-
olating for nf → 0 to the familiar limit 0.218. Compared are three
bands encompassing conventional, exotic [28] and room-temperature
empirical Tc values. Larger Inset is a blow up around n/nf = 1 where
the intersection reproduces the BCS value Tc/TF = 7.64×10−6 given
by the BCS Tc weak-coupling formula kBTc � 1.134�ωD exp(1/λ)

for λ = 1/5 and �ωD = 10−3EF , where �ωD is the Debye energy of
the lattice. Red dot (online) marks the critical BCS temperature. Blue
thin dashed curve (online) marked 50-50, corresponds to perfect sym-
metry between 2e-/2h-CPs. The blue shaded area (online) is a mixed

phase with arbitrary proportions of 2e-/2h-CPs, as well as in the larger
Inset below the BCS dot. For n/nf < 1 the pure-phase curves are
marked as short-dashed, in this region uncondensed 2h-CPs bosons
predominate while in the n/nf > 1 region (pure-phase solid curves)
uncondensed 2e-CPs bosons predominate. Symbols ♦, �, � mark the
limit of the two pure-phase GBEC and BEC curves, respectively, when
n/nf → ∞, i.e., when nf (T ) → 0, meaning that all unpaired elec-
trons are paired. Smaller Inset shows plot of the dimensionless number
density nf (T )/nf of unpaired electrons (6) and its T = 0 limit nf ,
see Ref. [29]

Also, this can be explained with the pure phase 2h-
GBEC at Tc, described by n = 2nB+(Tc) − 2mB+(Tc) +
nf (Tc). In this phase, one sees that uncondensed 2h-CPs
predominate over uncondensed 2e-CPs and Tc/TF increases
dramatically wrt BCS (red dot–online Fig. 3). A slight
change in number density around n/nf < 1 gives a
substantial increase in Tc. In perfect symmetry (50–50
mixture) one has the same number between 2e-CPs and
2h-CPs and the blue dotted curve (online) in Fig. 3 goes
towards the n/nf > 1 region, this being due to the con-
tribution of 2e-CPs from nf (T ), namely n/nf → ∞
when nf (T ) → 0 meaning that all electrons in the sys-
tem are paired, as expected if one has only 2e-CPs when
n/nf > 1.

In this study, one has phases with both types of 2e-/2h-
CPs bosons, the physical interpretation of the two associated
regions in the phase diagram of Fig. 3 is that there are pre-
cise amounts of unpaired electrons or unpaired holes that
contribute to electron-/hole-pairing to enhance the super-
conducting transition temperature. This behavior might be
associated with electron-electron as opposed to electron-ion
interactions as defined by Hirsch [18].

4 Conclusions

The GBEC formalism describes a superconductor via a ter-
nary BF gas with unpaired electrons as well as bosonic
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2e-CPs and 2h-CPs. It gives two pure GBEC phases and
a mixed phase with arbitrary proportions of 2e-/2h-CPs.
Within this mixed phase is the phase-boundary curve with
perfect (50–50 mixture) symmetry. In the GBEC, the BCS
theory is subsumed when one has this perfect symme-
try; also subsumed is the BCS-Bose “crossover” theory
which in turn reduces to BCS when μ = EF . Note
our designation of “BCS-Bose” instead of the more com-
mon usage “BCS-BEC” since BEC is impossible in 1D
where, however, the “crossover” itself can occur [30] in
1D.

The results in phase diagram Fig. 3 illustrate a much
higher Tc than predicted by standard BCS theory. Fur-
thermore, considering, e.g., a pure 2h-GBEC phase,
Tc increases dramatically with respect to BCS, with-
out abandoning electron-phonon dynamics [31–33]. A
minor change in number density of the system around
n/nf = 1 substantially enhances Tc, i.e., slightly chang-
ing the number of unpaired electrons/holes in the sys-
tem gives a sizeable Tc increase. The physical interpre-
tation of unpaired electrons in the limit of very strong
coupling leads to a purely bosonic system composed
only of 2e-CPs. The GBEC formalism admits different
phases with different proportions of 2e-CP and 2h-CP
bosons.

The unpaired electrons as well as also uncondensed pairs
of either electrons or holes play an important role in describ-
ing high-Tc superconductivity. In particular, the precise
role of 2h-CPs in this formalism may shed further light in
high-Tc superconductivity.
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32. Kulić, M.L.: AIP Conf. Proc. 715, 75 (2004)
33. Kresin, V.Z., Wolf, S.A.: Revs. Mod. Phys. 81, 481 (2009)

http://dx.doi.org/10.1007/s10948-014-2718-6
http://dx.doi.org/10.1007/s10948-014-2718-6

	Multicondensate Superconductivity in a Generalized BEC Formalism with Hole Cooper Pairs
	Abstract
	Introduction
	GBEC Equations
	2h-CPs in GBEC Multiphases and High Tc
	Conclusions
	Acknowledgments
	References


