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The flow of a thin film down a vertical cold thick wall with finite thermal conductivity is investigated 
under the lubrication approximation. It is shown that, despite the cooling from the wall, it is possible 
to find a new flow instability. That is, the free surface response to the wall deformation increases 
its amplitude with the negative Marangoni number. This amplitude growth is independent from the 
evolution of the time-dependent perturbations imposed on the free surface which, in contrast, are 
stabilized by cooling from the wall. However it is demonstrated that, even in this case, spatial resonance 
(see Dávalos-Orozco, 2007, 2008) is more effective to stabilize the time-dependent perturbations. From 
the results it is evident that these effects are possible only when the magnitudes of the thicknesses ratio 
and the thermal conductivities ratio are small.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In real world applications, like surface coating and cooling, the 
thin liquid films are laid on walls with finite thickness and thermal 
conductivities. Therefore the recent interest in the investigation of 
the stability of these films under flow. The motivation for taking 
different thermal and mechanical wall conditions varies according 
to the goal of the problem.

Oron et al. [1] investigate evaporative instabilities of thin films. 
They need to introduce the thickness of the wall to eliminate sin-
gularities at the rupture point. Kabova et al. [2] include the thick-
ness of the wall in order to introduce a wall surface topography 
which is related to experimental settings. Gambaryan-Roisman [3]
investigates the stability of a thin film on a wall with non-uniform 
thermal conductivity. The results are obtained proposing a rela-
tion between this non-uniformity and the thickness of the wall. 
Gambaryan-Roisman and Stephan [4] investigate the effect of lon-
gitudinal topography of a thick wall in the formation of rivulets. 
They include the Lennard-Jones potential in their calculations.

The above mentioned papers motivated a systematic numerical 
calculation on the nonlinear instability of a thin film flowing down 
a heated thick wall [5]. In that paper, it is found that the ther-
mal instability is governed by the Marangoni number Ma, the Biot 
number at the interface of the liquid and the atmosphere (at the 
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free surface) and by d and Q C . Here, d is the thicknesses ratio of 
the wall over that of the liquid film and Q C is the thermal con-
ductivities ratio of the wall over that of the liquid film. These two 
parameters only appear forming the ratio d/Q C under the lubri-
cation approximation [6–8] (for a recent review see [9]). The ratio 
d/Q C appears in the denominator of the thermocapillary term and 
consequently its growth has an important stabilizing effect.

The flow down a sinusoidal wall has been investigated un-
der the lubrication approximation by Dávalos-Orozco [10,11]. It is 
shown that by means of spatial resonance it is possible to stabilize 
the time-dependent perturbation, even when the fluid is viscoelas-
tic [12]. These particular wall deformations may work as a filter 
for the perturbations in a finite region of the wall [11] (see a re-
view in [9]). At resonance the wavelength of the wall deformation 
approaches to that of the time-dependent perturbations and the 
amplitude of the free surface response increases lowering its valley. 
Therefore, near to the valley the film is very thin and hence has a 
local stabilizing effect from which the time-dependent perturba-
tions are not able to recover [10]. The instability of a film flow-
ing down a heated wavy wall was investigated by D’Alessio et al. 
[13]. Notice that nonlinear results of a Benney type equation un-
der the lubrication approximation are presented in Dávalos-Orozco 
[9]. It is demonstrated that it is still possible to stabilize the time-
dependent perturbations by means of spatial resonance when the 
wall is an ideal very good conductor.

This last problem has been extended to the case of a heated 
thick wavy wall with finite thermal conductivity [14]. A nonlinear 
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Nomenclature

A air jet maximum time-dependent pressure
a air jet time-dependent pressure dispersion
B wall deformation amplitude
Bi Biot number
c phase velocity
d dwall/h0
dwall wall thickness
h(x, y, t) film local thickness
H(x, y, t) film local perturbation
h0 unperturbed film thickness
Hh heat transfer coefficient
k wavenumber
k f fluid heat conductivity
kwall wall heat conductivity
L wall wavelength over perturbations wavelength ratio
Ma Marangoni number
P p surface external pressure
Pr Prandtl number
Q c = kwall/k f wall over fluid conductivities ratio
R Reynolds number
S scaled surface tension number
T fluid temperature
Tambient ambient atmosphere temperature

T L wall lower face temperature
Twall wall temperature
T0 zeroth order fluid temperature
u velocity x-component
v velocity y-component
w velocity z-component
x non-dimensional x coordinate
y non-dimensional y coordinate
z non-dimensional z coordinate
z∗ dimensional z coordinate

Greek

β wall inclination angle
� means difference
ε wave slope smallness parameter
ζ wall deformation
κ thermal diffusivity
λ wavelength
ν kinematic viscosity
ρ fluid density
σ surface tension
Σ surface tension number
ω frequency of oscillation
evolution equation of the Benney type is calculated which includes 
in the denominator of the thermocapillary term an extra spatial 
variation due to the waviness of the wall. A bump in the free sur-
face response is found near to the valley (the thinnest part) of the 
wall deformation producing a reduction in the amplitude.

In this paper it will be demonstrated that, when cooling from 
the wall and the Marangoni number is negative, it is possible to 
destabilize the thin film free surface response to the wall defor-
mation. The paper is organized as follows. In the next section a 
brief presentation of the physics of the problem is given along with 
the evolution equation of the thin film obtained from the basic 
equations of motion and heat transfer. In Section 3, the numeri-
cal results of the evolution equation are exposed graphically and 
explained in detail. The last section are the conclusions.

2. Thermocapillary flow of a thin film down a cooled wavy thick 
wall

The system under investigation is a thin film flowing down a 
cooled wall which has finite thickness and thermal conductivity. 
The system is sketched in Fig. 1 in non-dimensional form. There, 
the coordinate system is defined in relation with a flat surface 
which represents the mean of the wavy deformed wall. Therefore, 
the x-direction corresponds to the direction of the main velocity 
of the film. This is perpendicular to the z-direction crossing the 
film thickness and pointing outwards the fluid film. Assuming a 
right-handed system, the y-direction is perpendicular to these two. 
It is assumed that the temperature of the lower face of the wall is 
T L and it is located at z∗ = −dwall (the star means dimensional), 
where dwall is the thickness of the wall. The thickness of the film 
is h0. It is assumed that the ambient atmosphere above the free 
surface has a temperature Tambient > T L .

A smallness parameter ε = 2πh0/λ � 1 is used for the asymp-
totic expansion of the variables. λ is a representative long wave-
length of the perturbations which means that the slope of the free 
surface deformation is small.

The variables are made non-dimensional by means of h0 for 
distance in the z-direction, λ/2π for distance in the x- and 
Fig. 1. The thin film and cooled wall assumed vertical. The mean non-dimensional 
wall thickness is d = 0.11. 1) Wall sinusoidal deformation (solid), 2) Mean height 
of the wall (dashed), 3) Lower side of the wall located at z = −0.11 (dashed) with 
non-dimensional temperature 1, lower than that of the atmosphere above the free 
surface. 4) Free surface response to the wall deformation, 5) Mean height of the 
unperturbed free surface (dotted), 6) Time-dependent perturbations excited at x = 0
and running on the free surface response. They have a local height h(x, t) with 
respect to the wall deformation. The largest and smallest thickness of the wall are 
0.21 and 0.01, respectively.

y-directions, h0λ/(ν2π) for time, ν/h0 for velocity, ρν2/h2
0 for 

pressure and �T = (T L − Tambient) < 0 for temperature. The kine-
matic viscosity and the density are ν and ρ , respectively.

In non-dimensional form the free surface is assumed to be 
located at z = ζ(x, y) + 1 before the application of a perturba-
tion, where ζ(x, y) is the wall deformation. When the surface 
is perturbed the location is set as z = ζ(x, y) + h(x, y, t) where 
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h(x, y, t) = 1 + H(x, y, t). As seen in Fig. 1, the wall lower face is 
now located at z = −d = −dwall/h0. The angle of inclination of the 
wall is assumed here to fixed at β = 90◦ .

Variables expansions are introduced (see [14]) in the scaled 
and non-dimensional Navier–Stokes, continuity and heat diffusion 
equations and their corresponding boundary conditions. The ex-
pansions are:

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · ,

w = ε(w1 + εw2 + · · ·), p = p0 + εp1 + · · · ,

T = T0 + εT1 + · · · , Twall = Twall0 + εTwall1 + · · · . (1)

The calculated main velocity and temperature profiles are :

u0 = −1

2
R sin β

(
z − ζ(x, y)

)(
z − ζ(x, y) − 2h(x, y, t)

)
(2)

Twall0 = Q C (1 + Bi h(x, y, t)) − Bi(z − ζ(x, y))

Q C (1 + Bi h(x, y, t)) + Bi(d + ζ(x, y))
(3)

T0 = Q C (1 + Bi h(x, y, t)) − Bi Q C (z − ζ(x, y))

Q C (1 + Bi h(x, y, t)) + Bi(d + ζ(x, y))
(4)

Notice that at the wall, z = ζ(x, y), the main velocity u0 = 0, the 
temperature T0 = Twall0 and the heat flux boundary condition is 
satisfied. At the free surface du0/dz|z=ζ(x,y)+h(x,y,t) = 0. Besides, 
Twall0 = 1 at z = −d. Observe that Twall0 and T0 have the same 
formulas as in the case of heating from below [14]. The reason is 
that when cooling from below the temperature is made non-di-
mensional by means of the same term �T , which now is negative. 
This corrects the sign of both temperature profiles.

At the first order of the expansion the free surface kinematic 
boundary condition gives:

ht + R sinβh2hx + ε

{
(R sinβ)2

(
2

15
h6hx

)
x

+ 1

3
∇ ·

[
h3(−R cos β∇(ζ + h) + 3S∇2∇(ζ + h) − ∇ P p

)

+ 3

2

Ma

Pr

Bi h2[∇h + 1
Q C

∇ζ ]
(1 + Bi[h + 1

Q C
ζ + d

Q C
])2

]}
= 0, (5)

which is a Benney type evolution equation for the free surface de-
formation. Here, ∇ = (∂/∂x, ∂/∂ y) is the horizontal nabla operator. 
The Prandtl number is Pr = ν/κ (where κ is the fluid thermal 
diffusivity), the Reynolds number is R = gh3

0/ν
2, the Marangoni 

number is Ma = (−dσ/dT )�T h0/(ρνκ) and the Biot number is 
Bi = Hhh0/k f . Hh is the coefficient of heat transfer, K f is the heat 
conductivity of the fluid, S = ε2Σ and Σ = σh0/3ρν2 with σ the 
surface tension. Notice that when ζ(x, y) = 0 this equation reduces 
to that obtained by Dávalos-Orozco [5]. However, when Q C → ∞
(very good conducting wall) the wall deformation effect disappears 
from the thermocapillary term and the equation reduces to Eq. A3 
in the appendix of D’Alessio et al. [13]. When Ma = 0 it reduces to 
that of Dávalos-Orozco [10,11]. If the wall is flat ζ = 0 and Ma = 0, 
the equation reduces to a perturbed Benney equation [8]. In case 
P p = 0 the equation reduces to that of Benney [15,6,7]. It is im-
portant to point out that the effect of cooling from the wall is only 
reflected in the negative Marangoni number.

The function

P p(x, y, t) = A

∣∣∣∣sin
ω

2
t

∣∣∣∣exp
[−a

(
x2 + y2)] (6)

is assumed to represent a free surface time-dependent pressure 
due to a turbulent air jet striking periodically on the free sur-
face around the origin (see [16]). The parameters will be fixed 
as A = 0.0001 and a = 0.05 in order to avoid non-saturating very 
large amplitude time-dependent perturbations. Here, ω is the fre-
quency of oscillation of the time-dependent perturbations, which 
is divided by two because a jet has no suction (therefore the ab-
solute value of the sine function). It will be effective only when it 
strikes again (with positive sign) on the surface. The wall deforma-
tion with an amplitude B is defined as ζ(x) = B sin[xk/L] where 
k = ω/R sin β is the wavenumber corresponding to a given ω, R
and β of the time-dependent perturbations. In fact this last re-
lation comes from the phase velocity of the linearized version of 
Eq. (5) which is represented by c = R sin β = ω/k. The parameter 
L is a real number representing the ratio of the wall wavelength 
over the wavelength of the time-dependent perturbations. This 
means that the wall wavelength is measured in terms of the wave-
length of the time-dependent perturbations.The following section 
presents the numerical analysis of Eq. (5).

3. Numerical analysis of the Benney type equation

Here the numerical results of the Benney type Eq. (5) are pre-
sented. Finite differences are used in space and time to follow the 
evolution of the time-dependent perturbations and the free surface 
response to the wall deformations.

The number of parameters is large and some of them will be 
fixed in the present problem. The fixed parameters are A = 0.0001, 
a = 0.05, B = 0.1, d = 0.11, Pr = 7, S = 1, ε = 0.1 and β = 90◦
for a vertical wall. The other parameters Bi, L, Ma, Q C , R and ω
are varied in a convenient way in order to show the main results 
of the paper. The number of parameters is still large. Therefore, 
the ω and R (and the corresponding wavelength) are selected as 
those corresponding to the maximum growth rate of the isother-
mal problem. The numerical calculations are done in a spatial 
range which is measured as −150 ≤ x ≤ G sin β × time + 100. 
Assuming that h(x, t) = 1 + H(x, t), the boundary conditions are 
H = dH/dx = 0 at x = −150 and at G sin β × time + 100. “Time” 
means the running time shown in the figure captions. These con-
ditions mean that the free surface is deformed like the wall does 
before it is let to respond in space and time to the wall defor-
mation. Notice that in the figures only a range of the numerical 
calculations is given for the sake of presentation.

The initial results are for a Biot number Bi = 0.1. The first case 
corresponds to a small frequency of oscillation of the perturba-
tion, that is, ω = 0.5 and R = 1.391. The solutions are presented 
in Fig. 2 for two different circumstances. The first one for L = 8
is shown in Fig. 2a and the second one in Fig. 2b corresponds 
to spatial resonance already attained when L = 5. In this paper 
it is assumed that the wall is cooled from below. Thus, in Fig. 2a 
the perturbations decrease in space and time. Nevertheless, it is 
clear that resonance (when L = 5) is more effective to stabilize 
the time-dependent perturbations. Notice that for the sake of pre-
sentation and clarity, all the figures only present the spatial range 
−150 ≤ x ≤ 600. In all the figures the curve number 1 always cor-
responds to the wall wavy profile. The mean value of the other 
curves should be located one unit above the mean of curve 1 (at 
h = 0) but, for the sake of presentation, they are not plotted at 
their corresponding height. It is interesting to see that the ampli-
tude of the free surface response to the wall deformation increases 
with the growth of the negative Marangoni number. The free sur-
face response without time-dependent perturbations can clearly be 
seen in the range −150 ≤ x ≤ 0. The magnitude of the negative 
Ma increases from curve 2 to 4 when Q C = 0.01 and from curve 
5 to 7 when Q C = 0.05. From the figures it is evident that the 
instability of the free surface response changes with Q C . Notice 
that the magnitudes selected for Q C are very small. These con-
ditions are satisfied by a wall of new very insulating materials 
known as silica aerogels (see [21]) which have a typical heat con-
ductivity of kwall = 0.015 W/m K at ambient temperature, pressure 
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Fig. 2. Time = 1000, Pr = 7, S = 1, Bi = 0.1. ω = 0.5, R = 1.391. 1) Wall. Q C = 0.01: 
2) Ma = −10, 3) Ma = −50, 4) Ma = −100. Q C = 0.05: 5) Ma = −10, 6) Ma = −50, 
7) Ma = −100. (a) L = 8 and (b) L = 5 (resonance). Notice pure responses from 
x = −150 to 0.

and humidity. Moreover, they can be produced into very thin solid 
films.

The results of Fig. 3 are for a different frequency ω = 2 and 
a higher Reynolds number 2.783. The parameters are responsi-
ble for an amplitude increase of the free surface response. In 
Fig. 3a the time-dependent perturbations imposed at x = 0 de-
crease in space due to the cooling of the wall. Nevertheless, ac-
cording to the magnitude of Ma < 0 the perturbations are more 
or less stabilized. The amplitude increase of the free surface re-
sponse with respect to that of Fig. 2 can be understood by the 
new vertical scaling used in Fig. 3. Observe that when L = 7
resonance is more effective than cooling to stabilized the per-
turbations in a shorter spatial range. Both cooling and resonance 
effects work together to further destabilize the free surface re-
sponse.
Fig. 3. Time = 600. Pr = 7, S = 1, Bi = 0.1. ω = 2, R = 2.783. 1) Wall. Q C = 0.01: 
2) Ma = −10, 3) Ma = −50, 4) Ma = −100. Q C = 0.05: 5) Ma = −10, 6) Ma = −50, 
7) Ma = −100. (a) L = 10 and (b) L = 7 (resonance). Notice pure responses from 
x = −150 to 0.

Two more examples are presented for a different Biot number, 
Bi = 1. For ω = 0.5 and R = 1.391, Fig. 4 shows that the curves 
of the free surfaces response have an instability not found before. 
That is, they present a distortion near to the valleys of the wall. 
This distortion occurs simultaneously to an amplitude increase of 
the response when Ma < 0 increases. In general, the lowest region 
of the response moves to the right and closer to the thinnest part 
of the wall, where the cooling is more effective. The distortion is 
more important at spatial resonance (L = 5) and for a larger mag-
nitude of Ma < 0.

The values ω = 2 and R = 2.783 lead to the interesting result 
that, despite being outside resonance for L = 8, the flow stabilizes 
more effectively with the negative Marangoni number, as seen in 
Fig. 5a. This is due to the important influence of the higher Biot 
number used here, which allows for more heat flux through the 
free surface. It is significant that the free surface response destabi-
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Fig. 4. Time = 1000, Pr = 7, S = 1, Bi = 1. ω = 0.5, R = 1.391. 1) Wall. Q C = 0.01: 
2) Ma = −10, 3) Ma = −50, 4) Ma = −100. Q C = 0.05: 5) Ma = −10, 6) Ma = −50, 
7) Ma = −100. (a) L = 8 and (b) L = 5 (resonance). Notice pure responses from 
x = −150 to 0.

lizes still more with the negative Marangoni number. Besides, the 
distortion around the valley is even more pronounced and now it 
moves to the right, closer to the thinnest part of the wall, where 
heat conductivity improves. This effect is stronger when resonance 
takes place in Fig. 5b for L = 8.

4. Conclusions

The free surface response to the wall deformation is found to 
destabilize with the negative Marangoni number for different mag-
nitudes of Q C and a small magnitude of d (here fixed as 0.11). 
From the analytical point of view, this is due to the spatial deriva-
tives of the numerator and denominator of the nonlinear thermo-
capillary term, the last one in Eq. (5). In particular, the x-derivative 
takes factors from the denominator into the numerator which have 
Fig. 5. Time = 600, Pr = 7, S = 1, Bi = 1. ω = 2, R = 2.783. 1) Wall. Q C = 0.01: 
2) Ma = −10, 3) Ma = −50, 4) Ma = −100. Q C = 0.05: 5) Ma = −10, 6) Ma = −50, 
7) Ma = −100. (a) L = 11 and (b) L = 8 (resonance). Notice pure responses from 
x = −150 to 0.

important influence when the parameter Q C is small. Furthermore, 
owing to the stabilizing effects of d found recently [5,14], it is nec-
essary to select d � 1.

The physical explanation of this phenomenon is the sudden 
strong cooling felt by the free surface when it approaches to the 
thinnest region of the wall. There the surface tension is stronger 
than that at the top of the free surface response. This produces a 
shear flow from the top to the valley which enhances the depres-
sion of the response. The shear flow, and therefore the growth in 
amplitude, is more important increasing the negative magnitude 
of Ma.

In the case of a sudden heating, as when the film flows down 
a locally heated plate (see [17–20] and [9] for a review), a high 
bump of the free surface response appears above the upper side 
of the plate. On the contrary, if the same experiment were done 
for flow on a cold plate, there should appear a low depression of 
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the thin film. That bump was found in the previous paper [14]. 
The results were different, yet unexpected. In contrast, here a huge 
depression is found due to the sudden cooling near the thinnest 
section of the wall. It is interesting that this amplitude growth is 
reinforced by the spatial resonance effect where the amplitude of 
the free surface response has a further increase. The results also 
made it clear that spatial resonance is more effective to stabilize in 
space and time the time-dependent perturbations than the cooling 
from the wall.

In this paper the joint effects on a thin film of wall thickness, 
finite thermal conductivity, topography and cooling from the wall 
were investigated. It is concluded that, as demonstrated above, 
they are able to produce the cooling instability of the free sur-
face response for a range of magnitudes of Q C and d around those 
investigated here.
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