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 1. INTRODUCTION

Since its theoretical prediction by Bose and Ein�
stein [1, 2] in the 1920s until its laboratory observation
with magneto�optical traps [3–6] from 1995 onwards
Bose–Einstein condensation (BEC) of dilute atomic
gases has stimulated enormous efforts of related work.
Among the issues addressed one finds, e.g., rigorous
mathematical questions related to BEC [7], diverse
theoretical and heuristic aspects [8, 9], and is now
even viewed as a viable tool for precision tests in grav�
itational physics [10–20].

The study of its associated thermodynamic properties
is naturally also a pertinent aspect of BECs [21–25].
Indeed, the condensation temperature Tc, i.e., the
critical temperature below which a macroscopic quan�
tum state of matter appears, has been the subject of
considerable discussion, see [8, 26] and references
therein. In particular, the influence of interparticle
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interactions on Tc turns out to be a deep nontrivial
matter, see, e.g., [27–29].

Interboson interactions produce a shift ΔTc/  =

(Tc – )/  in the condensation temperature Tc with

respect to that of the ideal noninteracting case  in

the thermodynamic limit. For instance, the contribu�

tions to ΔTc/  due to interactions in a uniform dilute

gas originate in the fact that the associated many�body
system is affected by long�range critical fluctuations
rather than from purely mean�field (MF) consider�
ations [26, 30, 31]. However, it is generally accepted

that ΔTc/  for this system behaves like c1δ + ( lnδ +

)δ2, with the dimensionless variable δ ≡ ρ1/3a, where

ρ is the corresponding boson number density, a the
S�wave two�body scattering length [30] related to the
pair interaction, and the c1’s are dimensionless con�
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stants. A good fit [27] gives c1 � 1.32,  � 19.75, and

 � 75.7.

It is noteworthy that these ideas can be extended to
more general traps [32–34] in which the relative shift

ΔTc/  on the condensation temperature explicitly
exhibits a sensitive trap�dependence. This extension to
generic traps allows summarizing the corrections on

ΔTc/  as function of a simple index parameter
describing the trap shape.

On the other hand, when interactions are consid�
ered for the more common harmonic traps one finds a
shift in Tc up to second order in the S�wave scattering
length a within the MF approach given by [28, 29]

, (1)

where

(2)

(with ζ(3) � 1.202) is the condensation temperature
associated with the ideal system (a = 0)in the thermo�
dynamic limit [22], and b1 � –3.426 [35] while b2 �

11.7 [29], together with  ≡ (2π�2/mk )1/2 the

thermal wavelength. Furthermore, these results seem
to contrast with the results reported, e.g., in [36, 37]
since, as mentioned in [28], the well�known logarith�
mic corrections to (1) are not discernible within the
error bars.

Note that from (1) ΔTc is negative for repulsive
interactions, i.e., a > 0 since b1 is negative. The result (1)
is in excellent agreement with laboratory measure�

ments of ΔTc/  [29, 38–40] to first order in (a/ )

but differs somewhat with data to second order
(a/ )2. In [28], high precision measurements of the

condensation temperature of the bosonic atom 39K
vapor in the range of parameters N � (2–8) × 105, ω �

75–85 Hz, 10–3 < a/  < 6 × 10–2 and Tc � 180–

330 nK have detected second�order effects in ΔTc/ .

The measured ΔTc/  is well fitted by a quadratic

polynomial (1) with best�fit parameters  � –3.5 ± 0.3

and  � 46 ± 5 so that the value b2 � 11.7 [29] is
strongly excluded by data. This discrepancy between (1)
and data may be due to beyond�MF effects (see [29]).
Beyond�MF effects are expected to be important near
criticality, where the physics is often nonperturbative.
It would therefore seem reasonable that a beyond�MF
treatment might give a correct estimation of b2. How�
ever, this is not certain since beyond�MF effects have
been calculated in the case of uniform condensates
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[37, 41] but are still poorly understood for trapped
BECs [36, 42–45]. It thus seems that it is currently not
possible to ascertained whether the discrepancy

between b2 and  can be explained in the MF con�
text or arises from beyond�MF effects.

Nevertheless, the effect of interactions on the con�
densation temperature Tc of a Bose–Einstein conden�
sate trapped in a harmonic potential was recently dis�
cussed [35]. In the latter paper it was shown that,
within the MF Hartree–Fock (HF) and semiclassical
approximations, interactions among the particles pro�

duce a shift ΔTc/  � b1(a/ ) + b2(a/ )2 +

ψ[a/ ] with  ≡ (2π�2/mk )1/2 the thermal

wavelength, and ψ[a/ ] a non�analytic function

such that ψ[0] = ψ'[0] = ψ''[0] = 0 but |ψ'''[0]| = ∞.
Therefore, with only the usual assumptions of the HF
and semiclassical approximations, interaction effects
are perturbative to second order in a/  and the

expected nonperturbativity of physical quantities at
the critical temperature emerges only at third order.
Indeed, in [35] an analytical estimation for b2 � 18.8
was obtained which improves the previous numerical
fit�parameter value of b2 � 11.7 obtained in [29]. Even
so, the value for b2 obtained in [35] still differs substan�

tially from the empirical value  � 46 ± 5 [28].

We mention that the temperature shift ΔTc/
induced by interparticle interactions obtained in [35]
seems to contradict, for instance, the result reported in
[36] where the interaction induced temperature shift is
estimated as

(3)

with b1 � –3.426,  � –45.86, and  � –155.0 [37]
(see also [27] for a discussion). This result has been
obtained using lattice simulations and a technique
based on a scalar field analogy, but is questionable (see
discussion in [35]) besides being in striking contradic�
tion to the data. It is thus clear that these results differ
substantially from the estimations obtained in [35]
and the results obtained here (see below), but also
conflict with the results obtained in [29] as well as
experiment [28].

Also, it was recently proposed [46] that accounting
for a nonlinear quadratic Zeeman effect gives a value
of b2 which depends on the properties of the atomic
species of the condensate, which for a 39K condensate
gives a value b2 � 42.3 in much better agreement with
measurements obtained in [28]. However, this result is
based on a physical mechanism completely different
from the one considered here. Furthermore, to con�
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firm whether that the quadratic Zeeman effect actu�
ally plays such an important role in the physics of
atomic condensates, one should repeat the measure�
ments performed in [28] for different atomic species
and compare the results with the predictions obtained
in [46]. However, to our knowledge, [28] is the only
reported measurement of the nonlinear coefficient b2.

We therefore propose that before addressing
beyond�MF effects these facts suggest that MF effects
might still be well�understood and deserve further
analysis.

In fact, in a recent paper [47] the use of an effective
temperature�dependent trapping potential was suggested
in order to calculate the condensation temperature of
noninteracting systems; see also [48] for a wide�rang�
ing justification of T�dependent Hamiltonians.
Hence, it might be useful to explore this idea in the
context of the effects on the condensation temperature
caused by interparticle interactions.

These considerations drove us into the novel terrain
of T�dependent Hamiltonians, and more specifically
to T�dependent trapping potentials. We note that this
it is not the first time that such a terrain has been
reached, e.g., we find the successful use of T�depen�
dent dynamics in: (a) superconductivity in the work of
Bogoliubov, Zubarev, and Tserkovnikov, as mentioned
by Blatt [49]; (b) an explanation [50] of the empirical
law in superconductors Hc(T) = Hc(0)[1 – (T/Tc)

2],
where Hc(T) is the critical magnetic field at T; (c)
finite�T behavior [24, 25, 51–54] of a class of relativ�
istic field theories (RFTs) to address the question of
restoration of a symmetry which at T = 0 is broken
either dynamically or spontaneously; (d) the Wick–
Cutkosky model [55] in a RFT; (5) numerous uniden�
tified solar�emission lines [56]; (e) QCD to explain
[57, 58] the masses of different quarkonium families
and their deconfinement temperatures; and most
recently, as mentioned above, (f) in a comparative
study [47] of the experimental features of the Bose–
Einstein condensates in several species of bosonic
atomic gases.

We thus examine the possibility of such T�depen�
dent generic potentials in order to analyze (and hope�
fully even improve upon) the value b2 � 18.8 obtained
in [35] within the HF MF theory, and to explore its

discrepancy with the empirical value  � 46 ± 5.
Our conclusion is that, even though the inclusion of a
temperature dependence in the trapping potential
might improve the predicted value of b2, this is not suf�
ficient to obtain full agreement with data. We stress
that we consider T�dependent effective potentials
from a phenomenological point of view. In other
words, the inclusion of such external potentials is of
theoretical and/or mathematical interest, in order to
analyze, for instance, the shift in the condensation
temperature caused by interactions. For all this, we
now entertain T�dependent generic traps V(r, T).

b2
exp

2. MEAN FIELD HARTREE–FOCK 
APPROXIMATION

Following [35] we define the following semiclassi�
cal energy spectrum in the MF HF approximation
(see, e.g., [8, 22])

, (4)

where �(p, r) ≡ p2/2m + V(r) with V(r) the external
potential, n(r, g) the spatial density of bosons, and g ≡
4π�2a/m the parameter describing the interaction.

Moreover, the semiclassical condition allows
approximating summations over energy states by inte�

grals, namely, . Therefore,

the number of particles N in three�dimensional space
obeys the normalization condition [8, 22]

(5)

where N0 is the number of particles in the ground state,
μ is the corresponding chemical potential, and kB is
the Boltzmann constant.

At the condensation temperature Tc, we assume
within MF theory that the chemical potential μ is
given by [35]

. (6)

Further assuming just above Tc that in the ground
state N0 is negligible it follows that

(7)

where

(8)

From (7) we are able to extract, in principle, Tc as a
function of the parameter g describing interactions.
Note that the scattering length a can be positive or
negative, its sign and magnitude depending crucially
on the details of the atom–atom potential [8]. How�
ever, a negative scattering length could lead to instabil�
ities within the system [22], and finite�size effects
could be important in this situation due to the number
of particles N not being large enough [8]. Here, we
restrict ourselves, as usual, to positive values of the
interaction parameter g in order to compare our results
with the reported [28] experimental data.
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On the other hand, if ΔTc is analytic in g one can
express the relative shift in Tc for small values of g as
follows

. (9)

Note that Tc(g = 0) =  is by definition the Tc tem�
perature for the noninteracting system, given by (2).
Additionally, the expansion coefficients can be
expressed as

, (10)

where the numerical factors Ih depend on the external
potential under consideration and can be calculated
explicitly.

This enables one to reexpress (9) as a power series
in the dimensionless interaction�dependent variable
a/

(11)

which defines the coefficients bh. For an isotropic har�
monic potential V(r) ~ r2 the first two factors I1 and I2

are given respectively by [35]

, (12)

(13)

where Λ[θ] ≡ [exp[θ] – 1]–1, dΣ ≡ dudvu2
v

2, Q[α] ≡

g3/2[exp(–α)] – g3/2 [1], and g
α
[z] =  is the

so�called Bose–Einstein function [59]. Thus, S[α] ≡

I1Q[α] + {αI1 – 2Q[α])g1/2 [exp(–α)] with α ≡ [V(r) +

2g (r, g)]/kBTc(g), see [35] for details.

Note that the assumptions used above lead to b1 �
–3.426 in agreement with the experimental b1 �
⎯3.5 ± 0.3 obtained in [28]. In addition, one gets b2 �
18.8, which improves upon the estimation of b2 � 11.7
in [29]. However, this value still remains much smaller
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than the experimental estimation  � 46 ± 5
reported in [28].

3. T�DEPENDENT GENERIC
POTENTIALS AND Tc

Here we consider the following T�dependent
generic potentials

, (14)

(15)

for T = Tc and with d, β, and δ dimensionless param�
eters.

3.1. T�Dependent Generic Potential
with Free Parameters d and β

Here we use the potential (14) and find b1(d, β)
from (10) for h = 1 as a function of d and β, which
reads

, (16)

where

(17)

This integral can be evaluated numerically for b1,
which gives

. (18)

Therefore, one can find a range of values of d and β
which are in agreement with the empirical value b1 �
–3.5 ± 0.3 found in [28]. On the other hand, we may
calculate b2(d, β) from for the parameters under con�
sideration from
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where

(20)

From this one obtains

. (21)

We remark that the case β = –1 corresponds to the
potential suggested in [47]. Table 1 shows the results
obtained for b1 and b2 from different values of param�
eters d and β. We found that for β = 1 and d = 1, b1 �
–3.764 which is in agreement with the experimental

value  � –3.5 ± 0.3 obtained in [28]. We also
obtain b2 � 25.27, which improves upon the result b2 �
18.8 obtained in [35]. However, our estimation for the

S α[ ] 3
2
��I1 d β,( )Q α[ ]≡

+ αI1 d β,( ) 2Q α[ ]–{ }g1/2 α–( ).exp

b2 d β,( ) 2I2 d β,( )=

b1
exp

parameter b2 still remains smaller than the experimen�

tal estimation  � 46 ± 5 reported in [28].

3.2. Temperature�Dependent Generic Potential
with Free Parameter δ

On the other hand, for the potential (15) Eq. (10) is
only a function of δ since

, (22)

where now

. (23)

This integral must also be evaluated numerically in
order to obtain the value of b1

. (24)

Thus, one can find a range of values of δ, which are in
agreement with the empirical value b1 � –3.5 ± 0.3.
Table 2 shows the results obtained for b1(δ) and b2(δ)
from different values of the parameter δ, we found
that, for δ = 0.5, b1 � –3.7862 which is in agreement

with the experimental value  � –3.5 ± 0.3 obtained
in [28], and consequently we select b2 � 25.986:

. (25)

A similar procedure leads to

(26)

where

(27)

from which one obtains b2(δ) (see Table 2). Note that,
even though the potential (15) contains only one
parameter, it gives better agreement with data than the
potential (14) which contains two parameters.

4. CONCLUSIONS

We have explored the shift in the condensation
temperature up to second order in the S�wave scatter�
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Table 1. Values of b1(β, d), b2(β, d) obtained from the para�
meters d and β

β d b1(β, d) b2(β, d)

–1 0.01 –3.41931 18.6006

–1 0.1 –3.36182 17.3356

–1 10 –2.36313 6.64378

0 0 –3.42603 18.7765

0 0.1 –3.42603 18.7765

0 1 –3.42603 18.7765

0 10 –3.42603 18.7765

1 0.1 –3.51504 20.2565

1 1 –3.76418 25.2715

1 10 –3.97423 31.7773

2 0.1 –3.63134 22.0627

2 1 –3.98266 29.4989

2 10 –4.26837 39.7218

Table 2. Values of b1(δ) and b2(δ) obtained from the param�
eter δ

δ b1(δ) b2(δ)

–0.1 –3.34203 17.3782

0 –3.42603 18.7765

0.1 –3.50564 20.1912

0.2 –3.58118 21.621

0.3 –3.65295 23.0644

0.5 –3.78626 25.986

1 –4.06981 33.3811
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ing length, for a Bose–Einstein condensate trapped in
a temperature�dependent generic potential, with no
further assumptions than the semiclassical and Har�
tree–Fock approximations. Thus, we have recovered
the usual value for the parameter b1, and consequently,
were able to improve the numerical value associated
with the second parameter b2 up to 25.271 for the cor�
responding potential (14), and 25.986 for the second
potential (15) compared to the value obtained in [35]
under typical laboratory conditions. However, the cor�
responding values for b2 obtained here remain smaller
than the experimental value reported in [28]. Such dis�
agreement might be related to effects beyond the HF
MF framework. Finally, we stress here that the use of
temperature�dependent traps open up a very interest�
ing line of research for other relevant properties asso�
ciated with Bose–Einstein condensates.
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