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 Studies of Bose–Einstein condensates (BECs)
continue to be an important subject in modern physics
(see, e.g., [1–4] and references therein). Atomic BECs
are produced in the laboratory in laser�cooled, mag�
netically�trapped ultracold bosonic clouds of different
atomic species (including 87Rb [5, 6], 7Li [7], 23Na [8],
1H [9], 4He [10], 41K [11], 133Cs [12], 174Yb [13], and
52Cr [14], among others). Furthermore, a discussion
of a relativistic BEC appeared in [15] and BECs of
photons are most recently under investigation [16]. In
addition, BECs are successfully utilized in cosmology
and astrophysics [17] as they have been shown to con�
strain quantum gravity models [18].

In the context of atomic BECs interparticle inter�
actions must play a fundamental role since they are
necessary to drive the atomic cloud to thermal equilib�
rium. Thus, they must be carefully taken into account
when studying the properties of the condensate. For
instance, interatomic interactions change the conden�
sation temperature Tc of a BEC, as was pointed out
first by Lee and Yang [19, 20] (see also [21–30] for
more recent works).

The first studies of interactions effects were focused
on uniform BECs. Here, interactions are irrelevant in
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the mean field (MF) approximation (see [25, 28–30])
but they produce a shift in the condensation tempera�
ture of uniform BECs with respect to the ideal nonin�
teracting case, which is due to quantum correlations
between bosons near the critical point. This effect was

finally quantified in [25, 26] as ΔTc/  � 1.8(a/λT),

where ΔTc ≡ Tc –  with Tc the critical temperature

of the gas of interacting bosons,  is the BEC con�
densation temperature in the ideal noninteracting
case, a is the s�wave scattering length used to represent
interparticle interactions [1, 3, 4], and λT ≡

 is the thermal wavelength for temper�

ature  with ma the atomic mass.

However, laboratory condensates are not uniform
BECs since they are produced in atomic clouds con�
fined in magnetic traps. For trapped BECs, interac�
tions affect the condensation temperature even in the
MF approximation, and the shift in Tc in terms of the
s�wave scattering length a is given by

(1)

with b1 � –3.4 [1] and b2 � 18.8 [31].
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High precision measurements [32] of the conden�
sation temperature of 39K in the range of parameters
N � (2–8) × 105, 10–3 < a/λT < 6 × 10–2 and Tc � 180–
330 nK have detected second�order (nonlinear)

effects in ΔTc/  fitted by the expression ΔTc/ =

(a/λT)2 with  � 46 ± 5. This result has been
achieved exploiting the high�field 403 G Feshbach
resonance in the |F, mF〉 = |1, 1〉 hyperfine (HF) state
of a 39K condensate where F ≡ S + I is the total spin of
the atom with S and I being electron and nuclear spin,
respectively, and mF is the projection quantum num�
ber. Thus, the theoretically predicted [31] quadratic�
amplitude coefficient b2 turned out to be in a rather
strong disagreement with the available experimental
data. There have also been some efforts to theoretically
estimate the correct value of b2 in the MF approxima�
tion by considering anharmonic and even tempera�
ture�dependent traps [33], which however have not
been too successful. Therefore, one could expect that
a more realistic prediction of the experimental value of

 should take into account some other so far unac�
counted effects.

The main goal of this paper is to show that, taking
into account the nonlinear (quadratic) Zeeman effect
and using the MF approximation, it is quite possible to
explain the experimentally observed [32] value of b2 for
the 403 G resonance of the hyperfine |F, mF〉 = |1, 1〉
state of 39K with no need to go beyond�MF approxi�
mation.

Recall that experimentally the s�wave scattering
length parameter a is tuned via the Feshbach�reso�
nance technique based on Zeeman splitting of bosonic
atom levels in an applied magnetic field. This means
that the interaction constant g ≡ (4π�2a/ma) is actually
always field�dependent. More explicitly, according to
the interpretation of the Feshbach resonance [34, 35]

, (2)

where abg is a so�called background value of a, B0 is the
resonance peak field, and Δ, the width of the reso�
nance.

Thus, in order to properly address the problem of
condensation�temperature shifts (which are always
observed under application of a nonzero magnetic
field B), one must account for a Zeeman�like contri�
bution. It should be emphasized, however, that a single
(free) atom Zeeman effect (induced by either elec�
tronic or nuclear spin) μaB is not important for the
problem at hand simply because it can be accounted
for by an appropriate modification of the chemical
potential.

Recall that in the presence of a linear Zeeman
effect, the basic properties of an atomic BEC can be
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understood within the so�called “condensate wave�
function” approximation [2]

, (3)

where H(x) = gn2 – EZn with n(x) = Ψ+(x)Ψ(x) being
the local density of the condensate (Ψ(x) is the prop�
erly defined wavefunction of macroscopic conden�
sate), and EZ = μBB is the Zeeman energy (with μB

being the Bohr magneton).
Following Bogoliubov’s recipe [36], let us consider

small deviation of the condensate fraction from the
ground state n0 (the number) by assuming that n(x) �
n0 + δn(x) with δn(x) � n0. Treating, as usually, n0 and
δn(x) independently, we obtain from Eq. (3) that in the
presence of the linear Zeeman effect gn0 = EZ (mean�
ing that EZ is playing a role of the chemical potential
[37]) and, as a result, the BEC favors the following
energy minimum:

. (4)

Thus, we conclude that at low magnetic fields
(where the linear Zeeman effect is valid), in accor�
dance with the available experimental results [37],
there is no any tangible change of the BEC properties
(including g modification). On the other hand, there is
a clear�cut experimental evidence [38, 39] in favor of
the so�called Breit–Rabi nonlinear (quadratic) HF�
mediated Zeeman effect [40] in BEC. We are going to
demonstrate now how this nonlinear phenomenon
(which is not a trivial generalization of the linear Zee�
man effect) affects the BEC properties (including a
feasible condensation temperature shift). Recall that
in strong magnetic fields, the magnetic�field energy
shift of the sublevel mF of an alkali�metal�atom ground
state can be approximated (with a rather good accu�
racy) by the following expression [38]

, (5)

where AHF =  and δνhf is the so�called

hyperfine splitting frequency between two ground
states.

Now, by repeating the above�mentioned Bogoli�
ubov’s procedure, we obtain a rather nontrivial result
for BEC modification. Namely, it can be easily verified
that HF�mediated nonlinear Zeeman effect gives rise
to the following two equivalent options for the energy
minimization (based on the previously defined ground

state with EZ = gn0): (a) ENLZ ∝ g2  or (b) ENLZ ∝
EZgn0 = (μBB)gn0. In fact, the choice between these
two options is quite simple. We have to choose (b) sim�
ply because (a) introduces the second order interac�
tion effects (∝g2) which are neglected in the initial

� d
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Hamiltonian (3). As a result, the high�field nonlinear
Zeeman effect produces the following modification of
the local BEC energy:

(6)

Therefore, accounting for nonlinear Zeeman con�
tribution will directly result in a renormalization of the
high�field scattering length

. (7)

Now, by inverting (2) and expanding the resulting
B(a) dependence into the Taylor series (under the
experimentally satisfied conditions abg � a and Δ �
B0)

(8)

one obtains

(9)

for an explicit form of the renormalized scattering
length due to Breit–Rabi–Zeeman splitting with

. (10)

To find the change in b2 in the presence of the qua�
dratic Zeeman effect one simply replaces the original
(Zeeman�free) scattering length a in (1) with its renor�
malized form a* given by (9), which results in a non�
linear contribution to the shift of the critical tempera�
ture, specifically

. (11)

Furthermore, by using (9), one can rewrite (11) in
terms of the original scattering length a and renormal�
ized amplitude  as follows

, (12)

where the coefficient due to the Breit–Rabi–Zeeman
contribution is

(13)

with γ defined earlier.
Let us consider the particular case of the B0 �

403 G resonance of the hyperfine |F, mF〉 = |1, 1〉 state
of 39K. For this case [41], S = 1/2, mF = 1, I = 3/2, and
δνhf � 468 MHz. These parameters produce AHF =3/4
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and γ � 1.5 which readily leads to the following esti�
mate of the quadratic amplitude contribution due to
the HF mediated Breit–Rabi–Zeeman effect,  �
2.25b2 � 42.3 (using the mean�field value b2 � 18.8
[31]), in a good agreement with the observations [32].
It is interesting to point out that the obtained value of
γ for 39K BEC is a result of a practically perfect match
between the two participating energies: Zeeman con�
tribution at the Feshbach resonance field, μBB0 � 4 ×
10–25 J, and the contribution due to Breit–Rabi hyper�
fine splitting between two ground states, hδνhf � 3 ×
10–25 J.

Finally, an important comment is in order regard�
ing the applicability of the present approach (based on
the Taylor expansion of (2)) to the field�induced mod�
ification of the linear contribution (defined via the
amplitude b1 in (1)) to the shift in Tc. According to the
experimental curve depicting ΔTc vs. a/λT behavior,
the linear contribution is limited by 10–3 < a/λT < 5 ×
10–3. Within the Feshbach�resonance interpretation,
this corresponds to a low�field ratio a/abg � 1, which
invalidates the Taylor expansion scenario based on
using a small parameter abg/a � 1 applicable in high
fields only. Besides, as we have demonstrated earlier,
the linear Zeeman effect (valid at low fields only) is not
responsible for any tangible changes of BEC proper�
ties. Therefore, another approach is needed to prop�
erly address the field�induced variation (if any) of the
linear contribution b1.

To conclude, it was shown that accounting for a
hyperfine�interaction induced Breit–Rabi nonlinear
(quadratic) Zeeman term in the mean�field approxi�
mation can explain the experimentally observed shift
in the critical temperature Tc for the 39K condensate.
It would be interesting to subject the predicted univer�
sal relation (13) to a further experimental test to verify
whether it can also explain the shift in other bosonic�
atom condensates.
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