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Abstract. The structural and elastic properties of the RFeO3 phases with R = Y, Eu, and La were
investigated using first-principles plane-wave pseudopotential density functional theory with the generalized
gradient approximation (GGA). The ground state properties (equilibrium cell constants) agree well with
the reported experimental results. Our results showed an increase in the unit-cell volume (V ) with the
increase of ionic radii. We calculate a set of elastic parameters (bulk modulus BV RH , shear modulus
GV RH , Young’s modulus EV RH and Poisson’s ratio ν) in the framework of the Voigt-Reuss-Hill (VRH)
approximation. The sound velocities (vl, vt) and Debye temperature (θD) were calculated using these elastic
moduli. The calculated elastic constants were positives and satisfy the well-known Born criteria, indicating
that the orthorhombic structure is stable. Finally, the ratio GVRH /BVRH suggests that the RFeO3 phases
are ductile in nature.

1 Introduction

The discovery, in the early nineteenth century, of a min-
eral with a chemical formula CaTiO3 [1], called perovskite,
gave rise to the family of compounds called orthoferrites,
with general chemical formula RFeO3 where R is a rare
earth. This perovskites have attracted much attention due
to their technological applications; for example, they are
suitable candidates for electronic applications due to they
mixed conductivity, they can be used as chemical sensors
for the detection of gas [2], they are useful for fuel cells
in the solid state [3], they can act as electrode materials
in solid oxide fuel cells [4,5], as memory devices and they
have spintronic applications [6–8]. An important property
of some ABO3 materials, relevant to this work, is that an
epitaxial strain can have profound effects on the ferroelec-
tric and ferromagnetic properties of thin films [9,10].

These materials are considered as strongly correlated
electron systems, in which the narrow bands of 3d tran-
sition metals (TM) and rare earth 4f (R) orbitals inter-
act through strong Coulomb repulsion U . This interaction
generates unusual electronic, magnetic, optical, and some-
times even mechanical properties. The structural and elec-
tronic properties of the RFeO3 compounds, with R = Y,
Eu, and La, have been studied experimentally [11–13] and
theoretically [14–16]; however, the study of their elastic
properties has not been carrying out. In consequence, the

a e-mail: mromero@ciencias.unam.mx

study of their structural and elastic properties is required
to know and understand their physical properties and per-
haps predict new ones. The outline of the paper is the
following: In Section 2 we present the technical details
of the employed methods in our calculations. Section 3
describes the structural properties of the different mem-
bers of this system. In Section 4, we calculate the elas-
tic constants Cij , the bulk (BV RH), shear (GV RH), and
Young (EV RH) moduli, the Poisson’s ratio (ν) and per-
centage of anisotropy derived from Voigt-Reuss-Hill ap-
proximations [17–19]. From the obtained results, we cal-
culate the Debye temperature (θD). Finally, we summarize
our outcomes in the last section.

2 Computational method

In this work we have carried out a series of calcula-
tions using the CASTEP (Cambridge Serial Total Energy
Package) code [20,21], based on density functional the-
ory (DFT) [22,23]. The exchange and correlation func-
tion were treated by both the generalized gradient ap-
proximation (GGA), as proposed by the Perdew Burke
Ernzerhof function (PBE) [24]. First-principles structural
and elastic calculations may be performed with suffi-
cient accuracy to resolve energy differences as small as
a few meV per atom. Total energy is the primary quan-
tity in first principal calculations [19]. We use the BFGS
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Fig. 1. Crystal structure of the LaFeO3.

(Broyden, Fletcher, Goldfarb, Shanno) algorithm [25] to
find the lowest energy of the crystal with an energy tol-
erance of 2 × 10−6 eV/atom. The first Brillouin zone was
sampled on 10×5×10 irreducible k points [26]. We employ
the norm-conserving pseudopotential model [27], with a
990 eV cut of energy. Careful convergence tests show that
with these conditions the crystal structure is stable.

3 Results and discussion

3.1 Structural and elastic properties

The members of the RFeO3 system (RFeO3 with R = Y,
Eu and La) have an orthorhombic symmetry, with space
group No. 62 (Pnma), which is a pseudo-cubic space
group, and the unit cell parameters are related to the ideal
cubic perovskites as a ∼ √

2ap, b ∼ 2ap and c ∼ √
2ap,

(ap is the cubic perovskite cell parameter). The Wyckoff
positions of atoms are R: 2a (x, 0.25, z), Fe: 4b (0, 0, 0.5),
O(1): 4c (x, 0.25, z) and O(2): 8d (x, y, z). A good param-
eter to quantify the stability and distortion of the per-
ovskites structure is the Goldschmidt tolerance factor (t)
defined as:

t =
rR + rO√
2(rFe + rO)

, (1)

where rR is the radius of the R-cation in eight-
coordination, rFe is the radius of the Fe-cation and rO

is the radius of the oxygen in six-coordination. For the
ideal cubic perovskite, this value should be 1.

In the orthoferrites, the distortion mechanism is a tilt-
ing of rigid FeO6 octahedra (see Fig. 1). From the crys-
tallographic point of view, the octahedral tilt angles are
directly related to 〈Fe-O(1)-Fe〉 and 〈Fe-O(2)-Fe〉 bond an-
gles. The former is the tilting angle (θ) of the octahedron
relative to the plane [101] and the latter is the rotation
angle (φ) relative to the plane [010]. The octahedral tilt
angles are defined by [28].

θ =
180 − 〈Fe-O(1) − Fe〉

2
(2)

and

cosφ =
180 − 〈Fe-O(2) − Fe〉

2
/
√

( cos θ). (3)

Another quantity used to quantify the distortion of
the [FeO6] octahedron, is the distortion parameter Δoct

defined as:

�oct =
(Σ |(Fe-Oi) − 〈Fe-O〉average|)

〈Fe-O〉average , (4)

where 〈Fe-O〉average is an average bond length.
The structure of each phase was optimized with re-

spect to internal parameters, of energy, force, stress, and
displacement. The calculated equilibrium cell parameters,
unit-cell volume and the Goldschmidt tolerance factor (t)
are displayed in Table 1. The atomic positions are shown
in Table 2 while the distortion parameter Δoct and the
octahedral tilt angles are listed in the Table 3.
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Table 1. Calculated equilibrium cell parameters, unit-cell volume and the Goldschmidt tolerance factor (t). R3+ ionic radii
(rR3+ ) values given in a ninefold coordination from [29].

Phase rR3+(Å) a (Å) b (Å) c (Å) V (Å3) t Ref.

YFeO3 1.075 5.5961 7.6098 5.2855 225.08 0.82 This work
5.5877 7.5951 5.2743 223.84 [30]
5.5840 7.5970 5.2740 223.73 [31]
5.5930 7.6040 5.2820 224.64 [32]

EuFeO3 1.120 5.6060 7.6932 5.3786 231.97 0.91 This work
5.6060 7.6850 5.3720 234.37 [33]
5.6810 7.6810 5.3710 231.44 [34]

LaFeO3 1.216 5.5676 7.8364 5.5596 242.59 0.94 This work
5.5878 7.5775 5.6234 238.10 [35]
5.5680 7.8360 5.5600 243.31 [36]
5.5676 7.8608 5.5596 243.32 [37]

Table 2. Atomic positions of the RFeO3 compounds.

Phase Atom x y z Ref.

YFeO3 Y 0.0683 0.25 0.9824 This work
0.06852 0.25 0.98213 [30]

O(1) 0.4572 0.25 0.1123 This work
0.4604 0.25 0.1103 [30]

O(2) 0.6951 −0.0580 0.3082 This work
0.6955 −0.0567 0.3076 [30]

EuFeO3 Eu 0.0599 0.25 0.9855 This work
0.0601 0.25 0.9855 [33]

O(1) 0.0901 0.25 0.4695 This work
0.4680 0.25 0.0978 [33]

O(2) 0.2942 0.0463 0.7043 This work
0.3006 0.0506 0.6977 [33]

LaFeO3 La 0.0291 0.25 −0.0061 This work
0.0491 0.25 −0.0038 [35]

O(1) 0.4942 0.25 0.1001 This work
0.2941 0.25 0.2401 [35]

O(2) 0.2401 0.0132 0.6983 This work
0.3406 0.0227 0.6568 [35]

Figure 2 shows the cell parameters as a function of
the R3+ ionic radii. The b and c cell parameters increased,
whereas a cell parameter decreased, as the ionic radius
of R3+ increased; as a consequence, an increase in the
unit-cell volume (V ) is observed. Also, from Table 2, the
increase of the unit-cell volume induces a Goldschmidt
tolerance factor (t) increase. From Table 3, the calcu-
lated values of tilt angles θ[101] and φ[010] for the YFeO3

are 18.60 and 12.10; respectively, which are in close agree-
ment with the reported values (θ[101] = 18.15 and φ[010] =
12.05) [30].

Several methods are available to compute elastic
constants, and in this work we use the finite strain
method, which is the most commonly used one. In
this approach, the ground state structure is strained
according to symmetry-dependent strain patterns with
varying amplitudes, followed by a computation of the
stress tensor after re-optimization of the internal struc-
ture parameters, i.e., after a geometry optimization with
fixed cell parameters. The elastic constants are the pro-
portionality coefficients relating the applied strain to

Table 3. Geometrical parameters characterizing the crystal
structure of the RFeO3 compounds.

Bond length (Å) YFeO3 EuFeO3 LaFeO3

Fe-O(1):2 2.007 1.995 2.036
Fe-O(2):2 2.010 1.997 1.736
Fe-O(2):2 2.033 2.014 2.218
〈Fe-O〉 2.017 2.002 1.997

Δ(Fe-O) 6.63 × 10−5 3.62 × 10−5 0.020

Bond angle (degrees)

〈Fe-O(1)-Fe〉 142.81 149.13 148.23
〈Fe-O(2)-Fe〉 144.32 151.20 168.54

θ[101] 18.60 15.44 15.89
φ[010] 12.10 9.41 11.53

Fig. 2. Cell parameters and Unit cell-volume in a function
of R3+ ionic radii.

the computed stress, σ = Cijεj. For the orthorhom-
bic crystals there are nine elastic stiffness constants,
C11, C22, C33, C44, C55, C66, C12, C13 and C23 [38].

Table 4 shows all the positive elastic constants that
satisfy the well-known Born criteria for the mechanical
stability: C11+C22 > 2C12, C33+C22 > 2C23, C11+C33 >
2C13, Cii > 0 (i = 1 to 9) and C11 + C22 + C33 + 2C12 +
2C23 + 2C13 > 0. Using the calculated elastic constants
we can obtain for monocrystals the macroscopic mechan-
ical parameters: the bulk (BV RH) and shear (GV RH)
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Table 4. Elastic constants (Cij) of the RFeO3 compounds. The Units GPa.

Phase C11 C22 C33 C44 C55 C66 C12 C13 C23

YFeO3 243 169 232 113 75 78 113 99 117

EuFeO3 331 346 302 112 116 75 146 160 143

LaFeO3 226 190 254 69 45 66 103 88 115

Table 5. Bulk modulus (BV RH), shear modulus (GV RH), averaged compressibility (βV RH), Young’s modulus (EV RH), Poisson’s
ratio (νV RH), percentage of anisotropy (A1), (A2) and (A3) of the RFeO3 compounds. The Units in GPa.

Phase BV RH GV RH βV RH × 10−3 EV RH νV RH A1 A2 A3

YFeO3 144, 102a 56 6.94 148 0.328 1.629 1.802 1.671

EuFeO3 208, 241b 94 4.81 246 0.304 1.434 1.277 0.784

LaFeO3 142, 172c 59 7.04 155 0.318 0.908 0.848 1.260

(a)Reference [39], (b)reference [40], (c)reference [41].

moduli, which are determined using the Voigt (V ) [17]
and Reuss (R) [18] approximations.

In the framework of the polycrystalline materials, we
utilized the Voigt-Reuss-Hill (VRH) approximation [19].
In this approach, the bulk modulus (BV RH) and the
shear modulus (GV RH) are calculated from BV , BR, GV

and GR as: BV RH = 1
2 (BR + BV ) and GV RH = 1

2 (GR +
GV ). The averaged compressibility (βV RH), Young’s mod-
uli (EV RH), and Poisson’s ratio (ν), can be obtained using
these values

βV RH =
1

BV RH
(5)

EV RH =
9BV RHGV RH

3BV RH + GV RH
(6)

and

νV RH =
3BV RH − 2GV RH

2(3BV RH + GV RH)
. (7)

The parameters mentioned above, listed in Table 4 al-
lowed us to make the following predictions. Among RFeO3

phases, EuFeO3 is the phase with the largest bulk modu-
lus (BV RH , 208 GPa) and shear modulus (GV RH , 94 GPa)
while the YFeO3 and LaFeO3 phases have the smallest
BV RH ∼144 GPa and GV RH ∼ 56 GPa. As the bulk mod-
ulus gives the measure of its stiffness, one may conclude
that for the materials of interest, the YFeO3 and LaFeO3

phases show a smaller stiffness compared to the EuFeO3

phase. Furthermore, the average compressibility shows
that the Y and La are equally compressible, in the case
where Eu is less compressible, which agrees with the val-
ues of the elastic constants and the bulk modulus. Figure 3
displays the variation of the GV RH/BV RH and Poisson ra-
tio (νV RH) as a function of ionic radii. According to Pugh
criteria, a material should behave in a ductile manner if
GV RH/BV RH < 0.5, otherwise it should be ductile: ac-
cording to this indicator, the RFeO3 for R = Y, Eu and La
will behave in a ductile manner. The covalent/ionic nature
of the compounds could be predicted by the Poisson ratio
criterion (ν).

Fig. 3. G/B and Poisson ratio for the RFeO3 compounds.

The representative value of ν is 0.25 for ionic ma-
terials while a smaller 0.1 value of is approximated for
covalent materials. In the present case, our values are all
greater than 0.30 and increase from 0.303 (EuFeO3) to
0.328 (YFeO3) (see Tab. 5). This result represents that the
ionic contributions to the atomic bonding are dominant.

Other relevant parameters are the elastic anisotropy
factors. The shear anisotropic factors provide a measure of
the degree of anisotropy of the bonding between atoms in
different planes. An orthorhombic crystal can be measured
by three shear anisotropy factors for the {100}, {010}
and {001} shear planes, respectively [42]:

A1 =
4C44

C11 + C33 − 2C13
, (8)

A2 =
4C55

C22 + C33 − 2C23
, (9)

and

A3 =
4C66

C11 + C22 − 2C12
. (10)
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Table 6. Debye temperature (θD) and velocity of sound (vm)
of RFeO3 compounds.

Phase vm (m/s) θD (K) Ref.

YFeO3 3381 449 This Work
EuFeO3 4643 505 ”
LaFeO3 3911 415, 407 a ”

(a)Reference [46].

For an isotropic crystal, the A1, A2 and A3 factors should
be equal; any lower or higher value than unity is a
measure of the degree of anisotropic elasticity possessed
by the crystal. Table 5 shows the calculated values of
A1, A2 and A3. It is interesting to note that the shear
anisotropic factors show a higher degree of anisotropy
for YFeO3, EuFeO3 and LaFeO3 respectively, implying
a lower charge density between the junctions of different
planes in all three compounds.

Another elastic quantity is the hardness, which quan-
tifies the resistance to deformation, this is defined as [43]:

Hv = 0.92K1.137G0.708, K = GV RH/BV RH , (11)

The obtained hardness (Vickers number) is 5.43, 9.30 and
6.07 for R = Y, Eu and La, respectively.

Among the important fundamental parameters, which
are closely related to many of the physical properties of
solids is the Debye temperature (θD). Using the elas-
tic moduli GV RH and BV RH , we calculated the Debye
temperature (θD) [44] as:

θD =
[
h3

k3

3N

4πV

]1/3

vm, (12)

where V is the unit cell volume, N is the number of
atoms in the unit cell, k is Boltzmann’s constant and h is
Plank’s constant. The average sound velocity vm is given
by reference [45]:

vm =
31/3(3GV RHBV RH + 4GV RH

2)1/2

ρ3/2(2(2BV RH + 4GV RH)3/2 + 3G
3/2
V RH

. (13)

Table 6 shows the Debye temperature calculated from the
elastic constants for the RFeO3 system. Debye tempera-
ture data for EuFeO3 and YFeO3 are not available in the
literature, only for LaFeO3 [46].

4 Conclusions

In summary, we performed calculations of structure and
elasticity of the RFeO3 with R = Y, Eu, and La phases,
using a plane-wave pseudopotential density functional the-
ory, within the generalized gradient approximation. We
find that the reduction of ionic radii produces a decrease
of the unit cell-volume; as a consequence the bond lengths
associated with the [FeO6] octahedra and the octahedral
distortion decrease. Our analysis of elastic constants (Cij)

shows that our system is mechanically stable. Analyz-
ing the ratio of bulk moduli and shear modulus we con-
clude that the RFeO3 system is ductile in nature. Finally,
no correlation between the ionic radius and the Debye
temperature is observed.
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IN 115612, and the Programa de Becas Posdoctorales de
la UNAM, DGAPA, UNAM. The authors want to thank
C. Gonzalez for their technical support. Calculations were
done using resources from the Supercomputing Center
DGTIC-UNAM.
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