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In this paper, the dc electronic transport at zero temperature in
aperiodic systems with macroscopic length is studied by using
a real-space renormalization plus convolution method
developed for the Kubo–Greenwood formula within the
tight-binding formalism. We analytically prove the existence
of transparent states in several generalized Fibonacci lattices,

as well as in segmented linear chains, where they always
appear if the number of bonds in each segment is even,
regardless the ordering of segments. For two-dimensional
square-lattice tapes with a periodic or non-periodic Fano-
impurity plane, we found a novel ballistic transport state in the
dc conductance spectra.
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1 Introduction Electric conductivity isoneof themost
important properties of solids due to its relevance in thedesign
and construction of new electronic devices, also is one of the
most susceptible to the presence of defects. The miniatur-
ization of electronic devices has revealed the importance of
quantum effects, such as the ballistic conduction in nano-
electronicswhen the device length is smaller than the inelastic
scattering mean-free-path of very pure materials. According
to the Abrahams’ theorem [1], all the states are localized in
one- and two-dimensional (2D) systems with an infinitesimal
random-disorder strength. Recently, it is observed that 2D
disordered systems can exhibit dramatic drops in resistivity as
the temperature T!0, suggesting a metallic ground state in
such systems [2–4]. On the other hand, delocalized electronic
states have been found in one-dimensional (1D) systems with
correlated disorder [5–8] and with random dimers [9].
Analytical results by Damanik and Gorodetski prove the
possible existence of ballistic transport for Fibonacci
Hamiltonian with diagonal disorder when the coupling goes
to zero [10]. A more general analysis about the transparent
states in aperiodic lattices can be found in Ref. [11].

In general, the presence of structural disorders makes
useless the reciprocal space and the analysis of their effects on
the electronic transport is usually carried out in small systems
or by using the perturbation theory. For example, it has been
addressed by computing the scaling behavior of the mean-

square displacement of the wave packets with respect to time
via a renormalization group approach developed within the
Brillouin–Wigner perturbation theory [12]. Other renormal-
ization approaches based on transfer matrices have also been
used to address the electronic transport in aperiodic
systems [13]. In this paper, we study the ballistic transport
in 1D generalized Fibonacci lattices [14, 15] and N-mer
segmentedchains,bothwithmacroscopic lengthof108atoms.
The numerical analysis was carried out by means of an exact
real-space renormalization method developed for the Kubo-
Greenwood formula and the analytical demonstration of
transparent states has been performed through the trans-
mittance within the Landauer formalism. For 2D systems, we
report for the first time the finding of a ballistic conduction
state in conducting tapes with a Fano-impurity plane.

2 The model In this article, we address the bond
problem, i.e., systems containing the same type of atoms but
different electron hopping integrals between them. Let us
consideracubically structured latticewith twokindsofhopping
integralsbetweennearestneighboratoms, tAand tB, and theyare
arranged in a non-periodic way. For the periodic case we
have tA¼ tB and for aperiodic chains, the hopping integrals
are rdered following a generalized Fibonacci sequence (Fk)
defined as Fk¼mFk�1�nFk�2 where F0¼A and F1¼AmBn.
For example, F3¼AABAABAAABAABAAAB for m¼ 2
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and n¼ 1. In order to isolate the bond-disorder effects on the
physical properties, a single-band tight-binding Hamiltonian
with null self-energies is taken,

H ¼
X
j

tj;jþ1jjihjþ 1j þ tj;j�1jjihj� 1j� �
; ð1Þ

where tj;k ¼ hjjHjki denotes the hopping integral between
nearest-neighbor atoms j and k and jji are Wannier states.

The electrical conductivity can be calculated within
the linear response theory by using the Kubo–Greenwood
formula given by [16]

s m;v;Tð Þ ¼ 2e2�h
Vpm2

Z1
�1

dE
f Eð Þ � f E þ �hvð Þ

�hv

� Tr p ImGþ E þ �hvð Þp ImGþ Eð Þ½ �;
ð2Þ

where V is the volume of the system, Gþ(E)¼G(Eþ ih)
is the retarded one-particle Green’s function and
f(E)¼ {1þ exp[(E�m)/kBT]}

�1 is the Fermi–Dirac distri-
bution with the Fermi energy m and temperature T, and p is
the projection of the momentum operator along the applied
electrical field, which can be expressed in terms of Wannier
states as

p ¼ im
�h

H; x½ � ¼ ima
�h

X
j

tj;jþ1jjihjþ 1j � tj�1;jjjihj� 1j� �
;

ð3Þ
for systems with a constant lattice parameter (a) and the
structural disorder is introduced through the arrangement of
hopping integrals. For the case of a periodic chain connected
to two semi-infinite periodic leads, the zero-temperature dc
conductivity is [8]

sP ¼ s E; 0; 0ð Þ ¼ e2a
p�h

N � 1ð Þ; ð4Þ

where (N�1)a is the system length.
In general, the electrical conductance (g) of a two-

dimensional lattice can be written as

g m;v;Tð Þ ¼ s2D m;v;Tð ÞV?=Vk; ð5Þ

where Vk and V? are the volumes of parallel and
perpendicular subspaces, respectively. The electrical con-

ductivity of cubically structured two-dimensional lattices
(s2D) canbe calculated by using the convolution theorem [17]

s2D m;v;Tð Þ ¼
X
b

sðm� Eb;v;TÞ; ð6Þ

where Eb are the eigenvalues of the perpendicular subspace.
There is a natural unit of the electrical conductance given
by g0 ¼ 2e2=h. All the systems analyzed in this article are
connected to two semi-infinite periodic leads with hopping
integrals t and null self-energies, and we always take tB¼ t.

3 Generalized Fibonacci chains Ballistic conduc-
tion is the electronic transport without scattering having unit
transmittance, called transparent states, whose electrical
conductivity is s¼ sp. In this section we analyze the
existence of transparent states in generalized Fibonacci
chains (GFC) characterized by (m,n), whose numbers of
atoms in the studied systems are summarized in Table 1.

The zero-temperature dc conductivity spectra
[s(m,0,0/sp)] around m¼ 0 in color scale are shown in
Fig. 1 as a function of the chemical potential (m) and the
hopping integral tA for GFC indicated in Table 1, where the
imaginary part of energy is h ¼ 10�15jtj. The systems with
n¼ 1, corresponding to Fig. 1(a–d), have a transparent state at
m¼ 0 every two generations if m is even and every six
generations ifm is odd. For thesequasiperiodic systems,when
the disorder strength g � tA=tB ! 0, the electrical conduc-
tivity also tends to zero except form¼ 0. For GFCwith n¼ 2,
Fig. 1(e–h), we always find a transparent state atm¼ 0 for all
the generations with even numbers of m. Around this
transparent state the conductivity spectra have an oscillating
behavior. In contrast,weneverfinda transparent state atm¼ 0
ifn¼ 2andm is odd.ForGFCwithn¼ 3, shown inFig. 1(i–l),
we find transparent states every two generations when m is
evenandagaparoundm¼ 0whenm is odd. Ingeneral, there is
a notable similarity between the conductivity spectra of n¼ 2
and of n¼ 4, and both decay slower than those corresponding
to n¼ 1 when g goes to zero.

Figure 2 shows the high conductivity peaks with
s(m,0,0)� 0.999999999999sp in the space of the chemical
potential (m) and hopping integral ratio tA/tB for the GFC of
Table 1. Notice that we recover the transparent states
observed in Fig. 1. Additionally, we can see many extreme
high conductivity states located at m=jtj ¼ �tA=tB for GFC
with n¼ 3 and m¼ 3, as well as at m=jtj ¼ �0:71tA=tB
for n¼ 4 and m¼ 4. In Fig. 3, s(m¼ 0,0,0) versus the
generation number (k) in 16 types of GFC are shown for

Table 1 Number of atoms (N) and generation number (k) of analyzed GFC (m,n).

N n¼ 1 n¼ 2 n¼ 3 n¼ 4

m¼ 1 433494438 (k¼ 42) 357913942 (k¼ 29) 315732482 (k¼ 24) 235418370 (k¼ 21)
m¼ 2 768398402 (k¼ 24) 268377089 (k¼ 20) 1743392202 (k¼ 20) 234029057 (k¼ 17)
m¼ 3 790171310 (k¼ 18) 253841390 (k¼ 16) 712268722 (k¼ 16) 429496730 (k¼ 15)
m¼ 4 165580142 (k¼ 14) 352738177 (k¼ 14) 678529304 (k¼ 14) 250597377 (k¼ 13)
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tA¼ 0.8tB (red solid circles) and tA¼ 0.5tB (blue open
circles). For instance, the transparent states appear every six
generations in Fig. 3(a) and 3(c), every two generations in
Fig. 3(b), 3(d), 3(j) and 3(l), and they are present in all the

generations of Fig. 3(f), 3(h), 3(p) and 3(r). Finally, there is
not transparent state at m¼ 0 in Fig. 3(e), 3(g), 3(i), 3(k),
3(o) and 3(q). Analytical proofs of these transparent states
will be presented in the next section.

Figure 2 High conductivity states with s
(m,0,0)� 0.999999999999sp as a function of
the chemical potential (m) and the hopping
integral tA for the GFC specified in Table 1.

Figure 1 Electrical conductivity (s) in color scale as a function of the chemical potential (m) and the hopping integral ratio tA/tB for
generalized Fibonacci chains (GFC) with (m,n) equal to (a) (1,1), (b) (2,1), (c) (3,1), (d) (4,1), (e) (1,2), (f) (2,2), (g) (3,2), (h) (4,2),
(i) (1,3), (j) (2,3), (k) (3,3), (l) (4,3), (m) (1,4), (n) (2,4), (o) (3,4), (p) (4,4), whose system lengths are specified in Table 1.
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4 Analytical results An alternative way to calculate
the electrical conductivity in one-dimensional systems is by
means of the Landauer formula given by sLðmÞ ¼ sPT,
where T is the transmittance [18]. The stationary Schrödinger
equation for Hamiltonian (1) can be rewritten as

cjþ1

cj

 !
¼ Tj

cj

cj�1

 !
¼

m

tj;jþ1

tj;j�1

tj;jþ1

1 0

0
B@

1
CA cj

cj�1

 !
; ð7Þ

where Tj is the transfer matrix and cj is he amplitude of the
wavefunction at site j. For chains connected to two semi-
infinite periodic leads with hopping integrals t and null self-
energies, the transmittance (T) in terms of the product of
transfer matrixes, with elements ti;j ¼ ðQN

s¼1 TsÞi;j; is given
by [18]

TðmÞ¼

4� m=tð Þ2
t2;1�t1;2þ t2;2�t1;1

� �
m=2t

� �2þ t2;2þt1;1
� �2

1�m2=4t2ð Þ
:

ð8Þ

For the states at m¼ 0 of eight (m,n)-type GFC, the
elements ti;j are given in Table 2, where p(v)¼ [(�1)v�1]/2.
Notice that there is a transparent state for all the generations
in the first four GFC in Table 2, while transparent states at
m¼ 0 appear in the last four GFC only if the generation is
even. In particular, the elements ti;j for (2,2)-type GFC are
explicitly obtained in Appendix A.

In addition to those GFC presented in Table 2, we also
obtained analytical results for GFC with m¼ n¼ 1 and
generation k, whose elements ti;j are

ti;j ðkÞ ¼ �vf ðiþ jÞ½pðvÞuðkÞg ½1þuðkÞ�uðiÞ þ f ðvÞguðiÞ�
� ðj� iÞuðkÞ 1� v

2

l m� �
guðkÞðj�iÞ; ð9Þ

Table 2 Transmittance of eight GFC of type (m,n) for generation
k� 3.

ðm; nÞ ti;j transmittance
½Tðm ¼ 0Þ�

(2,2)
ti;jðkÞ ¼ ð�1Þi if i 6¼ j

0 if i ¼ j

(
1

(2,4)
(4,4)

(4,2)
ti;jðkÞ ¼ ð�1Þj if i 6¼ j

0 if i ¼ j

(

(2,1)
ti;jðkÞ ¼ sgpðkÞð�1Þi if i ¼ j

0 if i 6¼ j

(
4

gpðkÞ þ g�pðkÞ½ �2(4,3)

(2,3)
ti;jðkÞ ¼ �gpðkÞð�1Þi if i ¼ j

0 if i 6¼ j

(
(4,1)

Figure 3 DC conductivity at m¼ 0 as a function of the generation number (k) for GFC with tA¼ 0.8tB (red solid circles) and tA¼ 0.5tB
(blue open circles).
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which leads to

Tð0Þ ¼ 4
�
f ðvÞðg þ g�1Þ2 þ ½1� ð�1Þv�

�fg1þuðkÞ þ g�½1þuðkÞ�g2=2��1; ð10Þ

where f(v)¼ [1þ (�1)v]/2, v ¼ ðk � 2Þmodð3Þ 2 ½0; 2�
and u(i)¼ (�1)iþ1. Also, for GFC of generation k with
(m,n)¼ (3,1),

ti;jðkÞ ¼ �vf ðiþ jÞ pðvÞgb þ f ðvÞ
2

uðkÞguðiÞd
	 


� g�uðcÞjj� ij 1� v
2

� �
uðcÞ ð11Þ

and the transmittance at m¼ 0 is

Tð0Þ ¼ 4


1� v
2

� �� �2

g þ g�1
� �2

þv2 �pðvÞ g�2½1þuðkÞ� þ g2½1þuðkÞ�
� �h

þ f ðvÞðgd þ g�dÞ
2


��2
; ð12Þ

where b¼�4u(i)p(k), c¼ kþ 1� j and d¼ 3f(k)� p(k).
Equations (10) and (12) indicate that these GFC present a
transparent state at m¼ 0 every six generations.

5 Segmented chains For a periodic chain with one
and two segment defects as respectively shown in Fig. 4(a)
and 4(b), each segment contains two hopping integrals tA
while the periodic chain is formed by hopping integrals
tB¼ t.

For the case of a single segment impurity as shown in
Fig. 4a, the analytic solution of Landauer conductivity
through transmittance (8) is obtained,

sLðmÞ ¼ 4� ðm=tÞ2
4t2A � m2ð2þ g�2Þ t

2
AsP; ð13Þ

whose conductivity spectrum in color scale versus the
chemical potential (m) and the hopping integral tA is shown
in Fig. 5a. Observe that when tA!0 but tA 6¼0 the whole
conductivity spectrum tends to zero except for m¼ 0, where
a unique transparent state is found as indicated in Eq. (13).
When we have two segment defects separated by N
segments as shown in Fig. 4b, the analytic solution of
conductivity becomes

Figure 4 Schematic representations of periodic chains with (a) one and (b) two A-type segment defects, (c) segmented Fibonacci and
(d) segmented periodic chains.

sLðmÞ ¼
4� m=tð Þ2
h i

sP

4� m2

t2
þ m2ðt2A � t2Þ2

t8At
4

m2 2t2A þ t2 � m2
� �2 � rðmÞ t

2
11ðN � 1Þ

t2
� qðmÞmt11ðN � 1Þt11ðN � 2Þ

t

	 
 ; ð14Þ
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where r mð Þ¼m2t2 12t4Aþ12t2At
2þt4

� �� m4 4t4A þ 16t2At
2þ�

6t4Þþm6 4t2Aþ5t2
� ��4t4At

4 �m8; q mð Þ¼m2 4t4A þ 12t2At
2þ�

3t4Þ � 4m4 t2 þ t2A
� �� 4t2A 2t2At

2 þ t4
� �þ m6 and t11ðNÞ ¼P N=2b c

l¼0 ð�1ÞlðN � lÞ! m=tð ÞN�2l= l!ðN � 2lÞ!½ �. FromEq. (14)
we obtain the electrical conductivity spectra in color scale
versus the chemical potential (m) and the hopping integral tA,
as illustrated in Fig. 5(b) and 5(c) respectively for the cases of
two segment defects separated by four and ten segments.
Notice that a transparent state at m¼ 0 is present for any
separation of the two segment defects, as shown in Eq. (14).
In contrast to the case of a single segment defect, the spectra
of two segment defects present oscillations along m, whose
frequency is larger when the separation between segment
defects grows.

Let us now consider a segmented chain composed by
two kind of segments. The first ones contain nA bonds with
hopping integral tA and the others contain nB bonds with
hopping integral tB. These segments can be placed following
periodic or quasiperiodic orderings. In Fig. 6, dc con-
ductivity spectra in color scale versus the chemical potential
(m) and the hopping integral tA are shown for segmented
chains composed by five A-type segments (NA¼ 5) with
nA¼ 3, separated from each other by B-type segments with
(a) nB¼ 9 and (b) nB¼ 24, i.e., constructing the segmented
chain as ABABABABA. In Fig. 6c and d, the segments are
ordered following the Fibonacci sequence ABAABABA
with nB¼ 9 and nB¼ 24, respectively. In all the cases we
have nA¼ 3 and the segmented chains are connected to two

semi-infinite periodic leads with hopping integrals t.
Observe that these segmented chains do not possess a
transparent state at m¼ 0, because the number of bonds in
A-type segment (nA¼ 3) is odd and the number of A-type
segments (NA¼ 5) is also odd, as will be shown in Eq. (15).
Moreover, the B-type segment length and the segment
ordering determine the position of high conductivity peaks.

Figure 7 shows the conductivity spectra of the same
systems as in Fig. 6, except that the lengths of segments are
now nA¼ 8 and (a) nB¼ 8, (c) nB¼ 8, (b) nB¼ 64, and (d)
nB¼ 64. Observe the existence of a transparent state at
m¼ 0, for both periodic and quasiperiodic ordering, as well
as both B-type segment lengths. In fact, there is a general

Figure 6 DC conductivity (s) in color scale as functions of the
chemical potential (m) and the hopping integral tA for segmented
chains ordered periodically as ABABABABA with (a) nB¼ 9 and
(b) nB¼ 24 or quasiperiodically as ABAABABA with (c) nB¼ 9
and (d) nB¼ 24, where nA¼ 3 in all the cases.

Figure 7 DC conductivity (s) in color scale as a function of the
chemical potential (m) and the hopping integral tA for segmented
chains ordered periodically as ABABABABA with (a) nB¼ 8 and
(b) nB¼ 64 or quasiperiodically as ABAABABA with (c) nB¼ 9
and (d) nB¼ 64, where nA¼ 8 in all the cases.

Figure 5 DC conductivity (s) in color scale as functions of the
chemical potential (m) and the hopping integral tA in segmented
chains with (a) a single segment defect and two segment defects
separated by (b) four and (c) ten segments.
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theorem about the existence of a transparent state atm¼ 0 in
a chain of N atoms connected to two semi-infinite periodic
leads if

YN=2b c

l¼1

t2l;2l�1

t2l;2lþ1
¼ 1 ð15Þ

as demonstrated in Appendix B. From Eq. (15), for instance,
if the number of bonds in all the segments is even, there is
always a transparent state at m¼ 0 regardless the number
and ordering of segments neither the value of hopping
integrals. In contrast, if nA and NA are both odd, there is no
transparent state at m¼ 0.

In the next section, we extend the analysis to two-
dimensional tapes with a Fano impurity plane.

6 Multidimensional systems For a two-dimen-
sional cubically-structured tape with a single Fano impurity
plane as shown in Fig. 8, the Hamiltonian given by Eq. (1) is
separable and then the convolution theorem (6) can be used to
calculate its conductance. In this section, we prove that such
tapes with null self-energies and constant hopping integral
have a transparent state at m¼ 0 if their width is equal to the
Fano impurity length minus two bonds. In fact, this proof can
also be applied to tapes with aperiodic transversal section
when the Fano impurity has the same aperiodicity, regardless
the nature of the first two connecting bonds.

For periodic chains with an attached periodic Fano
impurity chain of NF atoms, both formed by hopping
integrals t, there are transparent states at the eigenvalues of a
(NF�1)-atom periodic chain [19]. In general, the Landauer
conductivity of a periodic chain with a coupled Fano
impurity chain of arbitrary hopping integrals is shown in
Appendix C to be

sLðmÞ ¼ 4� ðm=tÞ2
4� ðm=tÞ2 þ t4NF

b2NF�1ðmÞ=½t2b2
NF
ðmÞ� sP;

ð16Þ

which becomes sP when bNF�1ðmÞ ¼ 0, where

bNðmÞ � det

m �t1 0 � � � 0

�t1 m �t2 . .
. ..

.

0 �t2 m . .
.

0

..

. . .
. . .

. . .
. �tN�1

0 � � � 0 �tN�1 m

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð17Þ

By using the convolution theorem of Eq. (6), the
conductivity of two-dimensional periodic tapes with a Fano
impurity plane (s2D) can be obtained from Eq. (16),

s2D m;0;0ð Þ¼

X
b

4�½ðm�EbÞ=t�2
4�½ðm�EbÞ=t�2þ t4NF

b2NF�1ðm�EbÞ=½t2b2NF
ðm�EbÞ�

sP;

ð18Þ

where Eb are the eigenenergies of the perpendicular
subspace of N? atoms. If the hopping integrals in the
transversal section are t1,t2, ���, and tNF�2 , all Eb become
solution of bNF�1ðEbÞ¼0 and then

s2D m¼0;0;0ð Þ¼N?sP; ð19Þ

showing the existence of a ballistic state at m¼ 0 in a two-
dimensional tape with a Fano impurity plane. In fact, if the
self-energies of the Fano impurity plane are eF, this ballistic
conduction state would be at m¼eF:

Figure 8 Schematic representation of a two-dimensional periodic
tape of infinite length and a width ofN? atoms (green balls) with an
attached Fano impurity plane of NFN? atoms (orange balls).

Figure 9 Electrical conductance (g) as a function of the chemical
potential (m) for the system of Fig. 8, whose transversal section has
(a) N?¼ 33 and (b) N?¼ 17710 atoms following a periodic
sequence or (c) N?¼ 33 and (d) N?¼ 17710 atoms following the
Fibonacci sequence with tA ¼ tð ffiffiffi

5
p � 1Þ=2, for NF¼N?þ 1 (red

lines) and NF¼ 0 (black lines).
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Figure 9 shows the electrical conductance spectrum (g)
versus the chemical potential (m) of two-dimensional tapes
with a Fano impurity plane as illustrated in Fig. 8, whose
transversal section is periodic with (a) 33 atoms and (b)
17710 atoms, or is quasiperiodic with (c) 33 atoms and (d)
17710 atoms. The black lines show the conductance of tapes
without Fano defects and the red lines display g of tapes with
NF¼N?þ 1 where the hopping integrals along the Fano
impurity plane follow the same ordering as in the transversal
section. In all quasiperiodic systems of Fig. 9 tA ¼ tð ffiffiffi

5
p �

1Þ=2 is taken. Observe the step pattern in electrical
conductance spectra for systems without Fano impurities,
such behavior have been experimentally confirmed by Ron
and Dagan [20]. In particular, there is a ballistic wide zone
around m¼ 0 for periodic tapes with quasiperiodic trans-
versal sections and the width of such zone grows when tA

diminishes. In general, the conductance of these tapes is
larger than that obtained from tapes with periodic trans-
versal section and the same N?, because that a smaller
hopping integral in the perpendicular subspace causes lower
interference between conducting channels. Moreover, there
is a ballistic state at m¼ 0 as expected from Eq. (19).

In fact, if the eigenvalues of the transversal section (Eb)
are a subset of the solutions of bNF�1ðEÞ ¼ 0, there is
ballistic conductance at m¼ 0. For example, in systems of
Fig. 8 with all hopping integrals t we find such ballistic
conduction if NF¼ 2p(N?þ1), being p a positive integer
number. Figure 10 shows in color scale a magnification of
the conductance spectra around the ballistic conduction
peak at m¼ 0 as a function of the Fano impurity length (NF),
for the cases of (a) all the hopping integrals t, N?¼ 15 and
NF¼ 2p(N?þ 1), and the hopping integrals following (b)
periodic and (c) Fibonacci sequence with N?¼NF�1.
In insets 10(a’–c’) we plot the width of the ballistic
conductance peak measured at gðm; 0; 0Þ ¼ 0:9N?g0 (solid
magenta circles) and gðm; 0; 0Þ ¼ 0:8N?g0 (solid blue
triangles).

Observe in the insets of Fig. 10 that the widths of
ballistic conductance peaks (Dm) decrease with the length of
Fano impurity plane. This fact can be understood by
considering that the two-dimensional ballistic conductance
peak is a sum of many one-dimensional ballistic peaks and
its width is related to the averaged width over one-
dimensional ballistic peaks, which decreases with the length
of Fano impurity. In addition, Insets 10(a’–c’) reveal
Dm=jtj 	 CN�1

? and C depends on the cutting level at a
given value of the conductance.

7 Conclusions In this paper, we have studied analyti-
cally and numerically the ballistic conduction in one- and
two-dimensional non-periodic macroscopic lattices with
bond disorder in the tight-binding formalism by using a real-
space renormalization plus convolution method developed
for the Kubo–Greenwood formula.

In one-dimensional systems, for hopping integrals
following the generalized Fibonacci sequences characterized
by (m,n), we found transparent states at m¼ 0 for n¼ 1 and
every twogenerations ifm is evenor every sixgenerations ifm
is odd. These chains are quasiperiodic since they accomplish
the Pisot conditions and the unimodular substitution
matrix [21]. For GFC with n6¼1, there is a transparent state
at m¼ 0 for all the generations if n and m are both even and
every two generations if n is odd andm is even.We also found
high conduction with s(m,0,0)� 0.999999999999sp at m¼
�tA for GFC with n¼m¼ 3 or 4. These transparent states
were confirmed in analytical way.

For the case of segmented chains, based on the
numerical results we demonstrated analytically in appendix
B that if the segments are composed by an even number of
bonds there is always a transparent state at m¼ 0. This
analytical result also ensures other possibilities to obtain
transparent states at m¼ 0, for example, in chains with two
kinds of segment when one of them has an odd number of

Figure 10 Amplification of the conductance spectra (g) around
m¼ 0 in color scale as functions of the chemical potential (m) and
the number of atoms along the Fano defect (NF) for (a) N?¼ 15,
(b) N?¼NF� 1 with hopping integrals in the Fano impurity plane
and transversal section following the periodic sequence and (c)
N?¼NF� 1 for such hopping integrals following the Fibonacci
sequence. Insets: Width of the ballistic conductance peak versus
NF measured at gðm; 0; 0Þ ¼ 0:9N?g0 (solid magenta circles) and
gðm; 0; 0Þ ¼ 0:8N?g0 (solid blue triangles).
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bonds, the other has an even number, and the chain contains
an even number of the first kind of segment. These
affirmations are true for any possible segment ordering and
values of hopping integrals. This is a generalization of the
Dunlap finding about the apparition of transparent states in
any dimer-composed chain [9].

For two-dimensional systems, we proved that infinite
periodic tapes with a single periodic Fano impurity plane
have a ballistic conductance peak atm¼ 0 if the eigenvalues
of the transversal subspace are a subset of those obtained
from a periodic chain with one atom less than the Fano
impurity length. Furthermore, there is transparent state at
m¼ 0 for any values of hopping integrals along the Fano
impurity plane if the transversal section with one atom less
than the Fano impurity has the same sequence of hopping
integrals. The analysis of the ballistic-peak width reveals a
power law decay with the Fano impurity length. In fact, we
canmove the location of transparent state in the conductance
spectra by changing the self-energies of Fano defect.
Experimentally, the chemical potential position in the band
structure of a nanowire can be modified by an applied gate
voltage [22]. This finding of ballistic conduction in
multidimensional lattices with Fano impurities could be
relevant for the design and understanding of branched
nanowires [23].

Appendix A In this appendix, we prove the
matrix elements ti;j of Table 2 for the case of a
generalized Fibonacci chain (GFC) with (m¼ 2, n¼ 2).
The generation k of this GFC is built through Fk ¼
Fk�1 � Fk�1 � Fk�2 � Fk�2 with initial conditions of
F1¼AABB and F2¼AABBAABBAA. For example,
the GFC with k¼ 1 consists of five atoms and four bonds.
In general, the GFC is connected to two semi-infinite
periodic leads with hopping integrals t¼ tB at its both
ends, as schematically shown in Fig. 11 Hence, the
product of transfer matrixes is

ti;j ¼
YN

s¼1
Ts

� �
i;j
¼ MRðkÞMðkÞMLðkÞ½ �i;j; ðA1Þ

whereML(k) [MR(k)] is the transfer matrix of the connection
between the GFC and the left [right] lead, and M(k) is the
product of transfer matrixes associated to inside atoms in
GFC.

For example, for m¼ 0 we have

MLð1Þ ¼
0 �t=tA

1 0

 !
; MRð1Þ ¼

0 �tB=t

1 0

 !
;

ðA2Þ
and

Mð1Þ ¼
0 �1

1 0

 !
0 �tA=tB

1 0

 !
0 �1

1 0

 !

¼
0 1

�tA=tB 0

 !
:

ðA3Þ

Hence, ti;j ¼ ð�1Þið1� di;jÞ. By straightforward calcu-
lation, we obtain

Mð2Þ ¼ 0 �1

1 0

 !
; Mð3Þ ¼ 0 1

�tA=tB 0

 !

and Mð4Þ ¼ 0 1

�1 0

 !
:

ðA4Þ

In general, for an electron incident from the left side of
GFC we have

MðkÞ ¼ Mðk � 2ÞUðk � 2ÞMðk � 2ÞUðk � 1Þ
�Mðk � 1ÞUðk � 1ÞMðk � 1Þ; ðA5Þ

where

UðkÞ ¼ 0 � ½1� ð�1Þk�tB þ ½1þ ð�1Þk�tA
2tA

1 0

0
B@

1
CA

ðA6Þ
is the transfer matrix of the union between the end of Fk and
the initio of any GFC, which starts always with a hopping
integral tA.

Let us assume that for k� 3

MðkÞ ¼ 0 1

� tA=tBð Þ½1�ð�1Þk�=2 0

 !
: ðA7Þ

The cases k¼ 3 and k¼ 4 are proved in Eq. (A4). By
noticing that

UðkÞMðkÞ ¼ 0 �½1�ð�1Þk�tB þ ½1þð�1Þk�tA
2tA

1 0

0
B@

1
CA

�
0 1

� tA=tBð Þ½1�ð�1Þk�=2 0

 !
¼

1 0

0 1

 !
;

ðA8Þ

Figure 11 Schematic representation of a (2,2)-type GFC of
generation k¼ 1 connected to two semi-infinite periodic leads with
hopping integral t. ML(1), M(1) and MR(1) are respectively the
transfer matrixes associated to the left end, middle atoms and the
right end of the GFC.
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we obtain immediately that

Mðkþ 1Þ ¼Mðk� 1ÞUðk� 1ÞMðk� 1Þ
�UðkÞMðkÞUðkÞMðkÞ ¼Mðk� 1Þ; ðA9Þ

which proves by mathematical induction Eq. (A7).
On the other hand, given that all GFC start with a

hopping integral tA,

MLðkÞ ¼
0 �t=tA

1 0

 !
; ðA10Þ

and for the right side we have

MRðkÞ ¼ 0 � ½1� ð�1Þk�tB þ ½1þ ð�1Þk�tA
2t

1 0

0
@

1
A:

ðA11Þ
Therefore,

ti;j ¼ MRðkÞMðkÞMLðkÞ½ �i;j ¼ ð�1Þið1� di;jÞ: ðA12Þ

Appendix B For the bond problem and a
Hamiltonian of single s-band with real hopping integrals
ðtj;jþ1 ¼ tjþ1;j < 0Þ like Eq. (1), the stationary Schrödinger
equation (ĤC ¼ EC) can be rewritten as
tj;jþ1Cjþ1 þ tj;j�1Cj�1 ¼ ECj, or in the matrix form as

Cjþ1

Cj

 !
¼ Tj

Cj

Cj�1

 !
¼

E
tj;jþ1

�xj

1 0

0
B@

1
CA Cj

Cj�1

 !
;

ðB1Þ

where xj � tj;j�1=tj;jþ1. For E¼ 0 in a linear chain of two
sites, the product of two transfer matrices [M(2)] is

Mð2Þ �
0 �xj

1 0

 !
0 �xj�1

1 0

 !
¼

�xj 0

0 �xj�1

 !
:

ðB2Þ
For the case of three sites we have

Mð3Þ ¼
0 �xjþ1

1 0

 ! �xj 0

0 �xj�1

 !

¼
0 �1ð Þ2xjþ1xj�1

�xj 0

 !
:

ðB3Þ

In general, if the number of atoms (N) is even,

MðNÞ ¼
�1ð ÞN=2

YN=2
l¼1

x2l 0

0 �1ð ÞN=2
YN=2
l¼1

x2l�1

0
BBBB@

1
CCCCA; ðB4Þ

while for N odd we have

MðNÞ ¼
0 �1ð ÞðNþ1Þ=2 YðNþ1Þ=2

l¼1

x2l�1

�1ð ÞðN�1Þ=2 YðN�1Þ=2

l¼1

x2l 0

0
BBBBB@

1
CCCCCA:

ðB5Þ
For a linear chain connected to two periodic semi-

infinite leads, we have tN;Nþ1 ¼ t1;0 and then a unitary
determinant ½detjMðNÞj ¼ 1�. Hence, the transmittance (T)
at E¼ 0 is

T E ¼ 0ð Þ ¼ 4

m1;1 þ m2;2
� �2 þ m1;2 � m2;1

� �2 ; ðB6Þ

being mi,j the elements of matrixM(N). In consequence, for
the case of an even number N of atoms, the condition for a
transparent state (T¼ 1) is

YN=2
l¼1

x2l þ
YN=2
l¼1

x2l�1

 !2

¼ 4 ðB7Þ

and then

YN=2
l¼1

x2l þ
YN=2
l¼1

x2l�1 ¼
t2;1t4;3t6;5 � � � tN;N�1

t2;3t4;5t6;7 � � � tN;Nþ1

þ t1;0t3;2t5;4 � � � tN�1;N�2

t1;2t3;4t5;6 � � � tN�1;N
¼ 2: ðB8Þ

Let us define the first term in Eq. (B8) as x and then

xþ 1
x
¼ 2; ðB9Þ

which leads to the unique physical solution of x¼ 1.
Therefore, the condition of transparent state is

YN=2
l¼1

t2l;2l�1 ¼
YN=2
l¼1

t2l;2lþ1: ðB10Þ

On the other hand, if N is odd, the transparent state
appears only if

YðNþ1Þ=2

l¼1

x2l�1 þ
YðN�1Þ=2

l¼1

x2l

" #2
¼ 4; ðB11Þ

i.e.,

YðNþ1Þ=2

l¼1

x2l�1 þ
YðN�1Þ=2

l¼1

x2l

¼ t1;0t3;2t5;4t7;6
t1;2t3;4t5;6t7;8

� � � tN;N�1

tN;Nþ1

þ t2;1t4;3t6;5t8;7
t2;3t4;5t6;7t8;9

� � � tN�1;N�2

tN�1;N
¼ 2:

ðB12Þ
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Using again that t1,0¼ tN,Nþ1 and defining the second
term of Eq. (B12) as y, we obtain

1
y
þ y ¼ 2 ) y ¼ 1: ðB13Þ

Equation (B13) implies the same result that for the even
N case, i.e.,

YðN�1Þ=2

l¼1

g2l ¼ 1 )
YðN�1Þ=2

l¼1

t2l;2l�1 ¼
YðN�1Þ=2

l¼1

t2l;2lþ1: ðB14Þ

Condition (B10) or (B14) is fully satisfied, for example,
if the system is composed by segments and each of them has
an even number of bonds.

Appendix C The transmittance (T) of an infinite
periodic chain with hopping integral t and a single site
impurity of self-energy eimp is [24]

TðmÞ ¼ 4� ðm=tÞ2
4� ðm=tÞ2 þ ðeimp=tÞ2

: ðC1Þ

For the case of a periodic chain with a coupled Fano
impurity chain as shown in Fig. 12, eimp in Eq. (C1) is
replaced by the continued fraction aNFðmÞ, which can be
obtained from the recursive relation

aNðmÞ ¼ t2N
m� aN�1ðmÞ ðC2Þ

with a1ðmÞ ¼ t21=m. Defining

bNðmÞ � det

m �t1 0 � � � 0

�t1 m �t2 . .
. ..

.

0 �t2 m . .
.

0

..

. . .
. . .

. . .
. �tN�1

0 � � � 0 �tN�1 m

0
BBBBBBBBB@

1
CCCCCCCCCA
ðC3Þ

and calculating the determinant using expansion by minors,
we have

bNðmÞ ¼ mbN�1ðmÞ � t2N�1bN�2ðmÞ: ðC4Þ

From Eqs. (C2) and (C3) we obtain a2ðmÞ ¼
t22b1ðmÞ=b2ðmÞ. Let us assume that

aNðmÞ ¼ t2NbN�1ðmÞ
bNðmÞ

: ðC5Þ

Hence, using Eq. (C2), (C4) and (C5) we have

aNþ1ðmÞ ¼
t2Nþ1

m� aNðmÞ ¼
t2Nþ1bNðmÞ

mbNðmÞ � t2NbN�1ðmÞ

¼ t2Nþ1bNðmÞ
bNþ1ðmÞ

; ðC6Þ

which proves the relation (C5) by mathematical
induction. Therefore, the transmittance of an infinite
periodic chain with a finite Fano impurity chain of NF

atoms becomes

TðmÞ ¼ 4� ðm=tÞ2

4� ðm=tÞ2 þ t2NF
bNF�1ðmÞ
tbNF ðmÞ

	 
2 : ðC7Þ

Notice that there are transparent states with TðmÞ ¼ 1
when bNF�1ðmÞ ¼ 0, which occur at the eigenvalues of a
chain formed by hopping integrals t1; t2; � � � ; and tNF�2:
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