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In this paper the non axisymmetric longwave instability of a thin viscoelastic liquid film flowing down a
vertical heated cylinder is investigated. The stability of the film coating a cylinder in the absence of grav-
ity is also investigated. In a previous paper it is found that viscoelasticity stimulates the appearance of
azimuthal modes but the axial mode is the most unstable one. Other calculations in a former paper show
that for flow outside a heated cylinder azimuthal modes can be the more unstable when the Marangoni
number is large and, in particular, when the Reynolds number and wavenumber are small. Therefore, the
small wavenumber and large cylinder radius approximation is assumed with the simultaneous action of
viscoelasticity and thermocapillarity on the stability of azimuthal modes. In the presence and in the
absence of gravity, it is found that, in comparison with the Newtonian case, it is easier to excite the azi-
muthal modes when viscoelasticity and thermocapillarity destabilize at the same time. Moreover, it is
shown that, despite the axial mode is the most unstable one, there are wide wavenumber ranges where
higher modes are the more unstable and they can show up by means of a periodic time dependent
perturbation.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The coating of surfaces by liquid films have important applica-
tions in industry. The problems found when looking for the perfect
finishing are due to hydrodynamic instabilities. In the absence of
gravity a cause of instability is thermocapillarity. When the liquid
layer is coating a flat wall Pearson [1] has shown that a liquid film
is unstable to temperature gradients perpendicular to the layer. As
a consequence convection cells appear which may have important
consequences in the solidified film. Therefore, it is necessary to
investigate this instability under different mechanical and thermal
boundary conditions. When the free surface is deformable the
problem is investigated first by Scriven and Sternling [2]. The
restoring influence of gravity is taken into account by Takashima
[3] in the stationary case and by Takashima [4] when the flow is
time dependent. The double diffusive Marangoni convection is first
investigated by Mctaggart [5]. Sometimes in applications the fluid
has elastic properties due to the presence in solution of macro-
molecules which change their form when shear stresses are
applied to the liquid. These fluids are called viscoelastic (see for
example Bird et al. [6]) and have been investigated widely in nat-
ural convection phenomena (see a recent review paper by
Dávalos-Orozco [7–9] by Pérez-Reyes and Dávalos-Orozco).
Notice that one characteristic of the viscoelastic instabilities is that
they can be time dependent, in contrast to Newtonian fluids con-
vection. Yet it is shown [8] that these instabilities do not occur
for any thermal boundary conditions.

The thermal Marangoni instability has also been investigated
for viscoelastic fluids by a number of authors. Getachew and
Rosenblat [10] calculated the codimension-two points where sta-
tionary and oscillatory convection compete to be the first unstable
one when the Marangoni number increases. Wilson [11] investi-
gates supercritical conditions of the thermocapillary instability of
a viscoelastic fluid from the point of view of the growth rates.
Siddheshwar et al. [12] investigate the instability of a Maxwell
fluid under different thermal boundary conditions including the
effect of viscosity variation with temperature. The thermocapillary
instability of a Maxwell viscoelastic fluid is investigated by Herná
ndez-Hernández and Dávalos-Orozco [13] assuming a flat free sur-
face and presenting results for a wide range of wall thermal con-
ductivities. The goal is to calculate the codimension-two points
where the stationary and oscillatory Marangoni convection modes
compete to be the first unstable one.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.06.035&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.06.035
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Nomenclature

Bi free surface-atmosphere Biot number
c phase velocity
Cr crispation number
De Deborah number
e shear rate tensor
g acceleration of gravity
h free surface deformation
h0 mean thickness of the layer
Hh heat transfer coefficient
H free surface perturbation amplitude
k axial wavenumber
kC critical wavenumber
kf fluid thermal conductivity
L1 adimensional relaxation time
L2 adimensional retardation time
m azimuthal number
Ma Marangoni number
n! normal vector
P pressure
pi : i-th order perturbation pressure
Pr Prandtl number
R cylinder radius
Re reynolds number
S surface tension number

S scaled surface tension number
T temperature
Tamb ambient temperature
Ti : i-th order perturbation temperature
TW wall temperature
U representative velocity
V
!

velocity vector
We Weber number

Greek
a fluid thermal diffusivity
b non dimensional cylinder radius
c surface tension
d scaled non dimensional cylinder radius
DT temperature difference
q fluid density
m kinematic viscosity
r growth rate
s shear stress tensor
s1
�! first tangential vector
s2
�! second tangential vector
x frequency of oscillation
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When a fluid layer flows down a wall, the thermocapillary effects
are included by Joo et al. [16,14] and Ramaswamy et al. [15]. A
complete review of this problem is found in Dávalos-orozco [17].

Nonlinear computations of the instability of a thin viscoelastic
film falling down an inclined wall are done by Joo [18]. Kang and
Chen [19] find in the linear limit a purely elastic instability. This
flow is investigated by Dávalos-Orozco [20] when the wall is
smoothly deformed. It is shown that it is still possible to stabilize
the flow by means of spatial resonance as done by
Dávalos-Orozco [21] when the fluid is Newtonian.

It is of interest to know if the azimuthal modes are relevant in a
cylindrical wall. Shlang and Sivashinsky [22] found that the azi-
muthal modes can not be the most unstable in a Newtonian fluid
and that the axial one is always the most unstable one. For flow
inside the cylinder the axial mode grows faster as in microchannels
when the liquid forms an annular film [23,24]. Therefore, for any
radius, the axial mode is the most unstable one inside the cylinder.
When a film is flowing down the outside of a rotating cylinder, it
has been shown [25–27] that the first azimuthal mode may be
the most unstable one under different circumstances.
Nevertheless, for flow inside the cylinder (as in [28]) the most
unstable mode is the axial one. The relevance of the azimuthal
modes is also found in the instability of inviscid stratified fluids
in a rotating annulus [29].

The thermocapillary phenomena of a film flowing down a verti-
cal cylinder present interesting results. This free surface condition
is of concern in practical applications of heat dissipation [30].
Linear stability calculations of a thin film flowing down a cylindri-
cal heated wall (see Dávalos-Orozco and You [31]) have demon-
strated that high azimuthal modes can be the more unstable
ones when the Reynolds number and the wavenumber of the per-
turbation are small. To excite these modes large magnitudes of the
temperature gradient are required. It is important to point out that
in the presence of thermocapillarity, the azimuthal modes can also
be excited as the more unstable ones when the flow is inside the
cylinder.
The two dimensional flow instability of non-Newtonian thin
films flowing down a cylinder has also been investigated by
Cheng and Liu [32–34] for a power-law fluid, by Cheng et al. [35]
and Cheng and Lai [36] for a viscoelastic Walters B fluid (with
application to magnetohydrodynamics). In Moctezuma-Sánchez
and Dávalos-Orozco [37] the viscoelastic Oldroyd’s constitutive
equation model was used to investigate the longwave linear insta-
bility of a fluid film flowing down a cylinder. The corresponding
linear equation reduces to that obtained by Joo [18] (without
power-law fluid effects) when the radius of the cylinder tends to
infinity. In particular, the interest in [37] is to determine the rele-
vance of the azimuthal modes in the presence of viscoelasticity. It
is found that the most unstable mode is always the axial one.
Eventhough, viscoelasticity promotes the appearance of the azi-
muthal modes in comparison with the Newtonian fluid, they are
not the more unstable ones in any range of the wavenumber.

In the present paper, the interest is focused on the thermocap-
illary excitation of azimuthal modes in a viscoelastic fluid. A com-
parison is done with the results of the isothermal [37] flow and the
Newtonian fluid [31] flow. The Oldroyd’s fluid model is selected for
the constitutive equation of the fluid. The linear evolution equation
calculated below, reduces to that of Joo [18] when the radius of the
cylinder tends to infinity and in the absence of thermocapillary
effects. In the lack of thermocapillary effects the equation reduces
to that in [37]. The results of this paper are new not only because of
the combination of viscoelasticity [37] and thermocapillarity [31]
in flow on the surface of a cylinder, but also because the problem
investigated is three dimensional. This can be seen in the review
section on thin film flow down cylinders presented in
Dávalos-orozco [17]. It is found that in the linear and non linear
problems, mainly axial mode stability is investigated. For three
dimensional flows see [22,25–27,29]. The physical reason for the
appearance of azimuthal modes of instability are the azimuthal
shear stresses created by thermocapillarity, as will be seen pre-
sently in the discussion of the first and second tangential shear
stresses of the free surface boundary conditions.



Fig. 1. Sketch of the system in nondimensional form. A viscoelastic liquid layer
coating a vertical cylindrical wall. Gravity may be zero or different from zero.
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The paper is organized as follows. The equations of motion and
boundary conditions are presented in the next section. The numer-
ical results are given in Sections 3 for zero Reynolds number and 4
for a film flowing down a cylinder. The last Section 5 are the
conclusions.

2. Viscoelastic fluid layer flowing down a heated cylinder

In this section, the equations of motion of a thin viscoelastic
fluid film flowing down the outside of a heated cylinder are pre-
sented. It is assumed that the axis of the cylinder is vertical and
that the z-axis is in the direction of the gravity vector. The wall
of the cylinder is supposed to be a very good conductor. The liquid
is in contact with an inviscid atmosphere which has at the inter-
face particular heat transfer properties. The free surface is suscep-
tible to shear stresses and deformation due to thermal
perturbations leading to thermocapillary effects.

The fluid film has density q, kinematic viscosity m, thermal con-
ductivity a and a mean thickness h0. The equations of motion, mass
conservation and heat diffusion are made non dimensional along

with the constitutive equation using U = gh2
0=2m for the velocity, h0

for the coordinates r and z, h0=U for time and qU2 for the pressure
and shear stress tensor. Here g is the acceleration of gravity. The tem-
perature is made non dimensional by means of DT ¼ TW � Tamb > 0,
where TW is the temperature of the cylindrical wall and Tamb is the
temperature of the inviscid ambient atmosphere.

The governing equations of a heated viscoelastic Oldroyd fluid
layer are the balance of momentum, heat diffusion and continuity
equations in cylindrical coordinates. In non dimensional form they
are:

d V
!

dt
¼ �rP þr � sþ 2

Re
k̂ ð1Þ

dT
dt
¼ 1

RePr
r2T ð2Þ

r � V
!
¼ 0 ð3Þ

where V
!

is the velocity vector, T is the temperature and k̂ ¼ ð0;0;1Þ
in cylindrical coordinates is a unit vector in the direction of gravity
(z-direction). The shear stress tensor s and the shear rate tensor

e = (1/2)(rV
!

+ ðrV
!Þ

T
) satisfy the Oldroyd’s constitutive equation

for a viscoelastic fluid. That is:

sþ L1
Ds
Dt
¼ 2

Re
eþ L2

De
Dt

� �
ð4Þ

Here, the time operator is defined as d=dt ¼ @=@t þ V
!�r. Besides,

D=Dt is a nonlinear operator which could be the upper convected,
the lower convected or the corotational time derivatives, depending
on the viscoelastic model selected. Nevertheless if the equations are
linearized around a basic hydrostatic state in the absence gravity,
all the derivatives are the same as the linear operator
D=Dt = d/dt = @=@t. Pr = m/a is the Prandtl number, Re = U h0/m is
the Reynolds number and L1 and L2 are the non dimensional relax-
ation and retardation times of the viscoelastic fluid.

Let b = R=h0 be the non dimensional radius of the cylinder (see
Fig. 1). The boundary conditions are:

V
!¼ 0; T ¼ 1 at r ¼ b ð5Þ

Pamb � Pð Þ n!þWe n!r � n!¼ �s � n!� Ma

PrRe2rT

at r ¼ bþ hðh; z; tÞ ð6Þ
� n!�rT ¼ BiT at r ¼ bþ hðh; z; tÞ ð7Þ

Here, We = c=qh0U2 is the Weber number with c the surface ten-
sion, Ma = �dc=dTDTh0=qam is the Marangoni number with a the
fluid heat diffusivity, Bi = Hh=kf h0 is the Biot number with Hh the
heat transfer coefficient and kf the fluid heat conductivity. Notice

that the gradient of the surface tension rc ¼ ðdc=dTÞrT depends
on the temperature gradient and that dc=dT < 0 in common fluids.
The height of the free surface is hðh; z; tÞ = 1 + Hðh; z; tÞ and Hðh; z; tÞ
is the free surface perturbation amplitude. The normal and tangen-
tial vectors at the free surface of the liquid viscoelastic film on the
cylindrical wall are defined as follows.

n!¼
1;� 1

r hh;�hz
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
r2 h2

h þ h2
z

q ð8Þ

s2
�! ¼ hz;0;1Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
z

q ð9Þ

s2
�! ¼ � 1

r hh;� 1þ h2
z

� 	
; 1

r hhhz

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
z

� 	
1þ 1

r2 h2
h þ h2

z

� 	r ð10Þ

The subscripts h and z mean partial derivatives. n! is the normal
vector and s1

�! and s2
�! are the first and second tangential vectors.

From Eq. 8 it is possible to calculate the curvature of the free surface
defined by r � n!.

Now the variables in the equations and boundary conditions are
scaled using t ! et; z! ez; y ¼ dh with d ¼ eb (which means that
the radius is assumed to be large). Here e is a scaling parameter
representing the thickness of the fluid layer over the perturbation
wavelength. Besides, H ! eH (see reference [38]). If the fluid is
assumed to have very strong surface tension, then the scaling
extends to the definition We = c=qh0U2 = e2S=3Re2, where
S = 3ch0=e2qm2 is the surface tension number. Assuming that

V
!

= ðu;v;wÞ, the variables are expanded as:



Fig. 2. r vs k. Re = 0. d = 5, De=Pr = 0.01, Bi = 0.1. Fig. 2a Ma = 0, Fig. 2b Ma = 20.
Solid: Cr = 0.001, dotted: Cr = 0.01, dashed: Cr = 0.1. The numbers are the azimuthal
modes.
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u ¼ e u0 þ eu1 þ � � �ð Þ; v ¼ e v0 þ ev1 þ � � �ð Þ;
w ¼ w0 þ ew1 þ � � � ; ð11Þ

P ¼ p0 þ ep1 þ � � � ; T ¼ T0 þ eT1 þ � � � ð12Þ

These expansions are introduced into the equations and boundary
conditions. The problem is solved for each order of the expansions
and finally at first order in the expansions the following linear par-
tial differential equation is obtained for the free surface perturba-
tions on a thin film flowing down the outside of a cylindrical
vertical wall:

Ht � 2Hz þ e � 2
3d

Hz þ
8

15
ReHzz þ DeHzz þ

1
3

S
Re

1
d2r

2
?H þr4

?H
� �"

þ1
2

Ma
RePr

Bi

1þ Bið Þ2
r2
?H

#
¼ 0 ð13Þ

where De = 4ðk1 � k2Þm=3h2
0 is the Deborah number, S ¼ e2S and

r? = @=@y; @=@zð Þ = @=d@h; @=@zð Þ.
It is also of interest in this paper to calculate the equation of the

linear free surface perturbations of a thin film coating the outside
of a cylindrical wall in the absence of gravity. To attain this goal,
the following changes can be done in Eq. 13 (see also [31]). First,
the term 8ReHzz=15 has to be zero. Second, the velocity is made
non dimensional with U = a=h0. In this way the parameter
ReWe = 1/ Cr, where Cr = qam=ch0 is the crispation number. In other
places where Re appears it changes into 1/Pr. The equation is:

Ht � 2Hz þ e � 2
3d

Hz þ
De
Pr

Hzz þ
1
3

1
Cr

1
d2r

2
?H þr4

?H
� �


þ1
2

Ma
Bi

1þ Bið Þ2
r2
?H

#
¼ 0 ð14Þ

In this non dimensional form the Prandtl number appears explicitly
in the viscoelastic term dividing De. The stability of these two cases
will be discussed separately beginning with the case in the absence
of gravity.

3. Thermocapillary convection of a film coating a cylinder

In this section the goal is to present the numerical results cor-
responding to the thermocapillary instability of a liquid film coat-
ing the outside of a cylinder in the absence of gravity. The
perturbations are assumed to have the form of normal modes as
H = H0 exp i mhþ kzþxtð Þ þ rt½ �. From now on it is assumed that
e = 1. This is substituted into Eq. 14 to get the equations for the
phase velocity c = x=k, the growth rate and the critical wavenum-
ber kC . They are:

c ¼ 2þ 2
3d
: ð15Þ

r¼De
Pr

k2þ 1
3Cr

m2

d2 þk2
� �

1
d2�

m2

d2 þk2
� �

þ1
2

Ma
Bi

1þBið Þ2

" #
: ð16Þ

k2
C ¼ �

m2

d2 þ
3Cr

2
fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 4

3Cr
De
Pr

m2

d2

s0
@

1
A: ð17Þ

where f = De=Pr + 1=3Crd2 + MaBi=2ð1þ BiÞ2. The critical wavenum-
ber is obtained taking the square root of Eq. 17. The phase velocity
decreases with the radius of the cylinder but the behavior of the
growth rate in Eq. 16 is not clear due to the number of parameters
involved. Here the Biot number will be fixed to Bi = 0.1. Graphics of
the growth rate are given for two magnitudes of De=Pr and two of
the radius of the cylinder. The crispation number Cr and the
azimuthal mode number m are varied in each plot.

It can be shown analytically that mode m = 0 is always the most
unstable one. However, here it will be demonstrated that when the
wavenumber is very small the azimuthal modes can become the
more unstable and that the number of modes increases with De
and Ma. In other words, viscoelasticity and thermocapillarity
promote the appearance of azimuthal modes as the more unstable
in some regions of the wavenumber.

The results are presented fixing d and De=Pr and varying the
other parameters involved. In all the figures the numbers attached
to the curves indicate the corresponding azimuthal modes. In Fig. 2
for the growth rate against the perturbation wavenumber, d = 5
and De=Pr = 0.01. The curves correspond to different crispation
numbers as follows: solid: Cr = 0.001, dotted: Cr = 0.01, dashed:
Cr = 0.1. The smaller crispation number corresponds to the stron-
ger surface tension. The Marangoni number differs in each figure:



Fig. 4. r vs k. Re = 0. d = 5, De=Pr = 0.2, Bi = 0.1. Fig. 4a Ma = 0, Fig. 4b Ma = 20. Solid:
Cr = 0.001, dotted: Cr = 0.01, dashed: Cr = 0.1.
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Fig. 2a Ma = 0 and Fig. 2b Ma = 20. The other figures have a similar
explanation but with different d and De=Pr.

The viscoelastic effects are small in this case. Clearly, the small-
est crispation number has the largest growth rate due to the throt-
tling effect of surface tension and the curves of Cr = 0.001 and
mode m = 0 are very similar for the three Marangoni numbers
used. However, note that m = 1 has important changes with Ma >
0 and that it is the more unstable mode in a range of the wavenum-
ber. For the other crispation numbers, the growth rates of m = 0
and 1 have notable changes with Ma. As can be seen, increasing
Ma higher azimuthal modes are able to appear as the more unsta-
ble ones in a larger range of the wavenumber. Observe that in
Fig. 2a for Ma = 0 the first and higher azimuthal modes have no
wavenumber region as the more unstable ones. In Fig. 3 shown
are the curves of criticality, calculated from Eq. 17, for different
parameters and azimuthal modes. It is seen the important increase
of the critical wavenumber with Ma when the crispation number
increases. This leads the wavenumber to a region outside the small
wavenumber approximation. That is, to a stronger surface tension
corresponds a lower wavenumber of the perturbation, even for
large Marangoni numbers.

Fig. 4 shows results for a larger De=Pr = 0.2. It was shown [37] in
the isothermal case that viscoelasticity promotes the increase of
the growth rate and the appearance of higher azimuthal modes.
This can be appreciated in the figure, where the growth rates are
larger than those of Fig. 2. The differences are not clear for mode
m = 0 of Cr = 0.001 whose change is very small. The change is more
apparent in the dashed curves corresponding to Cr = 0.1. In this
case, the growth rate is larger for modes m = 0 and 1 but not for
m = 2, as seen in Fig. 4b. As can be seen, the Deborah number has
no influence on the wavenumber of the intersection point. The rea-
son is that when subtracting the growth rates of the intersecting
modes the Deborah number disappears from the equation of k.

The critical wavenumber against Ma is shown in Fig. 5 where
the growth of the curves is more steep than in Fig. 3. The difference
is remarkable in the dashed curves for Cr = 0.1. The critical wave
number approaches faster to the small wavenumber approxima-
tion limit with an increase of Ma.

The growth rates decrease considerably when the radius of the
cylinder increases to d = 10. Nevertheless, this brings the possibil-
ity to have higher azimuthal modes as the more unstable ones.
In Fig. 6a it is shown that in the isothermal case the unstable
wavenumber region is considerably reduced in comparison with
previous figures. Still, the increase in Marangoni number widens
this range as seen in Fig. 6b when Cr increases.
Fig. 3. kC vs Ma. Re = 0. d = 5, De=Pr = 0.01, Bi = 0.1. Solid: Cr = 0.001, dotted:
Cr = 0.01, dashed: Cr = 0.1.

Fig. 5. kC vs Ma. Re = 0. d = 5, De=Pr = 0.2, Bi = 0.1. Solid: Cr = 0.001, dotted: Cr = 0.01,
dashed: Cr = 0.1.



Fig. 6. r vs k. Re = 0. d = 10, De=Pr = 0.01, Bi = 0.1. Fig. 6a Ma = 0, Fig. 6b Ma = 20.
Solid: Cr = 0.001, dotted: Cr = 0.01, dashed: Cr = 0.1.

Fig. 7. kC vs Ma. Re = 0. d = 10, De=Pr = 0.01, Bi = 0.1. Solid: Cr = 0.001, dotted:
Cr = 0.01, dashed: Cr = 0.1.

Fig. 8. r vs k. Re = 0. d = 10, De=Pr = 0.2, Bi = 0.1. Fig. 8a Ma = 0, Fig. 8b Ma = 20.
Solid: Cr = 0.001, dotted: Cr = 0.01, dashed: Cr = 0.1.
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This increase also gives higher azimuthal modes the chance to
play a relevant role on the instability. In particular, m = 3 and 4
are already the more unstable ones in a range of k when Cr = 0.1.
Furthermore, this range increases with Ma as seen in Fig. 6b.

The corresponding critical wavenumbers presented in Fig. 7
show that the curves of the different modes are now very close
to each other. Notice the presence of mode m = 3 for Cr = 0.1.
This mode may also appear for larger Cr to the right of the figure
for increasing Ma.

In Fig. 8 the De=Pr is larger than that of the previous figures. It is
possible to appreciate the increase of the growth rate. Again mode
m = 3 , along with m = 4, is able to appear as the more unstable one
in a range of k for Cr = 0.1 and Ma = 20. However, its growth rate,
though notable, is not very different than in Fig. 6.

The curves of the critical wavenumber of all modes in Fig. 9 are
also very close to each other and their increase is a little steeper
than before.

Here a discussion is given about the modes intersection points.
Notice that the magnitude of the wavenumber of the intersections
increases with Cr. However, in the case of the intersection between



Fig. 9. kC vs Ma. Re = 0. d = 10, De=Pr = 0.2, Bi = 0.1. Solid: Cr = 0.001, dotted:
Cr = 0.01, dashed: Cr = 0.1.

Fig. 10. r vs k. d = 5, De = 0.01, Bi = 0.1, S = 1. Fig. 10a Ma=Pr = 0 (solid: Re = 0.1,
dotted: Re = 0.2, dashed: Re = 0.3), Fig. 10b Ma=Pr = 2 (solid: Re = 0.01, dotted:
Re = 0.05, dashed: Re = 0.1). The numbers are the azimuthal modes.
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modes m = 0 and 1, the magnitudes of the wave numbers for d = 5
and 10 are the same for each Cr = 0.001, 0.01, when Ma is varied up
to Ma = 20. Nevertheless, this is not the case at the intersection
between m = 1 and 2 and at that of the other higher pairs of modes.
Observe that for Ma = 20 it is possible to excite up to mode m = 4 as
the more unstable. In general, the growth rate increases with
Cr;Ma and De=Pr but decreases with d.

4. Thermocapillary convection of a film flowing down a cylinder

This section corresponds to the description of the linear stabil-
ity of a thin film flowing down the outside of a cylinder due to the
action of gravity. The fixed parameters will be Bi = 0.1 and S = 1.
Observe that Eq. 13 presents the ratio Ma=Pr and that the Prandtl
number does not appear in another place of the equation.
Therefore, the thermocapillarity parameter here will be Ma=Pr.
The effect of the Reynolds number Re is of importance in this
section. In normal modes H = H0 exp i mhþ kzþxtð Þ þ rt½ � and
assuming e = 1, the phase velocity c, the growth rate r and the
critical wavenumber kC are:

c ¼ 2þ 2
3d
: ð18Þ

r ¼ 8
15
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þ 1
3Re

m2
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where g = 8Re=15 + De + S=3Red2 + MaBi=2Reð1þ BiÞ2. The critical
wavenumber is obtained taking the square root of Eq. 20.

The phase velocity has the same formula as in the absence of
gravity but here the velocity is made non dimensional in a different
way. The growth rate now presents the Reynolds number Re in
different terms of Eq. 19 and the Marangoni number is divided
by the Prandtl number. It is clear that in some circumstances the
Reynolds number may have a stabilizing effect when it appears
in the denominator of some terms.

The growth rate of d = 5, De = 0.01 is shown in Fig. 10. In all the
figures the numbers attached to the curves indicate the corre-
sponding azimuthal modes. In Fig. 10a the continuous line is for
Re = 0.1, the dotted line for Re = 0.2 and the dashed line
for Re = 0.3, respectively. In Fig. 10b the continuous line is for
Re = 0.01, the dotted line for Re = 0.05 and the dashed line for
Re = 0.1, respectively. The reason to use different Reynolds number
ranges is that care is taken to restrict the calculations in order to
have k < 0.6. As can be seen in the isothermal case of Fig. 10a,
the growth rate satisfies this restriction for larger Reynolds num-
bers than in the results with thermocapillarity. Notice that all the
following Figs. 12, 14 and 16 present the same differences in the
Reynolds numbers. The results presented in Figs. 10 a and b corre-
spond to Ma=Pr = 0 and 2, respectively. These magnitudes are
selected in order to satisfy the small wavenumber approximation.

It can be demonstrated analytically that mode m = 0 (the axial
mode) is always the most unstable one. However, it is shown in
Fig. 10 for a small viscoelastic effect that higher modes can be
the more unstable ones in a range of the wavenumber. In
Fig. 10a it is found that in the isothermal case the higher modes
always have a lower growth rate than m = 0 in all the range of k.
Nevertheless, thermocapillarity can stimulate higher modes and
for Ma=Pr = 2, Fig. 10b now presents m = 2 as the more unstable
one in a region of k for the Reynolds numbers used. Mode m = 1
can also be the more unstable one in another region with larger k.



Fig. 11. kC vs Re. d = 5, De = 0.01, Bi = 0.1, S = 1. Solid: Ma=Pr = 0, dotted: Ma=Pr = 1,
dashed: Ma=Pr = 2.

Fig. 12. r vs k. d = 5, De = 0.1, Bi = 0.1, S = 1. Fig. 12a Ma=Pr = 0 (solid: Re = 0.1,
dotted: Re = 0.2, dashed: Re = 0.3), Fig. 12b Ma=Pr = 2 (solid: Re = 0.01, dotted:
Re = 0.05, dashed: Re = 0.1).

Fig. 13. kC vs Re. d = 5, De = 0.1, Bi = 0.1, S = 1. Solid: Ma=Pr = 0, dotted: Ma=Pr = 1,
dashed: Ma=Pr = 2.

(a)

(b)
Fig. 14. r vs k. d = 10, De = 0.01, Bi = 0.1, S = 1. Fig. 14a Ma=Pr = 0 (solid: Re = 0.1,
dotted: Re = 0.2, dashed: Re = 0.3), Fig. 14b Ma=Pr = 2 (solid: Re = 0.01, dotted:
Re = 0.05, dashed: Re = 0.1).
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Fig. 16. r vs k. d = 10, De = 0.2, Bi = 0.1, S = 1. Fig. 16a Ma=Pr = 0 (solid: Re = 0.1,
dotted: Re = 0.2, dashed: Re = 0.3), Fig. 16b Ma=Pr = 2 (solid: Re = 0.01, dotted:
Re = 0.05, dashed: Re = 0.1).
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In Fig. 10 there are a number of intersections between the pairs
of curves of the azimuthal modes. As can be seen, the wavenumber
of the intersection does not depend on the Reynolds number but
only on the parameter Ma=Pr. The reason is that the terms inde-
pendent of m, including the viscoelastic one, disappear when sub-
tracting the growth rates of the intersecting modes to calculate k.
Only the thermocapillary terms remain. Still, the corresponding
growth rate at the intersection has an important dependence on
De and Re.

The critical wavenumber is plotted in Fig. 11 against Re for three
values of Ma=Pr. It is clear that kC increases very fast with Re. Some
curves are cut for lower kC because of the negative magnitude of
the radicand in the definition of kC Eq. 20. Higher modes start to
appear but they are approaching the limits of the small wavenum-
ber approximation.

In Fig. 12 the Deborah number increases ten times. It is clear in
Fig. 12a that in the isothermal case this produces an important
change in the growth rate with respect to Fig. 10a. But there is a
small increase in Fig. 12b. Therefore, thermocapillarity here stands
out more than viscoelasticity. The growth of kC with Re is shown in
Fig. 13. It is found that this is more steep than in Fig. 11. Thus
higher modes are able to appear for smaller Reynolds numbers.

The radius is larger in Fig. 14. This affects considerably the
growth rate in both the isothermal and non isothermal flows.
Nevertheless, the azimuthal mode m = 3 is able to appear as the
more unstable one in a range of the wavenumber for the two mag-
nitudes of Ma=Pr. Another consequence of increasing the radius is
that the maximum of mode m = 2 is displaced to right in contrast
with that of m = 0 and 1, which is small. It is interesting that the
maxima of m = 0, 1 and 2 decrease in this order and that they are
very close to each other, contrary to m = 3.

Fig. 15 shows that kC increases with Re even faster than before.
The mode m = 3 has more presence with respect to Re inside the
small wavenumber approximation.

The Deborah number now is twenty times larger in Fig. 16. The
growth rate increases considerably in Fig. 16a for the isothermal
problem. There, more azimuthal modes are excited by viscoelastic-
ity. The influence of thermocapillarity is clear in Fig. 16b where the
growth rates differ with respect to those of Fig. 14. It is important
to point out that now the magnitude differences among the growth
rate maxima of modes m = 0, 1, 2 and 3 are notable for the two
magnitudes of Ma=Pr.

The curves of criticality are presented in Fig. 17. It is found that
they show the steepest growth among the figures presented before
Fig. 15. kC vs Re. d = 10, De = 0.01, Bi = 0.1, S = 1. Solid: Ma=Pr = 0, dotted: Ma=Pr = 1,
dashed: Ma=Pr = 2.

Fig. 17. kC vs Re. d = 10, De = 0.2, Bi = 0.1, S = 1. Solid: Ma=Pr = 0, dotted: Ma=Pr = 1,
dashed: Ma=Pr = 2.
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for Re > 0. Higher azimuthal modes have a larger kC range inside
the small wavenumber approximation.

The results of modes intersections are discussed here. Notice
that the magnitudes of the intersection wavenumbers do not
change with Re; d and De. An appreciable change occurs with
Ma=Pr for the same intersecting modes. Since higher modes only
appear for large d, this can only be seen for two different magni-
tudes of De. For Ma=Pr < 2 and d = 5 it is only possible to excite
up to m = 1, but for d = 10 up to m = 3. When Ma=Pr = 2 and d = 5
it is possible to excite up to mode m = 2 and for d = 10 up to
m = 3. Note that the growth rates decrease with Re and d and
increase with Ma=Pr and De.
5. Conclusions

In the absence of gravity it is found that the most unstable mode
is the axial one, that is m = 0. The results bring about the possibility
of controlling the azimuthal modes as the more unstable ones by
means of the wavenumber as done theoretically in [21,20] for
example. In the isothermal case viscoelasticity is only able to excite
the azimuthal modes by increasing their growth rates, as shown in
[37]. Here, it is found that an increase of the crispation number in
the thermocapillary flow makes it easier to open a wavenumber
range where azimuthal modes are the more unstable. As a general
rule, this always occurs in a range where the wavenumber is smaller
than that corresponding to the maximum growth rate of m = 0.
Some modes may have their maximum at k = 0 and others at k >
0, depending on the parameters. A notable difference in the number
of excited unstable modes is made by the radius of the cylinder.
The wavenumber of the intersections between two modes is con-
stant with respect to those parameters which do not multiply the
mode number m in the intersection formula.

The problem of the vertical cylinder under gravity also shows
interesting results. When Ma = 0 the growth rate of the azimuthal
modes is always smaller than that of m = 0 in all the unstable range
of the wavenumber. Their growth rate in the range of k behaves as
rm¼0 > rm¼1 > rm¼2 > � � �, etc. Also in the non isothermal problem
m = 0 is always the most unstable one. The maximum growth rates
of the different modes satisfy the inequalities rmax

m¼0 > rmax
m¼1 > rmax

m¼2 >
� � �, etc. Nevertheless, other modes can be the more unstable and
behave for example in a range of k as rm¼3 > rm¼2 > rm¼1 > rm¼0 >
rm¼4 > � � � and in another range of k as rm¼2 > rm¼3 > rm¼1 > rm¼0 >
rm¼4 > � � �, etc. In this case the wavenumber at the intersection
remains constant with respect to those parameters which are not
multiplied by the mode number m in the equation calculated for
the intersections. However, the corresponding growth rate always
depends on all the parameters involved in the problem. Tables with
numerical modes intersection data are available upon request.

Despite the large number of parameters involved, it was possi-
ble to review a series of characteristics of the linear stability of the
two complex flows investigated. Next it is of interest to explore the
nonlinear instability.
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