
Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
8 

N
ov

em
be

r 
20

14
. D

ow
nl

oa
de

d 
by

 F
A

C
 D

E
 Q

U
IM

IC
A

 o
n 

03
/0

3/
20

16
 1

7:
58

:1
9.

 

View Article Online
View Journal  | View Issue
Non-additive sim
Instituto de Investigaciones en Materiales, Un

Apdo. Postal 70-360, 04510 México, D.F., M
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ple potentials for pre-
programmed self-assembly

Daniel Salgado-Blanco and Carlos I. Mendoza*

A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure

with a system of particles interacting through simple potentials. To achieve this objective, intense

experimental and theoretical efforts are currently concentrated in the development of the so-called

“patchy” particles. Here we follow a completely different approach and introduce a very accessible

model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our

model consists of a binary mixture of particles that interact through isotropic interactions that enable

them to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical

parameters and interaction strengths. We study the system using Monte Carlo computer simulations and,

despite its simplicity, we are able to self-assemble potentially useful structures such as chains, stripes,

and Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model

is designed in such a way that it may be implemented using discotic particles or, alternatively, using

exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for

bottom-up nano-fabrication.
Introduction

The quest for new materials with unusual physical properties
and the need to produce devices of technological interest at the
nanoscale have boosted the design of new methods for the
fabrication of complex colloidal nanostructures. Processes such
as micro- and nano-fabrication are time consuming and
prohibitively expensive; therefore they are difficult to apply
below a certain length scale.1 As a result, the search for building
blocks on the mesoscopic scales that self-organize into poten-
tially useful structures by virtue of their mutual interactions and
shape is extremely important. One of the main challenges is the
ability to program the properties of the individual components
so that they organize into a desired structure.2 In many cases
this objective is pursued by trying to emulate the self-assembly
of living systems. Since most biomolecular objects interact
through directionally specic forces, a large amount of work has
been done to mimic the anisotropic nature of these interac-
tions,3–5 specically, with the design and use of patchy6–8 and
Janus9–12 particles. This approach captures much of the richness
of nature's self-assembled structures and has been successful in
building some types of lattices.13 However, the production of
particles with controlled patchiness in the laboratory is still
largely unavailable, although there has been impressive prog-
ress in their synthesis.5
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Particles interacting through simple isotropic interactions of
the core–corona type are also able to self-assemble in a large
variety of structures.14,15 However, in general, it is difficult to
predict which kind of structures can be obtained from these
potentials and an exploration of the parameter space has to be
performed to identify the different regions of the phase space
where a resulting structure appears. In order to circumvent this
difficulty, different, mainly theoretical, procedures have been
devised. These are the so-called inverse optimization tech-
niques which consist in determining the kind of isotropic
interaction potential that would result in the self-assembly of a
desired structure.16,17 Although this procedure has great
potential, to date, it results in very complex interactions difficult
to translate into a realistic system. Multi-component colloidal
systems interacting through simpler isotropic potentials18–21 are
also an alternative to build complex lattices.

In this work we propose a non-additive purely isotropic
interaction in a binary mixture of particles that can lead to a
large variety of different desired structures. Of particular
interest is the formation of nanometer-length-scale patterns in
two dimensions due to their potential in many applications,
such as optics, photonics, sensing and others.12 Among the
patterns that are being pursued, we can highlight the square
lattice whose symmetry is appropriate for use in nanocircuitry
and therefore with prospects in the electronic industry,18 the
Kagomé lattice for its applications in the study of frustrated
magnetism,22–24 or the unusual mechanical properties like the
auxetic response of the twisted Kagomé lattices,25 the honey-
comb lattice for its electronic properties motivated by its three-
Soft Matter, 2015, 11, 889–897 | 889
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Fig. 1 Description of the model. (a) Binary mixture of mushroom-
shaped particles M (blue particles) and discs D (red particles). The
interaction potential between the hard discs is depicted by the red line,
the interaction between mushroom-shaped particles is depicted by
the blue line, and finally, the interaction between a disk and a mush-
room-shaped particle is depicted by the purple line. The narrow
attractive square well potential at the surface of the particles is indi-
cated by dashed lines. (b) and (c) Schematic representation of two
different lattices obtained for the same value s1/s0 ¼ 1. In both cases
M-type particles lie in a triangular lattice; however, in panel (b) the
discs form a honeycomb lattice for s2=s0 ¼

ffiffiffi
3

p
while in panel (c) they

form a Kagomé lattice for s2/s0 ¼ 2. (d) Realization of the model using
exclusively spherical particles interacting isotropically that are
immersed in a cell of thickness h. Large spheres (blue) lie at the bottom
of the cell and the small spheres (red) are located at the top of the cell.
The non-additive parameter s1/s0 can be controlled changing the
thickness of the cell h. (e) Schematic representation of the lattice
obtained using the setup (d) and with the same parameters used to
obtain the lattice of panel (c).
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dimensional analog, the diamond lattice,16 and the quasicrys-
tals for photonic applications26 among others. With our model
we are able to self-assemble an enormous variety of useful
structures in 2D, among others, chains, stripes, and Kagomé,
twisted Kagomé, honeycomb, square, Archimedean and quasi-
crystalline lattices. Recently, a non-additive system in three
dimensions has been used to construct a tetrahedral network
glass former.27 However, to the best of our knowledge, a
systematic application of this kind of models to produce a large
variety of pre-dened structures has not been carried out.

Although our study is numerical, we believe that the model
should be feasible in practice due to the simple shape of the
particles involved and the possibility of decorating their surface
with double-stranded DNA or other well established methods to
produce short range interactions. Furthermore, it is possible to
mimic the system with a setup consisting of a cell containing a
binary mixture of spherical particles interacting isotropically,
thus bypassing the need to fabricate particles with complicated
shapes and interactions. An experimental setup somewhat
similar to that proposed in this work has been used to emulate
core-soened colloids.28

Model

Our system consists of a non-additive binary mixture of parti-
cles as depicted in Fig. 1a. In a two-component mixture nor-
mally the distance of closest approach between hard particles of
different species is a simple mean of the diameters of the
particles of each species. The non-additive hard particle mixture
generalizes this so that this distance can be smaller or larger
than the arithmetic mean of the like-species diameters.29,30 A 2D
version of our model can be achieved as follows: one species
consists of two coupled layers of attractive hard discs as shown
by the mushroom-shaped particles (M) in Fig. 1a. The second
species consists of attractive hard discs (D) and both species are
able to move only in the plane perpendicular to their symmetry
axis. The interaction between particles is represented by an
axially symmetric pair potential V(r) composed of an impene-
trable core surrounded by an adjacent square well. Our model is
designed to produce two-dimensional self-assembled structures
in which M-type particles are surrounded by discs in such a way
that each type of particles arranges in mutually intercalated
lattices. This methodology is particularly useful for the self-
assembly of open lattices. Since the lattices of the two species
are mutually intercalated, the open space of a given lattice can
be occupied by a particle of the second species, thus providing
stability to the structure during the formation process. Discs
have a core of diameter s0 and a thin square-well potential with
range l0s0. The interaction between mushroom-shaped parti-
cles is represented by a core of diameter s2 and a thin square-
well potential with range l2s2. Finally, the interaction between a
mushroom-shaped particle and a disc consists of a hard core
with diameter s01 ¼ (s0 + s1)/2 and a thin adjacent square-well
potential with range l01s01. The non-additive nature of
the model means that s01 ¼ (s0 + s1)/2 ¼ (1 + D)(s0 + s2)/2, with
D ¼ (s1 � s2)/(s0 + s2). The value of D in our model is always
negative (�1 < D # 0) which means that the distance of closest
890 | Soft Matter, 2015, 11, 889–897
approach between a disc and a M-type particle is smaller than the
mean of the diameters of the particles of each species. The inter-
action potentials are also depicted in Fig. 1a, where 30, 32, and 301

are depths of the potential wells. Mathematically, the interaction
potentials can be expressed by the following set of equations

VDDðrÞ ¼
8<
:

N; if r# s0

�30; if s0\r# l0s0

0; if r. l0s0

;

VMMðrÞ ¼
8<
:

N; if r# s2

�32; if s2\r# l2s2

0; if r. l2s2

;

VDMðrÞ ¼

8>>>>>>><
>>>>>>>:

N; if r#
ðs0 þ s1Þ

2

� 301; if
ðs0 þ s1Þ

2
\r# l01

ðs0 þ s1Þ
2

0; if r. l01
ðs0 þ s1Þ

2

;

This journal is © The Royal Society of Chemistry 2015

http://dx.doi.org/10.1039/c4sm02436b


Paper Soft Matter

Pu
bl

is
he

d 
on

 2
8 

N
ov

em
be

r 
20

14
. D

ow
nl

oa
de

d 
by

 F
A

C
 D

E
 Q

U
IM

IC
A

 o
n 

03
/0

3/
20

16
 1

7:
58

:1
9.

 
View Article Online
where Vij represents the interaction potential between a particle
i ¼ D, M and a particle j ¼ D, M. The distance between the
central axes of the particles is r.

We study our system through Monte Carlo (MC) simulations
at a constant number of particles N, volume V, and temperature
T (NVT simulations). Our objective is to assemble different
kinds of pre-programmed structures in 2D, specically, lattices
with different symmetries that are relevant for their scientic or
technological interest. The simplest lattice to assemble in 2D is
the regular triangular lattice. More difficult to assemble are
open structures since they do not maximize the translational
entropy of the particles.24 In our model M-type particles are used
as a tool to produce open lattices made of discs and vice versa.
Among the many possible choices for the geometrical parame-
ters, one interesting possibility is to consider that each M-type
particle is surrounded by n discs (n $ 3) closely packed around
the central M-type particle due to the attractive interaction
VDM(r). The value of s1 needed to allocate the discs is given by

s1

s0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1þ cos

�
2p

n

��s

sin

�
2p

n

� � 1 ¼ csc
�p
n

�
� 1: (1)

A given M-type particle may or may not share its surrounding
discs with other M-type particles. The way the discs are shared
will be determined by the value taken by s2 to nally produce
the desired lattice. For instance, in the tiling depicted in Fig. 1b
where n ¼ 6, the value s2 is chosen so that each M-type particle
shares two discs with each of its neighboring M-type particles.
On the other hand, in Fig. 1c, even if each M-type particle is
again surrounded by six discs, the value chosen for s2 is such
that each M-type particle shares only one disc with each of its
neighboring M-type particles. Lattices similar to the one shown
in Fig. 1b, with each M-type particle surrounded by n discs
sharing two of them with a neighboring M-type particle, can be
constructed by choosing

s2

s0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1

s0

�
2þ s1

s0

�s
¼ cot

�p
n

�
: (2)

Steric interactions between discs restrict the use of eqn (2) to
n # 12.

On the other hand, for lattices similar to the one shown in
Fig. 1c, in which a M-type particle shares only one disc with a
neighboring M-type particle

s2

s0

¼ 1þ s1

s0

¼ csc
�p
n

�
: (3)

Steric interactions between discs restrict the use of eqn (3) to
n # 6.

Sometimes it is energetically more favorable for the system
to phase separate. To suppress this behavior, suitable values for
the potential wells should be chosen so that the discs prefer to
stick around a M-type particle.
This journal is © The Royal Society of Chemistry 2015
Thus, the model can form a large variety of target structures
by simply tailoring the geometrical parameters s1/s0, and s2/s0,
and strengths of the potential wells 30, 32, and 301. Widths of the
potential wells l0, l2, and l01 do not signicantly alter obtained
lattices and are only used for ne tuning the resulting structure.
The stoichiometry of the system is determined by the lattice we
desire to assemble.

Interestingly, it is possible to devise a realization of the
model using solely spherical particles interacting through
isotropic potentials, thus avoiding the need to fabricate parti-
cles with complex shapes and interactions. This is shown in
Fig. 1d, in which a cross-section of a cell containing a mixture of
small spheres of diameter s0 that lie at the top of the cell and
large spheres of diameter s2 located at the bottom of the cell.
The non-additivity parameter s1 can be controlled by modifying
the thickness of the cell h through the relationship

h

s0

¼ 1

2

"
1þ s2

s0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s2

s0

� s1

s0

��
2þ s1

s0

þ s2

s0

�s #
: (4)

As an example, in Fig. 1e we sketch the assembly of spheres
that reproduces the lattice shown in panel (c).
Results and discussion

Standard Monte Carlo (MC) simulations based on the canonical
ensemble (NVT simulations) in a square box of side L with
periodic boundary conditions were carried out using the
Metropolis algorithm. We used s0 and 30 as length and energy
units, respectively, the reduced temperature T* ¼ kBT/30,
where kB is Boltzmann's constant, and the reduced number
density r*¼ (NMs1

2 + NDs0
2)/L2, where Ni stands for the number

of particles of species i.
Simulations were performed with N z 1000 particles, and

control runs with N z 5000 particles to exclude nite size
effects were also done. In all cases, the system is rst disordered
at high temperature and then brought from T*¼ 3.0 to the nal
temperature T* ¼ 0.01 through an accurate annealing proce-
dure with steps of 0.01. An equilibration cycle consisted, for
each temperature, of at least 1 � 108 MC steps, each one rep-
resenting one trial displacement of each particle, on average. At
every simulation step a particle is picked at random and given a
uniform random trial displacement within a radius of 0.1s0.
The range of the potential wells was li ¼ 1.05si, with i¼ 0, 2, 01.

In the following we explore the parameter space set by the
parameters s1/s0, s2/s0, 30, 32, and 301, and construct a number
of different target structures. First, we consider the case in
which each M-type particle is in contact with only two discs in
order to form chains. We can achieve this by setting a small
value of s1/s0. Three examples are displayed in Fig. 2. Panel (a)
shows the result for s1/s0 ¼ 0.02, s2/s0 ¼ 1.8, and 32 ¼ 0. The
small value for s1/s0 is chosen so that M-type particles act as
stickers between two discs. On the other hand, the value of s2/s0
is chosen so that only a small fraction of the discs protrudes
from the cap of the M-type particles therefore forming effec-
tively anisotropic particles with two interacting patches. The
Soft Matter, 2015, 11, 889–897 | 891
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Fig. 2 Chains and stripes obtained with n ¼ 2. (a) Polymer like structures obtained with s1/s0 ¼ 0.02 and s2/s0 ¼ 1.8. A few branching points are
present as shown in the inset. (b) s1/s0 ¼ 0.02 and s2/s0 ¼ 2. (c) s1/s0 ¼ 0.02 and s2/s0 ¼ 1.08. The depths of the potential wells (30, 32, 301) for
each structure are (0.5, 0, 1.5), (0.5, 1, 1.5), and (0, 0.5, 1.5), respectively.
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resulting patchy particles join to form exible chains with a few
branching points. Furthermore, by varying the values of s1/s0
and s2/s0, the persistence length of the chains can be controlled
to certain extent. Panel (b) shows the result of using s1/s0 ¼
0.02, s2/s0 ¼ 2 and (30, 32, 301) ¼ (0.5, 1, 1.5). In this case, M-type
particles form a triangular lattice to maximize their favorable
contacts and the discs accommodate in domains of mostly
parallel stripes, some of them with a few bends. Panel (c) shows
the result when s1/s0 ¼ 0.02, s2/s0 ¼ 1.08, and (30, 32, 301) ¼ (0,
0.5, 1.5).

Now we turn to the cases given by eqn (1), progressively
increasing the value of n and using different choices for s2/s0
and the depth of the potential wells, 30, 32, and 301.

For n ¼ 3, using eqn (1) and (2), a triangular lattice made of
discs is intercalated with a honeycomb lattice made of M-type
particles, as shown in Fig. 3a. Drawing lines joining each
particle of the lattice with its nearest neighbors we observe that
it can be characterized by a plane tiling of regular hexagons
(inset). On the other hand, if eqn (3) is used, then a Kagomé
lattice of discs is intercalated with a triangular lattice of M-type
particles, as shown in Fig. 3b. In the Kagomé lattice each
particle is in contact with four other particles of the same
species. If we tessellate the Kagomé lattice by drawing lines
between nearest neighbors, we observe that each vertex of the
lattice is surrounded by two triangles and two hexagons (see the
inset). In general, the vertex of a tiling made of regular polygons
Fig. 3 Honeycomb, Kagomé, and twisted Kagomé tilings obtained with
triangular lattice of discs (red) is intercalated with a honeycomb lattice of
type particle tiling. (b) s1/s0 and s2/s0 as given by eqn (1) and (3), respect
Kagomé lattice of discs (red). The inset shows the (3.6.3.6) motif of the tili
given by eqn (1) and s2/s0¼ 1.1. The inset shows two plaquettes of the latt
2, 1), (1, 2, 1), and (0.7, 1, 1), respectively.

892 | Soft Matter, 2015, 11, 889–897
can be described as (n1.n2.n3.) corresponding to the numbers
of sides of the polygons listed in order. Using that notation, our
lattice can be written as (3.6.3.6) and is also known as trihex-
agonal tiling and is an example of Archimedean tiling. Archi-
medean tilings are dened as regular patterns of polygonal
tessellation of a plane by regular polygons where only one type
of vertex is permitted in each tiling. The possibility of deco-
rating patchy particles so that they self-assemble Archimedean
tilings has been theoretically studied.31 Such Archimedean
tilings have also recently been self-assembled using enthalpi-
cally and entropically patchy polygons.32 Notice that in this case
not all M-type particles are equivalent since some of them are in
contact with three discs while others, located at the pores of the
Kagomé lattices, are not in contact with the discs but only with
neighboring M-type particles. Kagomé lattices have been self-
assembled using trijanus particles13 and their stability in this
case is favored by entropy.24 However, in our model the relevant
quantity is energy since the system is trying to minimize its
interactions by maximizing the number of favorable contacts
between particles.

Another interesting target structure with a great deal of
technological potential is the twisted Kagomé lattice16 since it is
an arrangement that presents negative Poisson's ratio (auxetic
behavior).25 An auxetic material, when stretched in a particular
direction, expands in an orthogonal direction. In the present
model, twisted Kagomé lattices are obtained for intermediate
n ¼ 3. (a) s1/s0 and s2/s0 as given by eqn (1) and (2), respectively. A
M-type particles (blue). The inset shows the (63) motif of the regular M-
ively. A triangular lattice of M-type particles (blue) is intercalated with a
ng of discs. (c) Twisted Kagomé lattice obtained with s1/s0 x 0.1547, as
ice. The depths of the potential wells (30, 32, 301) for each structure are (1,

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Square and semi-regular rhombitrihexagonal tilings obtained with n¼ 4. (a) s1/s0 and s2/s0 as given by eqn (1) and (2), respectively. In this
case a square lattice of discs (red) is intercalated with a square lattice of M-type particles (blue). (b) s1/s0 and s2/s0 as given by eqn (1) and (3). In
this case a square lattice of discs (red) is intercalated with a square lattice of M-type particles (blue) rotated 45 degrees with respect to the first
lattice. (c) Semi-regular rhombitrihexagonal tiling of discs (red) obtained with s1=s0 ¼

ffiffiffi
2

p � 1, as given by eqn (1), and s2/s0 x 1.37. The lattice is
intercalated with a triangular lattice of M-type particles (blue). A dislocation line in the lattice of discs formed by pentagons is highlighted with
black lines. The inset shows the (3.4.6.4) vertex that decorates the Archimedean lattice of discs. The depths of the potential wells (30, 32, 301) for
each structure are (1, 1, 1), (1, 1, 1), and (0.5, 1.5, 1), respectively.
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values of s2/s0 as shown in Fig. 3c, where the value s2/s0¼ 1.1 is
used. It has been shown that twisted Kagomé lattices can be
obtained as a minimum energy conguration of patchy parti-
cles with ve-patch particles, decorated with two A and three B
patches, in which like patches attract each other, while unlike
patches repel each other.7 In contrast, in our model, the twisted
Kagomé lattices are self-assembled using only isotropic
interactions.

Examples of lattices obtained with n ¼ 4 are shown in Fig. 4.
Panel (a) shows a case using eqn (1) and (2). Two intercalated
square lattices are formed. Panel (b) shows the structure
obtained when using eqn (3). Two square lattices are formed but
their principal axes are rotated 45 degrees with respect to each
Fig. 5 Polycrystalline snub square obtained with n¼ 4. (a) Polycrystalline
and s2/s0 x 1.366. For a given domain (see the inset), the lattice of discs
shows the (32.4.3.4) vertex that decorates the lattice of discs. (b) Square-
vertices forming this pattern are highlighted with shadowed tiles. Red
Square-triangular pattern corresponding to the discs. The different verti
connect regions that cannot be joined by regular polygons. A dodeca
Summary of the types of vertices found in the patterns shown in panels
particles and of discs, respectively, showing twelve-fold symmetry. The

This journal is © The Royal Society of Chemistry 2015
other, and a square lattice of voids is also apparent. Panel (c)
shows a triangular lattice of M-type particles intercalated with a
very open structure of discs. Lines connecting neighboring discs
show that each vertex of the lattice is surrounded by a triangle,
two squares and a hexagon [inset of Fig. 4 panel (c)] and can be
written as (3.4.6.4). This lattice is known as semi-regular,
rhombitrihexagonal tiling and is another example of Archime-
dean tiling (inset of Fig. 4c). Notice the interesting dislocation
consisting of a chain of pentagons as it is highlighted by the
black lines in Fig. 4c.

Fig. 5 shows a case obtained with n¼ 4. Eqn (1) gives s1/s0x
0.4142 and we have used s2/s0x 1.366 and (30, 32, 301)¼ (1, 1, 1).
In panel (a) we observe that M-type particles form a regular
snub square lattice of discs (red) obtained with s1/s0, as given by eqn (1)
is intercalated with a square lattice of M-type particles (blue). The inset
triangular pattern corresponding to the M-type particles. The different
lines connect regions that cannot be joined by regular polygons. (c)
ces forming this pattern are highlighted with shadowed tiles. Red lines
gonal motif typically found in quasicrystals is highlighted in cyan. (d)
(b) and (c). (e) and (f) are diffraction patterns of the lattice of M-type
depths of the potential wells (30, 32, 301) are (1, 1, 1).

Soft Matter, 2015, 11, 889–897 | 893
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square lattice while each disc is in contact with ve other discs
and form a lattice of “tilted” squares. Drawing lines connecting
neighboring discs we observe that each vertex of the lattice can
be written as (32.4.3.4.), a lattice also known as snub square
tiling (see the inset of Fig. 5a). In panels (b) and (c) we show the
structural motifs formed by joining with lines neighboring
particles that constitute the M-type particle and disc lattices,
respectively. Note the defects present in the lattices, basically,
vacancies with different geometrical shapes. Defects ensure that
the relative angles between the microcrystals forming the
polycrystalline structure are not arbitrary. For example, panel
(b) shows clearly that the relative angles between different snub
square tilings are multiples of 60 degrees. The different vertices
that decorate the lattice of M-type particles are highlighted with
shaded plaquettes. Regions of the lattice that cannot be joined
by regular polygons are highlighted with red lines. Fig. 5c shows
that the structural motifs that decorate the lattice of discs are
globally different from those corresponding to the M-type
particles. However, the vertices that decorate the lattice are of
the same type. Also, a dodecagonal pattern usually seen in
quasicrystals is also highlighted. Red lines connect represen-
tative regions that cannot be joined by regular polygons. Fig. 5d
summarizes the types of vertices found in both lattices. The
presence of the defects is relevant as can be seen in the
diffraction patterns [Fig. 5 panels (e) and (f)]. A snub square
tiling would produce a diffraction pattern with square
symmetry. However, the diffraction produced by the self-
Fig. 6 Dodecagonal quasicrystal obtained with n ¼ 5. Structure obtained
dodecagonal quasicrystal of M-type particles (blue) is intercalated with a
shows a snub square crystal in the upper left quadrant. The rest of the str
square section of the lattice, showing the (32.4.3.4) motif (black lines). The
dot) and a (3.5.3.5) vertex (green dot). Thesemotifs are not formed by reg
degrees. Therefore, the polygons are slightly deformed (green lines). (c) S
neighbor classification of s (green), H (purple), and Z (orange) environm
highlighted in cyan. (d) Diffraction pattern of the lattice formed by the
regular triangles and pentagons corresponding to the discs. The two typ
Regions where defects are present cannot be covered by these motifs. (
wells (30, 32, 301) are (1, 1, 1).

894 | Soft Matter, 2015, 11, 889–897
assembled structure shows a pattern consistent with a twelve-
fold symmetry.

Clearly, the case with n ¼ 5 is particularly interesting since
in this case the local symmetry is incompatible with crystal-
line order. This suggests the possibility to construct aperiodic
structures with long-range order, that is, quasicrystals (or
their approximants). Quasicrystalline heterostructures fabri-
cated from dielectric materials with micrometer-scale
features exhibit interesting and useful optical properties
including large photonic bandgaps in two-dimensional
systems.26 Thus, they are an interesting case to self-assemble.
As expected, it is possible to choose the geometrical param-
eters such that the resulting structure presents rotational
symmetry consistent with a twelvefold-symmetric quasicrystal
as shown in Fig. 6a. Careful examination of the structure
shows a crystalline domain in the upper le quadrant of the
structure. This crystalline region is highlighted in panel (b)
where the structural motif of the lattice formed by M-type
particles is drawn with black lines. Again, a (32.4.3.4) snub
square tiling is formed. Lines connecting neighboring M-type
particles of the whole lattice show a square-triangular tiling
(see Fig. 6c) whose vertices can be of three different types:
(32.4.3.4) is highlighted with green color, (33.42) is marked in
purple, and (36) in orange. A dodecagonal structural motif
usually present in quasicrystals is shown in cyan color. It is
known that patterns of squares and triangles tend to form
twelvefold-symmetric quasicrystals.33,34 Formation of the
with s1/s0, as given by eqn (1) and with s2/s0 x 1.72. (a) In this case a
lattice of discs forming pentagons (red). The lattice of M-type particles
ucture has a symmetry consistent with a twelvefold symmetry. (b) Snub
lattice of discs presents two types of vertices, a (3.5.4.5) vertex (orange

ular polygons since the sum of their internal angles does not add to 360
quare-triangular pattern corresponding to the M-type particles. Three
ents is shown. A dodecagonal motif typically found in quasicrystals is
M-type particles showing dodecagonal symmetry. (e) Pattern of non-
es of vertices are highlighted with orange (3.5.4.5) and green (3.5.3.5).
f) Diffraction pattern of the lattice of discs. The depths of the potential

This journal is © The Royal Society of Chemistry 2015
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Fig. 7 Honeycomb, Kagomé, and truncated square tilings obtainedwith n¼ 6 and 8. (a) Honeycomb lattice of discs (red) obtained with n¼ 6, s1/
s0, and s2/s0 as given by eqn (1) and (2), respectively. (b) n ¼ 6, s1/s0, and s2/s0 as given by eqn (1) and (3), respectively. A triangular lattice of M-
type particles (blue) is intercalated with a Kagomé lattice of discs (red). The inset shows the (3.6.3.6) motif of the Kagomé tiling. (c) n ¼ 8, s1/s0,
and s2/s0 as given by eqn (1) and (2), respectively. In this case a square lattice of M-type particles (blue) is intercalated with a truncated square
tiling of discs (red). The inset shows the (4.82) motif. The depth of the potential wells (30, 32, 301) are (1, 1, 1) in all cases.

Fig. 8 Phase diagram. Summary of the self-assembled structures.
The green and red lines are the values of s2/s0 given by eqn (2) and
(3), respectively. The black straight line is s2/s0 ¼ 2 + s1/s0. Above
this value, the system consists of a fluid (if 32 ¼ 0 and for low
concentrations) or a crystal (if 32 s 0 or for large concentrations) of
meta-particles. Symbols correspond to the structures built in this
study and the triplets (30, 32, 301) above or below each inset corre-
spond to the energies used to obtain the corresponding lattice. The
dodecagonal quasicrystal (DDQC) is represented by its diffraction
pattern.
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dodecagonal quasicrystal in a square-triangle lattice requires
that the total tiling area occupied by squares be equal to that
occupied by triangles,34 that is, N3=N4 ¼ 4=

ffiffiffi
3

p
x2:31, a value

that closely corresponds to the simulation results. A conr-
mation of this fact is the diffraction pattern of the M-type
particle lattice which is consistent with a dodecagonal
quasicrystal, as shown in Fig. 6d. Panel (e) shows the polyg-
onal tiling corresponding to the positions of the discs. Two
structural motifs are present, a (3.5.3.5) vertex shown in green
and a (3.5.4.5) vertex shown in orange [see also panel (b)].
However, these motifs are not made of regular polygons since
the sum of their internal angles do not add to 360 degrees.
Actually, a regular n-gon has an internal angle (1 � 2/n) of 180
degrees and there is a limited number of combinations whose
internal angles add to 360 degrees. Thus, the structural motifs
of the lattice of discs are made of deformed polygons, which
are allowed thanks to the exibility produced by the width of
the potential wells. The regions where the defects are present
cannot be tessellated by these nearly regular polygons. The
corresponding diffraction pattern is shown in panel (f).

Alternative procedures to self-assemble quasicrystals and
their approximants have been proposed. They are based on
particle functionalization with mobile surface entities and
shape polydispersity35 or with the use of ve and seven patched
particles.36 In contrast, our method uses only isotropic inter-
actions. A family of quasicrystals have also been found using
hard core-square shoulder interparticle potentials in ref. 37.

The case with n ¼ 6 provides an alternative procedure to
construct the honeycomb and Kagomé lattices. The rst case,
obtained using eqn (1) and (2), is shown in Fig. 7a. When using
eqn (3) a triangular lattice of M-type particles intercalated with a
Kagomé lattice of discs is obtained [Fig. 7b]. We have not
obtained regular lattices or other recognizable structures
formed with n ¼ 7.

Finally, the structure formed with n ¼ 8 and using eqn (1)
and (3) is shown in Fig. 7c. The truncated square tiling with
vertex (4.82) is shown in the inset.

Our results are summarized in the zero temperature phase
diagram shown in Fig. 8. The green and red lines represent eqn
(2) and (3), respectively. The energies used to obtain any given
structure are indicated by the triplets (30, 32, 301). Clearly, for the
This journal is © The Royal Society of Chemistry 2015
same set of s1/s0 and s2/s0, other structures could be obtained
by using different choices for the energies. Above the straight-
line s2/s0 ¼ 2 + s1/s0 and for the right stoichiometry, the system
consists of a uid (if 32 ¼ 0 and for low concentrations) or a
crystal (if 32 s 0 or for large concentrations) of meta-particles
composed of an M-type particle surrounded by n discs. The
large value of s2 prevents the interaction of discs belonging to
different meta-particles. Therefore, the meta-particles interact
as isotropic discs of diameter s2. On the other hand, for values
of s2/s0 below that given by eqn (2), the meta-particle interac-
tions have n-gonal symmetry, as represented by the drawings in
Fig. 8.
Soft Matter, 2015, 11, 889–897 | 895
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Conclusions

In conclusion, we have presented a model that is able to
generate a large variety of pre-programmed structures. We
emphasize the simplicity of the interactions which are isotropic,
and the relative ease with which we get complex structures by
controlling a small number of geometrical and energetic
parameters. Furthermore, our two species model can be
straightforwardly generalized to three or more species to
construct more complex lattices, including, for example, self-
similar structures. Let us stress that the simplicity of the model,
the fact that it can be implemented using exclusively spherical
particles interacting isotropically and the large variety of
methods to produce short range attractions, including the use
of depletion38 or DNA-mediated39 interactions, make the feasi-
bility to put into practice the present model very realistic.
Finally, we suggest that if the experiments are performed using
chemically or temperature sensitive particles that can change
size, then the system could potentially switch smoothly between
different lattices, something that would be difficult to achieve
with other systems.
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