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Abstract In this work, the rheological behavior of com-
plex fluids is analyzed with a model based on the classical
transient network formulation, in which the description of
nonlinear viscoelasticity and time-dependent phenomena
considers spatial and temporal variations of the entangle-
ment density in the flow region. The entropic law of the
segments that join entanglement points of macromolecules
(or dispersed phase) is modeled with a Warner spring law
with variable extensibility. The structure modification is
described with a function that is dependent of a kinetic
process that involves the formation of a more entangled
microstate on one extreme, and a flow-induced degradation
of the transient network with variable entanglement density
on the other extreme (disentangled microstate). Predictions
of the model under simple shear, inception of shear flow,
stress relaxation, interrupted shear, and shear-thickening are
compared with those of other models and with experiments.
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Introduction

In a previous publication (Rincón et al. 2005), the dynamics
of rheologically complex fluids was analyzed with a model
that considers two coupled kinetic processes, in which the
presence of various entanglement scenarios is provided by
the assumption of five microstates, representing increasing
interactions among the macromolecules or dispersed phase.
A complex kinetic system of coupled differential equations
describes the evolution of the microstates. The segments
entropic law is modeled with a Warner spring law (Warner
1972) with variable extensibility, which is a function of
the kinetics of the microstates. The rheological functions
are calculated according to the classical description of the
transient network formulation, in which the pre-averaged
approximation for the moments of the distribution function
(Bird et al. 1987) is used.

It is important to mention that extensibility means here
the maximum segment length, i.e., the critical length above
which rupture of nodes occurs. In Rincón et al.’s model
(2005), the extensibility is not a constant but a variable
resulting from a kinetic process describing the dynamics
of various microstates. Variable extensibility has also been
considered in dumbbell models for dilute polymer solutions
(Chilcott and Rallison 1988). These microstates reflect the
complexity of interactions among the polymer molecules in
suspension, which can be free chains or pendant chains of
the network, on one extreme, or the many-node interactions
available in a dense network, on the other extreme.

As in the classical description of a transient network
(Lodge 1956; Green and Tobolsky 1946; Yamamoto 1958;
Vaccaro and Marrucci 2000), the creation and destruction of
nodes in the network considers that the creation is a ther-
mally activated process while the destruction of nodes is due
to the flow force, represented in Rincón et al. (2005) by the
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viscous dissipation that drives the system into a less entan-
gled network. The destruction mechanism in this model is
represented by a function that has the same analytical form
of the Warner expression with variable extensibility. Vari-
ation in the number of nodes is calculated by defining an
average dynamic distance between nodes, which represents
the maximum elongation of the chains undergoing defor-
mation. The distance between nodes is calculated as an
average of the five basic microstates, which represent all
the possible structures in the network. The set of nonlinear
coupled differential equations describing the evolution of
the microstates is a complex system that provides a detailed
description of the time-dependent concentration of each
microstate.

In this work, a simplified expression of the kinetics of the
microstates is provided, leading to a global scheme instead
of a detailed kinetics of the evolution of each microstate.
The drawback is that the global dissipation of the system
is smaller than that calculated using the detailed descrip-
tion of the kinetics. On the other hand, this new description
provides with a comparison to other more phenomenolog-
ical models as special cases, but which have been tested
and compared with ample experimental work. As it will be
shown, if the extensibility of the segments is very large, the
Warner force reduces to a linear spring force, and for a sim-
ple stoichiometry, the model proposed here reduces to the
BMP model, which has been tested and compared exten-
sively with experimental data in micellar and associative
polymer systems (Soltero et al. 1999; Bautista et al. 2000,
2002; Manero et al. 2002; Caram et al. 2006).

Rincón et al.’s model (2005) revisited

In this approach, five microstates represent the possible con-
figurations of the entire network. In the suggested form of
representation, ω is ascribed to the specific microstate and
the subindex represents the number of nodes that define the
microstate. For example, ω0 represents a pendant (dangling
end) or a free chain with no nearby interactions, as in a
dilute system. ω1 represents a configuration with one node
(crosslink) and two chains. Similarly, three extra configura-
tions are proposed, representing a more packed state with
two, three, and four nodes.

The next step is the calculation of the average properties
of the network considering these five microstates. Under a
given deformation or flow, some microstates are favored,
depending on the properties of the system represented by the
network and also on the characteristics of the deformation
process.

In terms of average quantities, let us define, the maxi-
mum length of one extended free chain Lp , and the max-
imum end-to-end distance between nodes in the network

(segments) including the dangling ends, l′ (t). By conserva-
tion of chains, the following relation arises:

(
l′ (t)

)
(Number of segments) = (Number of chains)

(
Lp

)

(1)

The total length of the chains is the product of the length
of one free chain multiplied by the number of chains. The
number of chains is the product of the concentration of
chains (C) in every microstate times the occupied volume
of the chains (V ). Similarly, the number of segments in
the network is the product of the occupied volume times
the concentration of segments in every microstate, includ-
ing the dangling ends. Table 1 shows the geometry of each
microstate and the number of nodes, segments, and chains
of each configuration. The number of chains is just the sum
of products of the number concentration of chains and a
weighted factor in every microstate. Thus, the number of
segments is the sum of products of segment concentrations
and weighted factors in every microstate. Equation 1 may
be written in terms of the nondimensional distance between
nodes, l (t):

l (t) = l′ (t)
Lp

= C0 + 2C1 + 3C2 + 3C3 + 4C4

C0 + 4C1 + 7C2 + 9C3 + 12C4
(2)

The numerator of Eq. 2 represents the number concentra-
tion of chains of each microstate, whereas the denominator
contains the number concentration of segments of every
microstate (see Table 1). In addition, the nondimensional
average distance between nodes for every microstate is
shown in Table 1. The limits of l (t) correspond to the situ-
ation where all chains are free, l (t) = 1, and that where all
chains are in specific configurations. The nondimensional
distance between nodes is then m/ (m + 2n) where m is the
number of chains, n is the number of nodes, and m + 2n is
the number of segments.

Kinetic equations

Let us consider the following microstates kinetics (Weston
and Schwarz 1972):

ω1,0 � ω1,n n = 1, 2, . . . (3)

2ω1,0 � ω2,n n = 1, 2, . . . (4)

ω1,n1 + ω2,n2 � ω3,n n, n1, n2 = 1, 2, . . . (5)
...

∞∑

i=1

∞∑

j=1

wjωi,nj � ωm,n m, n, nj = 1, 2, . . . (6)

where ωi,j is the microstate with i chains and j nodes.
Equation 3 indicates that a single chain may have formed
n entanglements with itself. Equation 4 represents that two
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Table 1 Geometry and
number of nodes, segments,
and chains of several
microstate configurations

Microstate Geometry Number of
l(t)

Present work Rincón et. al Chains Nodes Segments

ω1,0 ω0 1 0 1 1

ω1,1 − 1 1 3 1
3

ω2,1 ω1 2 1 4 2
4 = 1

2

ω1,2 − 1 2 5 1
5

ω2,2 − 2 2 6 2
6 = 1

3

ω3,2 ω2 3 2 7 3
7

ω1,3 − 1 3 7 1
7

ω2,3 − 2 3 8 2
8 = 1

4

ω3,3 ω3 3 3 9 3
9 = 1

3

ω4,3 − 4 3 10 4
10 = 1

5

ω4,4 ω4 4 4 12 4
12 = 1

3

ωm,n − m n m + 2n m
m+2n

free chains form a structure with n nodes, while Eq. 5 indi-
cates that a free chain with n1 nodes and two chains with n2

nodes form a new structure with three chains and n nodes.
Following this procedure, Eq. 6 describes the general case
in which a number of structures with various chains and
nodes combine to form a new structure with m chains and
n nodes. If we now consider two dominant species, namely,
ω1,0 and ωm,n, these equations may be simplified by making
the summation of the above kinetics, to give:

mω1,0 � ωm,n (7)

where 1 ≤ m ≤ n. Furthermore, according to the mass
action law, we assume that the kinetics for node formation
is k1C

P
0 , where C0 is the concentration of species ω1,0 and

p (≤ m) accounts for the combined effect of formation of

nodes within the same chain or structure formation among
several chains. The kinetics for nodes destruction is repre-
sented by the term k2Cn, where Cn is the concentration of
species ωm,n. n is in this case the average number of nodes
for the polymer in the quiescent state, which is correlated
with the chemical composition of the chains, their length,
and solvent type. Accordingly, the overall kinetics may be
expressed as:

dC0

dt
= −k1C

p

0 + mk2Cn (8)

dCn

dt
= 1

m
k1C

p

0 − k2Cn (9)

here, C0 and Cn are the concentrations of free wormlike and
entangled chains, respectively, and k1 and k2 are the forward
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and backward kinetic constants, respectively. The forward
reaction induces the formation of a more complex configu-
ration (i.e., that with a larger number of chains and nodes)
and the reverse reaction gives rise to a configuration with
smaller number of chains and nodes. The forward process is
thermally activated, whereas the reverse process depends on
the viscous dissipation.

As stated above, the extensibility of the microstates may
be defined as the ratio of the number of chains and number
of segments, i.e.,

l = C0 + mCn

C0 + (m + 2n) Cn

(10)

The limits of Eq. 10 depend on the strength of the flow:
when the flow strength is high, the dominant microstate is
ω1,0, and hence C0 is large. In this case, the extensibility
tends to unity. On the contrary, if the flow strength is low, the
dominant microstate is ωm,n, and therefore Cn is now large.
In the latter case, the extensibility tends to m/ (m + 2n).

The density distribution function

Let ψ0
(
r, Q, t

)
and ψn

(
r, Q, t

)
represent the number

density distribution of free chains and entangled chains
in space, configuration space, and time, respectively. The
equations governing the configuration density function
ψ

(
r, t

)
follows the above kinetics through Eqs. 7, 8, and 9

as follows (Bird et al. 1987; Bhave et al. 1991; Beris and
Mavrantzas 1994):

∂ψ0

∂t
+ �r · ṙψ0 − kBT

2ς0
�2

rψ0 + �Q · (
Q · �ṙ

)
ψ0

− 2kBT

ς0
�2

Qψ0 + 2H0

ς0
�Q · ψ0 = −k1ψ

p

0 + mk2ψn (11)

∂ψn

∂t
+ �r · ṙψn − kBT

2ςn

�2
rψn + �Q · (

Q · �ṙ
)
ψn

− 2kBT

ςn

�2
Qψn + 2Hn

ςn

�Q · ψn = 1

m
k1ψ

p

0 − k2ψn (12)

The subscripts 0 and n denote free chains and entangled
chains, respectively. The drag coefficient ς is assumed con-
stant and H is the spring constant. kB is the Boltzmann
constant, T the temperature, ṙ the rate of change of the end-
to-end vector r in physical space, and Q the vector joining
the extremes of a free wormlike chain, but in the case of
entangled chains, it refers to the vector joining two nodes.
The concentrations of free and entangled chains are:

C0
(
r, t

) =
∫

ψ0
(
r, t

)
dQ (13)

Cn

(
r, t

) =
∫

ψn

(
r, t

)
dQ (14)

The conservation equation for the segment density within
the specific kinetics is obtained upon integration (in the
configuration space) of Eqs. 11 and 12:

dC0

dt
+ � · J 0 = −k1C

p

0 + mk2Cn (15)

dCn

dt
+ � · Jn = 1

m
k1C

p

0 − k2Cn (16)

where the mass flux vector of each species is given by:

J 0 = −D0�C0 − H0

ς0
� · 〈

QQ
〉
0

(17)

J n = −Dn�Cn − Hn

ςn

� · 〈
QQ

〉
n

(18)

In Eqs. 17 and 18, the diffusivity is D = kBT/ς

for free (D0) and entangled (Dn) chains, respectively.
The conformation tensors for free and entangled chains
are

〈
QQ

〉
0

= ∫
QQψ0

(
r, Q, t

)
dQ and

〈
QQ

〉
n

=∫
QQψn

(
r, Q, t

)
dQ.

Substituting Eqs. 17 and 18 into Eqs. 15 and 16 gives:

dC0

dt
= D0�2C0 + 1

4λ0

(
� · � · 〈

QQ
〉
0

)
− k1C

p

0

+mk2Cn (19)
dCn

dt
= Dn�2Cn + 1

4λn

(
�·� · 〈QQ

〉
n

)
+ 1

m
k1C

p

0

−k2Cn (20)

where λ0 = ς0/4H0 and λn = ςn/4Hn are the relaxation
time constant for each species.

The equations for the moments of the distribution func-
tion, specifically, the second-moment equations, can be
obtained by multiplying the distribution function equation
by QQ and averaging over the configuration space, within
the pre-averaged Peterlin approximation (Bird et al. 1987).
The convected time derivative of X is denoted by the sym-

bol
�
X. The equations for the configuration tensor of the free

chains and the entangled chains are given by Eqs. 21 and 22:

�〈
QQ

〉
0
= − 1

λ0

〈
QQ

〉
0
+ 4C0D0I + D0�2 〈

QQ
〉
0

−k1p

〈
QQ

〉
0
+ mk2

〈
QQ

〉
n

(21)
�〈

QQ
〉
n

= − 1

λn

〈
QQ

〉
n

+ 4CnDnI + Dn�2 〈
QQ

〉
n

−k2
〈
QQ

〉
n

+ k1p

m

〈
QQ

〉
0

(22)

where k1p = k1C
p−1
0 . Here, we consider the case of non-

linear springs and the contribution to the total stress is given
by

τ = H0
〈
QQ

〉
0
+ Hn

〈
QQ

〉
n

− (C0 + Cn) kT I + ηsD (23)
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where the Warner expression for the spring force is:

F (Q) = −H ′ Q

1 − (
Q/l (t)

)2
(24)

and ηs is the solvent viscosity. Equations 19 to 24 are the
main results of this section. In the following, particular cases
are analyzed for specific problems.

No diffusion limit

In the absence of diffusion of the configuration tensors, and
considering that the free chains relax in a time scale much
shorter than those entangled, Eq. 21 may be solved for the
configuration tensor of free chains to give:

〈
QQ

〉
0

= mk2

1/λ0 + k1p

〈
QQ

〉
n

+ 4C0D0

1/λ0 + k1p

I

which upon substitution into Eq. 22 yields:

β
(
k1p, k2, λ0, λn

) 〈
QQ

〉
n

+
�〈

QQ
〉
n

=
(

4CnDn + 4k1pC0D0

m
(
1/λ0 + k1p

)

)

I (25)

where, similarly to transient network theories, the so-called
destruction function β is given by:

β
(
k1p, k2, λ0, λn

) = 1

λn

1 + λnk2 + λ0k1p

1 + λ0k1p

(26)

This function embodies the kinetic constants and the two
relaxation times of the system, and possesses two asymp-
totic limits. When the destruction of nodes and chains
predominate (high flow strength), k2 � k1p, hence

β
(
k1p, k2, λ0, λn

) = k2 (27)

In Eq. 27, the process is governed by the relaxation time of
free chains. On the other hand, if the flow strength is low,
the reformation of nodes predominates (k2 � k1p), and in
this case, it gives:

β
(
k1p, k2, λ0, λn

) = 1

λn

(28)

where the process is now governed by the relaxation time
of the entangled chains. In this context, we can relate
the processes of formation of chains and nodes to a ther-
mally activated process, while their destruction by flow as a
process undergoing dissipation.

The forward rate constant (k1) is the structure-formation
kinetic quantity that has an Arrhenius dependence with tem-
perature (Manero et al. 2002), associated to a thermally
activated process. The energy barrier is proportional to the
energy change involved in the microstate transition, i.e.,
k1 ∝ exp (−E0/KT ). The reverse rate constant (k2) times
the dissipation function represents the breakage or modi-
fication process of the transient network at a given time

t . Then, the reverse process is a function of the dissipa-
tion, i.e., k2 ∝ τ : D, and hence, a function of the stress
level (flow strength) and flow type through the velocity-
gradient tensor. As the flow strength increases, one expects
that the breakage process to overcome the reformation pro-
cess, favoring microstates with low number of nodes. On
the contrary, if the flow is weak, formation of more com-
plex structures with larger number of chains and nodes is
induced. Therefore:

k1 = κ1 (T ) , k2 = κ2τ : D

These relations justify the assumption used in network the-
ories in which the destruction function depends on the
configuration tensors through Eq. 25. In the absence of dif-
fusion, the dynamics are dominated by the “reactions,” and
hence, Eqs. 15 and 16 become:

dC0

dt
= −k1C

p

0 + mk2Cn (29)

dCn

dt
= 1

m
k1C

p

0 − k2Cn (30)

To gather these equations into a single one, we define the
total concentration of free and entangled chains as Cc =
C0 + mCn. As far as the total concentration is constant, its
time derivative is:

dCc

dt
= dC0

dt
+ m

dCn

dt
= 0

Defining x = C0/Cc, as the fraction of free chains, then
1 − x = mCn/Cc is the fraction of entangled chains, and
hence Eq. 29 becomes:

dx

dt
= −k1C

p−1
c xp + k2 (1 − x)

= −κ1 (T ) C
p−1
c xp + κ2 (1 − x)

(
τ : D

)
(31)

Linear springs

In this particular case, the equation for the force is linear,
implying a very large extensibility (Hookean law). The con-
stitutive equations for the stress of the entangled chains can
be obtained by substituting the expression for the stress (32),

τ
n

= Hn

〈
QQ

〉
n

− CnkT I (32)

into Eq. 25. This gives:

βτ
n

+ �
τ

n
= 2GnD + Gn

(
1

λn

− β + k1p

m
(
1 + λ0k1p

)

)

I

(33)
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where the elastic modulus is defined as

Gn = CnkT (34)

When the entanglements dominate, Eq. 33 becomes the
upper-convected Maxwell equation within a small isotropic
term.

Dividing each term of Eq. 33 by Gn, the variable β/Gn

is just the fluidity. In fact, the asymptotic limits, Eqs. 27 and
28, can be defined in terms of the characteristic fluidities:

At small strain rates (low flow strength)

β/Gn = 1

λnGn

= ϕ0 (35)

At large strain rates (high flow strength)

β/Gn = k2

Gn

= ϕ∞ (36)

Since k2 = O (1/λ0) and λn � λ0, the fluidity increases
from ϕ0 to ϕ∞ as the strain rate increases, and in general

β/Gn = ϕ (37)

A relation that complies with the above limits can be
expressed as a first approximation in terms of a linear
equation for the fluidity as a function of the characteristic
fluidities of each microstate, i.e.:

ϕ = ϕ∞x + ϕ0 (1 − x) (38)

The fluidity is then a function of the concentration frac-
tion of free chains (x) and entangled chains (1 − x); each
microstate having a characteristic fluidity. In fact, for weak
flows, the concentration of entangled chains dominates and
the fluidity is close to ϕ0. In contrast, for strong flows, the
fraction of free micelles increases and hence the fluidity of
the system is close to ϕ∞. This is in accord to the limits
given in Eqs. 27 and 28.

In terms of the fluidities, Eq. 31 may be expressed as
follows:

∂ϕ

∂t
= −1

λ
(ϕ − ϕ0)

p + κ2 (ϕ∞ − ϕ)
(
τ : D

)
(39)

where the characteristic time for structure formation is given
by:

λ = κ−1
1 (T )

(
Cc

ϕ∞ − ϕ0

)1−p

Finally, the extensibility becomes

l = (ϕ − ϕ0) + m (ϕ∞ − ϕ)

(ϕ − ϕ0) + (m + 2n) (ϕ∞ − ϕ)
(40)

Under steady-state, Eq. 39 reveals that the normalized
dissipation can be expressed as follows:
(
τ : D

)
= 1

λκ2

(ϕ − ϕ0)
p

ϕ∞ − ϕ
ϕ < ϕ∞ (41)

The numerator in Eq. 41 expresses increasing dissipation
due to larger fluidity resulting from higher concentration
of disentangled chains, whereas the denominator expresses
decreasing concentration of entangled chains as the fluidity
approaches ϕ∞. This means that when the fluidity is small,
the fluid structure is mostly preserved and hence the concen-
tration of disentangled chains is small. At high deformation
rates, structure modification is strong and the resulting large
fluidity is associated to large concentration of disentangled
chains.

Homogeneous simple shear flow

In homogeneous simple shear flow, the shear rate is con-
stant (x is the flow direction and y is that of the velocity
gradient), and therefore Eq. 25 leads to the following sys-
tem of coupled differential equations for the components of
the configuration tensor (after neglecting a small isotropic
contribution):

〈XX〉 + 1

β

(
d

dt
〈XX〉 − 2γ̇ 〈XY 〉

)
= 4

β
CnDn (42)

〈YY 〉 + 1

β

(
d

dt
〈YY 〉

)
= 4

β
CnDn (43)

〈ZZ〉 + 1

β

(
d

dt
〈ZZ〉

)
= 4

β
CnDn (44)

〈XY 〉 + 1

β

(
d

dt
〈XY 〉 − γ̇ 〈YY 〉

)
= 0 (45)

The trace of the configuration tensor is the squared end-
to-end distance of the segments:
〈
Q2

〉
= 〈XX + YY + ZZ〉 (46)

The optical functions (birefringence and extinction
angle) are given by:


n

C
= 1

Gn

√
〈XX − YY 〉2 + 4 〈XY 〉2 (47)

where C is an optical constant related to the intrinsic polar-
izability of the micellar/solvent system. In addition, the
orientation angle is given by

χ = 1

2
arctan

[
2 〈XY 〉

〈XX − YY 〉
]

(48)

The limits of the squared end-to-end distance of the seg-

ments in Eq. 46 lie in the interval
(〈

Q2
〉
eq

)
≤ (〈

Q2
〉) ≤

(
l (t)2) and hence this range depends on the dynamics of

the microstates and the extensibility represented by l (t).
The birefringence in Eq. 47 tends to the same asymptote of
Eq. 46 at high shear rates, and therefore, its range lies within
the limits 0 ≤ 
n ≤ l (t)2.

Under steady simple shear, the following expressions for
the stress and normal stress differences are obtained (with



Rheol Acta (2015) 54:53–67 59

β/Gn = ϕ and Warner force):

τxy

Gn

= 1

1 − Q2/l (t)2

(
γ̇

Gnϕ

)
(49)

N1

2Gn

= 1

1 − Q2/l (t)2

(
γ̇

Gnϕ

)2

(50)

N2 = 0 (51)

Moreover, the birefringence and extinction angle are given
by:


n

C
= 2

(
γ̇

Gnϕ

)√

1 +
(

γ̇

Gnϕ

)2

(52)

χ = 1

2
arctan

[(
γ̇

Gnϕ

)−1
]

(53)

The orientation angle tends to 45◦ at low shear rates and
decreases down to zero at high shear rates. However, the
asymptotic behavior at high shear rates is dependent on the
scaling of β with the extensibility l (t).

Calculation procedure

For the kinetics described by Eq. 39 with the expression for
the stress given by Eq. 49, we obtain for simple shear,

∂ϕ

∂t
=−1

λ
(ϕ − ϕ0)

p+ κ2 (ϕ∞ −ϕ) γ̇

(
G0

1 − Q2/l (t)2

γ̇

G0ϕ

)

(54)

For the case of linear springs, Eq. 54 reduces to:

∂ϕ

∂t
= −1

λ
(ϕ − ϕ0)

p + κ2 (ϕ∞ − ϕ)
γ̇ 2

ϕ
(55)

Given the material constants λ, k, ϕ0, ϕ∞, and G0, for an
applied shear-rate γ̇ , the expressions for l2 and

〈
Q2

〉
Eq. 40

and 46, respectively may be plugged into Eqs. 54 and 42–45
to solve for the fluidity ϕ and the components of the con-
figuration tensor. Then, with the shear rate and the resulting
fluidity, l2 and

〈
Q2

〉
may be readily calculated (provided

Q2 < l2) and with these values the rheological functions
Eqs. 49 to 53 are henceforth evaluated.

Model predictions

In this section, we present results for the cases of steady
simple shear, inception of flow, stress relaxation, and inter-
rupted shear.

Steady simple shear

In Fig. 1, the viscosity (Fig. 1a), normalized stress and stress
difference (Fig. 1b), extensibility and end-to-end distance of
the segments (Fig. 1c), and the birefringence and extinction
angle (Fig. 1d) are plotted as a function of shear rate. The
number of chains is two, one node, and kinetic order is one.
The shear rate is normalized with the Maxwell relaxation
time (β−1

0 ) namely β0 = G0ϕ0.
In Fig. 1a, the normalized viscosity decreases with shear

rate exhibiting the first and the second Newtonian plateaus
at small and high shear rates, respectively. Past a critical
shear rate, a power-law region with slope near minus one is
reached, approaching the second Newtonian plateau at high
shear rates. For large enough shear rates, the rate of network
degradation overcomes the rate of reformation and this leads
to shear-thinning. In Fig. 1b, the normalized shear stress
and the first normal stress difference are plotted against the
nondimensional shear rate. At low shear rates, the stress and
N1 approach the limiting slopes of one and two (not shown),
respectively. A monotonic increase as the shear rate aug-
ments is observed up to a region where a sudden increase is
predicted in both functions. This behavior at high shear rates
is due to the approach of the segments length to their maxi-
mum extensibility (according to Eq. 40; in this case, l = 0.5
at low shear rates and it approaches 1 at high shear rates)
wherein in the nonlinear regime of deformation the force
in the Warner expression increases steeply as Q → l (see
Fig. 1c). The birefringence also increases monotonically,
similar to the growth of the segments length. The extinction
angle indicates the increasing alignment of the segments
along the flow direction (see Fig. 1d).

It is interesting that the values predicted for the bire-
fringence as a function of shear rate are different to those
predicted for the stress. Values of the stress are larger than
those of the birefringence, and the upturn of the stress is
attained at lower values of the shear rate. The birefringence,
in turn, presents a much gradual increase compared to that of
the stress; the latter is more abrupt. This prediction reveals
that substantial alignment of the segments occurs at shear
rates higher than those implied in the stress growth.

In Fig. 2, the kinetic-order is changed from one to two,
with same number of chains (2) and number of nodes (1).
Steady-state results are similar to those shown in Fig. 1,
except that the magnitudes are different in the high shear
rate range. A stronger nodes reformation function results
in a more entangled network. The nonlinear regime in the
segment force in this case is attained at larger rate, reveal-
ing that in a more entangled network, the flow strength
should be larger to disrupt the network, as seen in Fig. 2c. In
turn, the stress and normal stress difference in the nonlinear
regime corresponding to the observed abrupt growth as the
shear rate increases (see Fig. 2b) and is predicted to occur
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Fig. 1 System with two chains,
one node and kinetic order 1,
rheological functions with
nondimensional shear rate. a
Normalized viscosity; b
normalized stress and first
normal stress difference; c
extensibility, end-to-end
distance of the segments, and
their ratio; and d birefringence
and extinction angle

at larger shear rates when the kinetics order is 2. Conse-
quently, the viscosity in Fig. 2a is slightly larger in the high
shear rate region as compared with that shown in Fig. 1a for
first-order kinetics. It is interesting that the birefringence in
Fig. 2d reveals smaller degree of anisotropy at comparable
shear rates in the second-order kinetics, again in agreement
with the picture of delayed network disruption.

When the kinetics order is changed to 5, keeping the
number of chains and nodes to 10 and 50, respectively,

qualitatively different results are obtained. In this case, in
the whole range of shear rates, the segments end-to-end dis-
tance is close to its maximum extensibility, fully inside the
nonlinear regime. An interesting result is the variation of
the viscosity with shear rate, shown in Fig. 3a. The curve
depicts the two asymptotic regions at low and high shear
rates, as before, but in between it describes two power-
law regions, the one with a larger slope observed at high
shear rates. It approaches the second Newtonian region with

Fig. 2 Same as in Fig. 1 for a
system with two chains, one
node, and second-order kinetics
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Fig. 3 Same as in Fig. 1 for a
system with 10 chains, 50
nodes, and kinetic order 5

comparatively larger values than those of the previous cases.
This highly nonlinear behavior results from the effect of
high node reformation at low shear rates.

Predictions cover the range of very low shear rates just to
find the asymptotic first Newtonian region. Of course, for
real fluid behavior, this asymptotic region is not observed.
Instead, at very low shear rates, the stress in this case would
attain an almost flat value (the yield stress), as observed in
Fig. 3b. These predictions indicate a plausible mechanism to

the apparition of the yield stress. These processes also lead
to a nonlinear behavior of the birefringence, which through-
out the shear rate range attains lower values than those of the
stress. Moreover, at high shear rates, a two-stage variation
of the extinction angle is observed in Fig. 3d. Within this
range, the stress increases steeply, as observed in Fig. 3b.

The effect of increasing the number of nodes in one chain
for first-order kinetics is exposed in Fig. 4. With respect
to results shown in Fig. 1 (two chains and one node), the

Fig. 4 Same as in Fig. 1, for a
system with one chain, two
nodes, and first- order kinetic
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Fig. 5 Same system as in Fig. 1. Applied shear-rate of 50 s−1. Incep-
tion of shear flow and relaxation past steady-state. a Stress versus time;
b fluidity versus time

viscosity and stress are modified substantially. A remark-
able prediction is the region of negative slope in the stress
versus shear-rate curve, in the case of two nodes. The pres-
ence of loops and ring structures is known to cause strongly
nonlinear effects, in addition to changes in the kinetics due
to orientation effects of elastic strains on the loops and rings.
The negative slope gives rise to instabilities and eventually
shear-banding. This is in contrast to the predicted N1 curve,
which is monotonically increasing function of shear-rate.

Fig. 6 System with 10 chains, 50 nodes, first-order kinetic and applied
shear-rate of 50 s−1. Inception of shear flow and relaxation past steady-
state, a Stress versus time; b fluidity versus time

Fig. 7 Same system as in Fig. 3. Applied shear-rate of 50 s−1. Incep-
tion of shear flow and relaxation past steady-state. a Stress versus time;
b fluidity versus time

Inception of shear flow and stress relaxation

Figures 5, 6, 7 and 8 show predictions of the stress and fluid-
ity at the inception of shear flow, attainment of steady state,
and subsequent relaxation as the flow is arrested. Figure 5a,
b correspond to a system with two chains and one node
with first order kinetics at a shear rate of 50 s−1. The stress
shows an initial overshoot at short times and rapidly attains
steady state. At time equal to 10 s, the flow is arrested and

Fig. 8 Same system as in Fig. 4. Applied shear-rate is 50 s−1. Incep-
tion of shear flow and relaxation past steady-state. a Stress versus time;
b fluidity versus time
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the stress relaxes. The fluidity in turn describes a monotonic
increase, a steady state and relaxation with different time
scale to that of the stress. These predictions illustrate that
the stress relaxation time scale is different to that of the flu-
idity representing the structure of the system. Although for
times longer than 11 s, the stress has already relaxed, the
structure is still evolving and recovers at times around 15 s.
In other words, structure recovery is achieved at time scales
longer than the stress relaxation time.

Figure 6a, b show the effect of increasing the number
of chains and nodes for first-order kinetics. An increase
in the maximum of the overshoot at short times reveals
increased elasticity as compared to results in Fig. 5a. The
fluidity in turn increases at steady-state with respect to the
previous cases, but relaxes with the same time scale as in
Fig. 5b. This result reveals that the structure recovery-time
is a strong function of the kinetic order, as clearly shown
in Fig. 7a, b. Here, the kinetic order is changed to 5, for
a shear rate of 1 s−1. The kinetics in this case induces a
dominant reformation function producing large nodes con-
centration. The stress overshoot is nevertheless large at this
small shear rate, depicting increased elasticity. Moreover,
the structure recovery time has increased drastically as well
as the time to achieve steady-state. The important effect
shown here is the large difference exhibited between the
stress relaxation time and the structure recovery time. This
nonlinear behavior indicates increased elasticity resulting
from a dense network.

The effect of increasing the number of nodes or loops
within the same chain is analyzed in Fig. 8a, b. Here, the
case of first-order kinetics with one chain and two nodes at
the shear rate of 50 s−1 is considered. With respect to the

case shown in Fig. 5 (first-order kinetics with two chains
and one node) at the same shear rate, various changes are
observed. In the case of two nodes, the overshoot in the
stress is larger, more than twice, than that corresponding
to the case of one node, revealing increased elasticity. The
change in the magnitude of the fluidity reflects profound
structure changes as the number of nodes is increased.

Shear thickening

The model analyzed here can predict shear-thickening
behavior, in which the fluidity decreases with increasing
shear-rate. In turn, the extensibility also decreases as a func-
tion of shear rate. Equations 40 and 54 are then modified by
setting ϕ0 > ϕ∞. Results of the simulations are shown in
Figs. 9 and 10.

The nonlinear regime of deformation is attained as the
extensibility starts from one at low shear rates and reaches
smaller values corresponding to the number of chains and
nodes for increasing shear-rate. As the end-to end distance
of the segments increases, the nonlinear regime is attained
when it reaches values near the extensibility governed by
the topology of the network. In a dense network, the rate of
decreasing extensibility with shear-rate is large, so the non-
linear regime is found at small end-to-end distances. This
behavior intends to mimic the process or mechanism by
which the shear-induced structures (SIS) responsible for the
shear-thickening are formed.

Figure 9 presents the case of one chain and one node with
first-order kinetics. The end-to end distance increases with
shear rate up to the point where it meets the extensibility
curve, which decreases with shear rate (see Fig. 9c). The

Fig. 9 System with one chain,
one node, and first-order
kinetics. Rheological functions
with nondimensional shear rate
with shear-thickening behavior.
a Normalized viscosity; b
normalized stress and first
normal stress difference; c
extensibility, end-to-end
distance of the segments, and
their ratio; and d birefringence
and extinction angle
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Fig. 10 Same as in Fig. 9 for
system with one chain, two
nodes, and first-order kinetics

viscosity (Fig. 9a) presents a sudden increase at a critical
shear rate and thereafter, for larger shear rates, an asymp-
totic region is reached, corresponding to an abrupt increase
in the stress and first normal stress difference (Fig. 9b),
where a two-stage growth in stress and N1 is predicted. An
interesting result is the growth of the birefringence, which
is similar to that of the stress at low shear rates.

In Fig. 10, the effect of increasing the number of nodes
in a single chain is exposed. A qualitatively different pat-
tern emerges: the viscosity in Fig. 10a presents a reentrant
region (or multi-valued region) within an interval in shear
rates, ascribed to a multi-valued extensibility (Fig. 10c).
The stress and first-normal stress difference (Fig. 10b) also
present the reentrant region, followed by another sudden
increase at relatively larger shear rates. A most interesting
result is the birefringence variation with shear rate, wherein
it is known that in which the multi-valued region generates
hysteresis cycles in the conformation of the molecular seg-
ments. These results are in agreement with predictions of a
conformation-dependent dumbbell model, wherein a sudden
increase in the molecular conformation at a critical shear
rate is observed as the shear-rate increases. The decreas-
ing shear rate path follows a different trajectory, preserving
the molecular deformation for lower values than the critical
shear rate.

Interrupted shear

In this shear history, initially, the shear stress displays an
overshoot at the inception of shear flow, and then it attains
steady state at longer times. Then, the flow is interrupted
and the stress relaxes with time. After a rest period, the same

shear rate is applied and a second overshoot is observed.
When the rest period is long enough for the recovery of the
initial structure, the second overshoot has a similar magni-
tude of the first one; however, when the rest period is short,
the magnitude of the second overshoot may be smaller than
that of the first one.

Since the rest period may be associated with the time
for structure rebuilding, when the rest period is sufficiently
long, structure rebuilding is complete, and the material
recovers its initial structure. But when the rest period is

Fig. 11 Same system as in Fig. 2 and shear rate of 50 s−1. Inception
of shear flow and interrupted shear predictions: a stress versus time; b
fluidity versus time
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Fig. 12 Interrupted shear
predictions. Ratio of magnitudes
of the second overshoot divided
by the first overshoot versus rest
time between overshoots. Curve
1-case 1 (Fig. 5), curve 2-case 5
(Fig. 11), curve 3-case 3
(Fig. 8), curve 4-case 2 (Fig. 6),
and curve 5-case 4 (Fig. 7).
Corresponding to those
presented in Figs. 5 to 8 and 11,
respectively

short, structure rebuilding is not complete, and the magni-
tude of the overshoot is smaller, reflecting the presence of
another structure.

Figure 11a, b illustrate predictions of interrupted shear of
the stress and fluidity as a function of time for two chains,
one node, kinetic order 2, and shear-rate of 50 s−1. In this
case, (Eq. 54 is now quadratic), the reformation rate of the
structure increases with consequent increase in the node for-
mation. Although the stress fully relaxes as exhibited in
Fig. 11a, the fluidity has not relaxed during the stress relax-
ation time scale (Fig. 11b). Predictions clearly illustrate that
during the relaxation time of the stress, the structure has not
recovered and consequently the second stress overshoot is
smaller than the first one.

Figure 12 depicts a series of predictions of the over-
shoot ratio (magnitude of the second overshoot divided by
the magnitude of the first overshoot) varying the rest time
between arrest and inception of flow. Cases 1 to 5 corre-
spond to those analyzed in Figs. 5 to 8 and Fig. 11. Cases 1
and 3 have same kinetic order and shear rate, but different
number of chains and nodes. They show basically the same
behavior, in which the second overshoot attains the magni-
tude of the first overshoot when the rest time is longer than
8 s. Case 2 corresponds to a change in the number of chains
and nodes with respect to case 1. The recovery of the struc-
ture in this case is very slow, and the overshoot ratio in this
case is around 0.6 after 20 s of rest time. In this context,
case 4 represents the extreme case where no recovery is evi-
denced after 20 s of rest time (the kinetic order is 5 at 1 s−1

of shear-rate). Case 5 corresponds to the system with two

nodes. Curves corresponding to kinetic order of two comply
with experimental data of 0.11 M CTAT aqueous solution
(Puig et al. 2004).

The difference in time scales of stress relaxation and
recovery time evidences the general behavior of thixotropic
materials. These time-dependent phenomena are clearly
predicted by the model presented here.

Concluding remarks

A nonlinear viscoelastic model based in the transient net-
work formulation of constitutive equations containing sim-
plified kinetics is presented in this analysis. To account for
variable entanglement density in the flow domain observed
in complex systems, various microstates are defined, repre-
senting several scenarios of molecular interactions. Particu-
lar cases are treated, from microstates containing free chains
to more entangled microstates containing more nodes. The
evolution of the microstates is represented by a set of
coupled, time-dependent kinetic equations, in which the
detailed kinetics are substituted by a global kinetics involv-
ing a reduced number of microstates. Depending upon the
flow characteristics, the concentration of microstates at a
certain time defines the extensibility (maximum segment
length) of the segments forming the network. The rheo-
logical functions (shear and normal stresses, birefringence)
calculated from the classical expressions of the transient
network formulation are then functions of the dynamics
of the microstates. It is shown that in particular cases for
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specific kinetics, the model is consistent with phenomeno-
logical models containing a description of the kinetics of
breakage-reformation of the system structure.

The global kinetics considered here embodies several
particular cases. For the particular case of p = 2 and m = 2
in Eqs. 21 and 22, the kinetics of the two species model of
Vasquez et al. (2007) is recovered. The kinetics analyzed
here is therefore more general, including predictions such as
the behavior of time-dependent thixotropic materials.

This approach considers the rigorous description of the
moment equations derived from the well-established kinetic
theory for nonhomogeneous flows (Bhave et al. 1991). In
the particular case of no diffusion and considering further
a nonlinear spring force with variable extensibility (which
is itself a function of the kinetic process), the expressions
for the stress components and optical variables are similar
to those of Rincón et al. (2005), with added microstates.
This framework thus provides a link between the previ-
ous model by Rincon and the present approach, which is
in agreement with predictions and experiments exposed in
Rincon paper. However, the present approach allows for
a framework to include other microstates (loops or rings,
etc.) based on the concept of a representative variable for
the system internal-structure, in this case, the fluidity. One
of the novel features exposed here is the explicit balance
of the stress relaxation time as compared to the structure
relaxation time represented by the fluidity. The structure
relaxation time difference with that of the stress allows for a
variety of time-dependent predictions, including thixotropy.
With regard to the loop structures, Cates and Fielding (2007)
have pointed out that these structures cause strongly non-
linear effects, in addition to changes in the kinetics due to
orientation effects of elastic strains on the loops and rings.
Phenomena such as shear-thickening may be explained on
the basis of this nonlinear response. We have considered
predictions of various nodes in the calculations, with results
that show a remarkable prediction of the multi-valued region
of the stress against shear-rate, wherein a maximum in the
stress is predicted with a negative slope of the flow curve
(see Fig. 4).

Comparison with experiments is provided in the
manuscript, although the experimental data are not repro-
duced here. Indeed, curves corresponding to cases 1–3
in Fig. 12 are in agreement with experimental data of
0.11M CTAT aqueous solution (Puig et al. 2004). To bet-
ter demonstrate this concordance, data and predictions are
illustrated. In addition, other references are considered, such
as the paper by Stratton and Butcher on polymer solutions
(Stratton and Butcher 1973, see their Fig. 4), wherein
the maximum stress from stop-start experiments against
rest-time is plotted. This curve is in remarkable agree-
ment with predictions shown in Fig. 12 (cases 1–3) of
this work.

Moreover, in polypropylene/clay hybrid materials,
Solomon et al. (2001) clearly illustrate the dependence
of the stress overshoot on the rest time, as an indication
that the structure of the material evolves, even under qui-
escent conditions (when the stress has already relaxed).
The experimental curves disclosed for this system are also
in remarkable agreement with predictions of Fig. 12. To
our knowledge, very few models are able to predict this
behavior in such extent.

One of the models derived from kinetic theory which
is similar in some aspects to the present model is the
FENE-CR (Chilcott and Rallison 1988). This model pos-
sesses nonlinear spring force and variable extensibility (the
extensibility level is fixed as an input value). The first
normal-stress difference presents highly nonlinear variation
with the shear-rate; deviations from the slope of 2 (Oldroyd-
B behavior) augment as the extensibility decreases. In the
present model, the extensibility is a function of the kinetic
process, but depending upon the structures formed at low
shear rates (loops, etc.), the extensibility evolves with time
and shear rate. In the case of loops, the extensibility is small
and hence a highly nonlinear response is expected at low
shear-rates.

Models predicting strain-hardening properties comply
with a microstructure with limited extensibility. Indeed,
in the original Doi and Edwards (D-E) tube concept of
polymer chain reptation, caused by a mesh of constraints
that confines the chain laterally to a tube-like region, the
tension of the deformed macromolecular chain remains con-
stant and equal to its equilibrium value. Consequently, the
original D-E model does not account for strain-hardening,
notably under extensional flow. However, it is experimen-
tally observed that the tension in the molecular chains
increases with an increase in deformation. Wagner et al.
have modified the D-E model by introducing the molecular
stress function (Wagner et al. 2001) to account for strain-
hardening. Long-chain branched polymers show enhanced
strain-hardening, consistent with decreased extensibility as
loops and other microstructures may likely be formed in
the quiescent state. The nonlinear behavior of our model
in the low shear-rate range (notably the shear-thickening
results) reflects the behavior of strain-hardening systems
and predictions should be similar to those of modified tube
models. The reentrant viscosity curve (Fig. 10a) resembles
experimental results exposed in the current literature on
shear-thickening fluids (Hu et al. (1998), see Fig. 2).

Finally, the perspective of this work should naturally
include the diffusion terms that have been neglected in the
present approach. We have considered the case where the
diffusion term for the concentrations in Eqs. 15 and 16 is
included and, in fact, the numerical scheme converges more
rapidly, giving rise to smoother transitions in the rheolog-
ical predictions. But the more general approach is that of
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solving the Fokker-Planck equations (11) and (12) and work
out the statistical averages without Peterlin pre-averaging.
This approach will render a solution to the diffusive case in
a more consistent manner (Kroger 2008).
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