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The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions
at arbitrary volume fractions is explained here by examining the role that confinement and attractive
interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show
that the measured short-time diffusion coefficient is larger than the one predicted by the classical
Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration
degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is
higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation
(GSER) in which the effective temperature replaces the temperature of the heat bath. This relation
then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are
known. On the other hand, the temporary cluster formation induced by confinement and attractive
interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than
the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the
GSER allows to obtain an effective temperature that is smaller than the temperature of the heat
bath. Additionally, we provide a simple expression based on a differential effective medium theory
that allows to calculate the diffusion coefficient at short and long times. Comparison of our results
with experiments and simulations for suspensions of hard and porous spheres shows an excellent
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. INTRODUCTION

The Stokes-Einstein relation (SER) is one of the funda-
mental results of the theory of Brownian motion that estab-
lishes the correlations between the uptake and dissipation of
energy by a system of particles that are in contact with a heat
bath. The practical importance of the SER is that it establishes a
simple quantitative relation between the diffusion coefficient of
the particles, Dy, and the viscosity of the heat bath, ¢, through

kgTy
6rma’

(D

where kg is the Boltzmann’s constant, 7; is the heat bath
temperature, and a is the radius of the suspended particles.
Although Eq. (1) has been deduced in the infinite dilute case,
it can be generalized to finite volume fractions ¢ in the form

kT
D(¢)n(¢) = 637; )

where D(¢) and 1(¢) are the relative concentration dependent
diffusion and viscosity coefficients.

For many years, this relationship has been experimentally
and numerically tested in many systems ranging from diluted
to highly concentrated colloidal suspensions and glasses.'"® A
parametric representation of the SER obtained for colloidal
suspensions is shown in Fig. 1 where we plot the inverse of
the effective viscosity (at infinite and zero frequencies) versus
the diffusion coefficient (at short and long times, respectively)
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of the suspension. The SER, Eq. (2), is represented by the
gray dotted straight line. Experimental and simulation results
(symbols) clearly indicate a breakdown at short and long times
even at low volume fractions. This breakdown of the SER is
very general since other systems show similar features, for
example, quenched fragile molecular systems experiencing
glass transition.”:®

Many attempts to understand this breakdown can be found
in the literature, see, among many others, Refs. 9—13. For
particle suspensions, the problem has been usually approached
from the point of view of hydrodynamic interactions and mode
coupling (MC) that lead to descriptions incorporating memory
and non-Markovian effects. These micro-mechanical points of
view imply complicated mathematical manipulations involv-
ing infinite hierarchies of evolution equations that should be
approximated in order to obtain useful formulas. On the other
hand, simple non-Markovian models have also been proposed
that give approximate expressions for the generalized Stokes-
Einstein relation (GSER). However, they are unable to cope
with the dependence of viscosity and diffusion on the volume
fraction.

Our aim in this work is to present a novel approach to the
problem in which physical mechanisms associated with energy
transfer between different degrees of freedom are considered.
Formally, we base our considerations on the idea that a solution
of particles can be described as an effective medium whose
transport properties depend on the volume fraction. Thus, our

©2015 AIP Publishing LLC
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FIG. 1. Breakdown of the Stokes-Einstein relation (SER) for short (solid
lines) and long times (dashed lines). Symbols represent data from experi-
ments and simulations taken from Refs. 35 and 12—17. In all the lines, the
vertical axis corresponds to the viscosity given by the differential effective
medium theory (DEMT) given by Eq. (11) with ¢ =0.22 for short times
and ¢ =0.57 for long times. The grey dotted straight line representing the
Stokes-Einstein relation (SER) is obtained after using Eq. (2) to obtain the
diffusion coefficient. The black solid line is the short-time mean field model
(MFM) for the diffusion coefficient obtained using Egs. (3), (10), and (11).
The red solid line is the short-time DEMT given by Eq. (19) with ¢ p =0.38
and A = —1.83. The black dashed line corresponds to the long-time thermally
activated hopping model (TAHM) for the diffusion given by Eq. (18). The red
dashed line is the long-time DEMT using the crowding parameter ¢ p =0.75
and A = —2.89 for the diffusion given by Eq. (19).

explanation and quantitative description of the breakdown of
the SER are based on a thermodynamic-like approach that
we correlate with the mesoscopic dynamics of the particles
at short and long times by using Fokker-Planck and diffusion
equations, respectively.

We show how the intra- and inter-cage dynamic mecha-
nisms'® are at the origin of the differences between the short-
and long-time diffusion of tracer particles, and we deduce
simple and accurate quantitative expressions for the volume-
fraction dependent diffusion coefficients D(¢) at short and long
times. The deduction of these diffusion coefficients together
with previous results on the dependence of the viscosity on the
volume fraction'® and the independent calculation of an effec-
tive temperature (at short times) allow us to justify and vali-
date a formula accounting for the generalized Stokes-Einstein
relation.

In general terms, the picture of the process is as follows. At
short times, the diffusion coefficient of tracer particles during
their intra-cage diffusion is larger than that predicted by the
SER, Eq. (1), as evidenced by the solid lines in Fig. 1. This
is a consequence of the existence of strong confining forces,
originated by the presence of the other suspended particles
that delay the relaxation of the velocities to their equilibrium
distribution. This lack of equilibration provides an extra energy
supply for tracer particle fluctuations, that is, an increased
thermal energy that may be quantified in terms of an “effective
temperature” larger than that of the host fluid.”’ A simple
formula accounting for this deviation will be derived here on
the basis of the Fokker-Planck equation for the distribution
function of the tracer particles.

J. Chem. Phys. 143, 104506 (2015)

The long-time behavior in turn is characterized by a diffu-
sion coefficient smaller than that predicted by the SER (see
dashed lines in Fig. 1). In this case, the inter-cage dynamics
slows down diffusion due to a sequence of thermally activated
hopping processes and attractive interactions of hydrodynamic
origin. A theoretical formula accounting for this behavior will
be deduced following an approach similar to that originally
proposed by Eyring that takes into account important features
of the dynamics of colloidal particles.?’">? Finally, we use
an accurate differential effective medium formalism to obtain
simple analytical expressions giving a close quantitative fit
of experimental data for the short- and long-time diffusion
coeflicient in the complete range of volume fractions.'” Here,
we propose that the viscosity and the diffusion coefficient can
be related by means of a GSER of the form

D(®) 1(4) _ T(6)

3)
Dy 1o Ty

where the effective temperature T(¢) replaces the temperature
of the bath. This relation can be used at short and long times
to express one of the three quantities it contains in terms of the
others.

The article is organized as follows. In Section II, we
present the analysis of the short-time dynamics of the system
by briefly reviewing a mean field model (MFM) based on
a reduction of the Fokker-Planck equation for the velocity
and position dependent distribution function. After this, we
propose a confinement potential that allows us to obtain an
explicit expression for the effective temperature. In Section 111,
we analyze the long-time behavior by introducing a thermally
activated hopping model (TAHM) that allows to calculate in
a very simple way, the long-time diffusion coefficient of the
colloidal particles. In Section IV, we obtain an expression for
the diffusion coefficient valid at short and long times by using a
differential effective medium approach that we briefly outline.
Finally, in Section V, we discuss our results and present our
conclusions.

Il. SHORT TIMES: MFM

The solid symbols in Fig. 2 show the experimental and
simulation data for the short-time diffusion coefficient D;(¢).
The dotted line is the result of the volume fraction dependent
Stokes-Einstein relation, Eq. (2). Although the quantitative
agreement between the experimental data and Eq. (2) is satis-
factory until volume fractions about ¢ = 0.2, then Eq. (2)
slightly under-estimates the diffusion coefficient at higher
volume fractions. This difference can be explained by analyz-
ing carefully the effect of confining forces on the relaxation
of the velocity of the suspended particles. This task can be
accomplished by using a Fokker-Planck equation for the phase
space probability density f(r,v,t) of a tracer particle, where r
and v are its position and velocity, respectively,

of o0 B 8. 0 )
o tar =5 [arU(r’¢)f]
d ksTy 8 f
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FIG. 2. Short-time effective diffusion coeflicient as a function of the volume
fraction. The gray dotted line corresponds to the inverse of the infinite
frequency viscosity given by Eq. (11) with ¢ =0.22. The black solid line is
the mean field model (MFM) prediction given by Egs. (3), (10), and (11). The
dashed red line is the prediction of the differential effective medium theory
(DEMT) with ¢ » =0.38 and L =—1.83 in Eq. (19). Finally, the green dotted
line is the prediction given by the Tokuyama model (TM) of Ref. 12. The
inset shows the effective temperature predicted by the indicated models. Data
taken from Ref. 5.

Here, vy is the constant friction coefficient per unit of mass
that the tracer particle experiences as it moves through the
host fluid (y = 6mang). U(r; ¢) represents an effective potential
energy per unit of mass arising from the interaction of the
tracer particle with the neighboring colloidal particles which
form cages that restrict the movement of the tracer. The force
associated with this potential energy therefore arises from the
effective heat bath, made up of the host fluid and the other
colloidal particles, and it is mediated by the coupling coeffi-
cient € and depends on the particle volume fraction ¢ = Nb/V,
with N the number of particles in suspension, b = 47a’/3 the
volume of each particle, and V the total volume of the system.
The coupling parameter € = (ma?/6kpT)y> is an Onsager
coefficient that brings in the effects on the interactions coming
from the finite-size of the particles. The relation for € has been
obtained with the help of the generalized Faxén theorem in
Ref. 23.

The expression for the volume-fraction dependent effec-
tive temperature can now be obtained from Eq. (4). The exis-
tence of the strong confining forces prevents the relaxation
of the velocities of the particles to their equilibrium distri-
bution before a diffusive change of configuration of the sys-
tem is appreciable. As a consequence, there exists a coupl-
ing between the two degrees of freedom, r and v, and the
probability density f(r,v,7) cannot be factorized as a prod-
uct of two independent functions, as it is usually done when
deriving the Smoluchowski equation from the Fokker-Planck
equation.?’ Instead, we have to consider that f = hy(v,t)p(r,t)
with h(v,t) standing for the conditional probability of the
velocity for a given spatial configuration of the particles. The
Smoluchowski equation describing the diffusion regime can
then be deduced by using this expression for the probability
density and contracting the description over velocities.?’ In
a mean field approximation, the resulting equation for p(r,1)
contains a diffusion term with increased thermal energy which

J. Chem. Phys. 143, 104506 (2015)

is proportional to the mean-field effective temperature”

@ = 1+ 3 VU HP). ®)
0

The fact that T(¢) > Ty means that the tracer particle has an
extra energy disposal to perform fluctuations due to the fact that
the velocities have not yet relaxed to their equilibrium distri-
bution. An explicit expression for T(¢) can be deduced if we
model the confinement forces by means of an harmonic force
with a spring constant that depends on particle concentration,
k(¢). The corresponding relation for the potential energy is>”

1 3
U(r:4) = Up + 507(9) Zl r?, (6)

where r; are the cartesian components of the position vector
and w(¢) = \/k(¢)/m is the corresponding characteristic fre-
quency associated to the spring constant of the harmonic poten-
tial. Substituting now Eq. (6) into (5) we derive the general
expression

@ _ 4y

2 4s 0,0
To - Y TBTOE w () r(1)), @)

where (r’(¢)) is the mean square displacement of the tracer
particles.

Confining forces can be attributed to the formation of
cages within the suspension. The tracer particles move inside
the cages at short times and jump between cages at long times.
The characteristic size A of these cages can be written as
A =~ ‘g;e/:, where the available volume a tracer particle can
occupy is Ve = V (1 — ¢,p) with the effective volume fraction
given by ¢, = ¢(1 — c¢)”! and the packing constant ¢ = (1
— ¢¢)/ b, with ¢, the critical volume fraction when dynamic
arrest occurs.'” Taking into account that the free volume can
also be written in the form V. = h(V'/3 = 2a)?, with h a free
parameter that depends on the packing of the particles,?” then

(1= ¢ep)'”
h=(1=gep)'/
Comparing now the mean kinetic energy of the particles,

E. = 3kpTy/2m, with the maximum potential energy available,
U™ = Jw*(¢)A*(¢), we obtain the simple relation

A(¢) = 2ah @®)

3kgTy
mA? "’
For a harmonically bounded particle (r*(t)) = kgT(¢)/

[mew*(¢)] and therefore, after using Eq. (9), the effective
mean-field temperature takes the simple form

T(¢) _ M@
To  Al_(¢)-a*

w(¢) = ©

(10)

where we have assumed that for short-times 4 = 1 because
at short times and low concentrations, the cage radius should
diverge.

Once the effective temperature has been obtained, one
can use the GSER, Eq. (3), to obtain the diffusion coefficient.
For this purpose, we need an expression for the viscosity as
function of the volume fraction. Here, we use the effective
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viscosity!?

¢ —[n]
n@=ni- ) ay
where [77] is the intrinsic viscosity and ¢ = 0.22, for the infinite
frequency case. It has been shown in Ref. 19 that this expres-
sion for the viscosity accounts very accurately for the depen-
dence of the viscosity on the volume fraction. This expression
incorporates, in an effective way, both excluded volume and
hydrodynamic interactions.

Due to its effective medium character, it is difficult to
obtain insight into particle correlations of hydrodynamic origin
based exclusively on this expression. Other methods are more
appropriate to achieve such objective, for example, methods
based on explicit hydrodynamic analysis.?*?’ However, these
micromechanical approaches usually lead to virial representa-
tions of the viscosity that have strong quantitative limitations
in accounting for the experimental data in the whole volume
fraction range. This is due because in practice, only the second
virial coefficient can be explicitly obtained. On the other hand,
Eq. (11) can be expanded in a virial series from where all the
orders of the series can be calculated. A comparison of the
virial expansion of Eq. (11) gives values for the second virial
coefficients that are very similar to the ones reported by the
mentioned hydrodynamic calculations.

After substituting Eqs. (10) and (11) into (3), we obtain the
short-time diffusion coefficient shown by the black solid line in
Figs. 1 and 2. A good agreement between theory, experiments,
and simulations is obtained.

Summarizing, in this section, we have calculated an effec-
tive temperature based on the assumption that the velocities
of the particles do not relax to their equilibrium distribution.
This result, together with the GSER and the knowledge of the
dependence of the viscosity on the volume fraction, allowed
us to obtain a diffusion coefficient that reproduces very good
experimental data. This fact is a posteriori justification of the
initial hypothesis that the viscosity and the diffusion coefficient
are related by Eq. (3). It is worth emphasizing that, if 7(¢)
is replaced by Ty in Eq. (3), one recovers the volume fraction
dependent Stokes-Einstein relation, Eq. (2). Thus, its break-
down is due to the fact that the effective temperature is different
from the temperature of the bath. But we have shown that at
short times, this difference is due to the fact that velocities have
not relaxed to their equilibrium value, otherwise T'(¢) would
reduce to Ty. This also means that the breakdown occurs even
at small volume fractions, long before freezing starts, as shown
in Fig. 1.

lll. LONG TIMES: TAHM

The previous results explain how the effect of confin-
ing forces affect the dynamics of the tracer particle inside a
cage formed by other particles at short times. However, at
long times, the effect of confining forces on the inter-cage
dynamics of the tracer particle is governed by diffusion through
a periodic potential, and therefore, it may be considered as a
sequence of thermally activated hopping processes that can be
analyzed in terms of the theory of rate processes.?!">? The long-

J. Chem. Phys. 143, 104506 (2015)

time behavior of the diffusion coefficient can be explained by
considering that the equation governing the diffusion of the
tracer particle in the effective medium is of the form

dp

il [Di(¢)Vp], (12)

with p the single particle distribution function. According to
the theory of rate processes,” the effective long-time diffusion
coefficient D;(¢) is given by

A*(¢) dnly(¢)|
4a2h2(1+¢ 8¢ )

where y(¢) is the activity coefficient and A(¢) is the charac-
teristic length. For particle suspensions, this quantity strongly
depends on the volume fraction, as it is shown in Eq. (8).

If we assume that the suspension behaves as a hard sphere
gas and that A is a constant, one obtains for the long-time
diffusion coefficient D ~ (1 — c¢)~%, which diverges at ¢
= 1.57. This unexpected behavior is due to the fact that the ac-
tivity coefficient for hard spheres is a monotonically increasing
function of the volume fraction.

The previous results suggest that, in order to reproduce
the experimental data when the diffusion goes to zero, some
type of effective attractive interactions (possibly coming from
hydrodynamic interactions or capilar forces) should be taken
into account. Assuming for simplicity that the suspended parti-
cles follow a van der Waals-like description, where the pressure
is given by

D; = D, (13)

kBT() ¢ a

P = =2t -

b 1-cop b

with b the volume of a particle, @ a coefficient associated
with attractive interactions, and where we have included the
crowding factor c. In order to obtain the activity coefficient,

we use the following relation for the fugacity f(¢):*

log H _ /(z_ e (15)
p P

where we introduced the compressibility factor Z = kLT 2@
BT ¢

After performing the integrals, we can deduce the expression
of the chemical potential u(¢),

¢, (14)

(¢) = kpTylog [Le’“@] : (16)
1 —co
From this equation, we may identify the activity coeflicient,
Yoauw(®) = T ¢eR<¢>, (17)

where R(¢) = —2A¢ + 1/(1 — ¢¢), with A = a/bkgT, a para-
meter measuring the intensity of the attractive interactions.
Substituting Eq. (17) into Eq. (13), one obtains the long-time
diffusion coefficient,

DTAHM
l

(1= ¢ep)” ( 1

Do [2-(1- g3 \(1—co)?
Equation (18) constitutes the TAHM model represented by the
solid black line in Fig. 3, in which we compare with exper-

imental data and other models shown in the caption. The fit
was done using & = 2 because for long times and high volume

—A¢). (18)
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FIG. 3. Long-time effective diffusion coefficient as a function of the volume
fraction. The gray dotted line corresponds to the inverse of the viscosity
given by Eq. (11) with ¢ =0.57. The solid black line is the prediction of
the thermally activated hopping model (TAHM), Eq. (18) with A =3.851.
The dashed red line corresponds to the differential effective medium theory
(DEMT) prediction, Eq. (19), using the values ¢ p =0.75 and A = —2.89. The
blue dashed-dotted line is the mode coupling (MC) prediction of Ref. 13
whereas the green dotted line corresponds to the Tokuyama model (TM)
deduced in Ref. 12 The inset shows the effective temperature predicted by
the indicated models. Data taken from Ref. 5.

fractions the characteristic length of the cages should be about
2a. An expression for the long-time diffusion coefficient (green
dotted line of Fig. 3) on the volume fraction has been obtained
in Ref. 12 by means of a micro-mechanical description based
on non-Markovian Langevin equations and a self-consistent
expansion method in terms of the volume fraction. The perfor-
mance of both expressions is remarkable although the method
used here to deduce Eq. (18) is much simpler. The results of
the MC theory are also shown by the blue dashed-dotted line
of Fig. 3.

Using Egs. (3), (11), (13), and (17), it is possible to deter-
mine the corresponding long-time effective temperature of the
system. The results are shown in the inset of Fig. 3 for TAHM
(solid black line) and the differential effective medium theory
(DEMT) (dashed red line) that will be discussed in Sec. I'V.
The breakdown of the SER arising from the use of the present
model are shown in Fig. 1.

IV. SHORT AND LONG TIMES: THE DEMT

A simple expression for the diffusion coefficient, valid at
short and long times can be obtained by using a differential
effective medium approach. In this procedure, the low volume
fraction limit of the diffusion coefficient D (¢) = Dy (1 + A¢p)
is modified to incorporate excluded volume interactions by
replacing ¢ in the previous expression with ¢4 = ¢/(1 — cp@).
Here, ¢p = (1 — ¢p)/¢p is a constant related to the critical
volume fraction ¢ where the diffusion coefficient vanishes.
The first order virial coefficient A can be determined by using a
hydrodynamic approach.? Further corrections due to hydrody-
namic interactions between particles, which become increas-
ingly important when increasing the volume fraction, are taken
into account by a technique based on a progressive addition
of particles to the sample, so that the new particles interact in

J. Chem. Phys. 143, 104506 (2015)
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FIG. 4. (a) Short-time effective diffusion coefficient as a function of the
volume fraction for particles with different porosities. The data (symbols)
were taken from the simulations of Refs. 2 and 3. The lines correspond to
the differential effective medium theory (DEMT) fittings given by Eq. (19).
(b) The generalized Stokes-Einstein relation (GSER), Eq. (3), as a function
of the volume fraction. The lines correspond to the DEMT fittings given
by Eqgs. (11) and (19). The fitting constants are given in Table I. The data
(symbols) were taken from the simulations of Ref. 2.

an effective way with those added in previous stages.'® Hence,
after using the differential effective medium method described
in Ref. 19, one obtains the following expression for DPEMT():

o gy = pofi - —2 )" (19)
-0 1- CD¢ ’

Equation (19) was used to describe experimental data of the
short- and long-time diffusion coefficients, as shown by the red
dashed lines in Figs. 2 and 3. It is clear that the DEMT fits
extremely well the experimental data at all volume fractions.

In addition, combining Eqgs. (11) and (19) in the GSER,
Eq. (3), we may also deduce the following general expression
for the effective temperature corresponding to the DEMT

—hi ~[n]
Tpemr(9) _ (1 9 ) (1 _ L) . (20
Ty 1 -cpg I—c¢

Figure 1 (red lines) shows that the DEMT reproduces correctly
all the experimental data that show the breakdown of the SER.
We probed the generality of the DEMT by also consider-
ing the case of suspensions of homogeneous porous particles
and compared its predictions with accurate numerical results

TABLE I. Parameters for the DEMT valid at short times. The values of the
crowding factors ¢ p are obtained from a best fit of Eq. (19) to the numerical
simulations of Refs. 1 and 2 for four different porosities x. The first-order
virial coefficients A for the diffusion coefficient are obtained in Ref. 2 We
also include the intrinsic viscosity [77] and the crowding factor ¢ of the
high-frequency viscosity, as given by Eq. (11), obtained in Ref. 29.

X 5 10 30 00

A -0.569 —-1.060 -1.550 -1.832
cp -0.206 —-0.082 0.143 0.384
(7] 1.076 1.701 2.236 2.500
c -0.516 -0.355 —-0.063 0.223
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recently obtained for such systems.!* The comparison of the-
ory (lines) with simulations (symbols) is shown in Fig. 4, after
fitting the simulation data of Refs. 1-3 (see the Table I and also
Ref. 29).

V. DISCUSSION AND CONCLUSIONS

In this article, we proposed and tested a generalized
Stokes-Einstein relation, Eq. (3), valid for colloidal suspen-
sions at arbitrary volume fractions and at short and long times.
Our main results are summarized in Egs. (6)—(10), (13), and
(17)-(20).

A new understanding on the breakdown of the Stokes-
Einstein relation for colloidal suspensions was proposed on
the basis that the distribution function of the velocities of the
particles deviates from its equilibrium Gaussian form. Two
mechanisms were in turn proposed to understand these devia-
tions. At short times, during the intra-cage diffusion process,
the velocities of the particles have not reached their equilibrium
distribution due to confining forces [see Eqgs. (6) and (9)],
inducing a nonequilibrium energy transfer between the kinetic
and the configurational degrees of freedom of the particles.
The consequence is the appearance of an effective temperature
larger than that of the heat bath [Eq. (10)] which modifies the
Stokes-Einstein equation. This new result, together with our
previously found expression for the viscosity of suspensions, "’
leads us to obtain an expression for the diffusion coefficient
at short times, Eq. (2), that agrees extremely well with the
experimental data.

The long-time breakdown is due to the fact that diffusion
occurs as a sequence of thermally activated hopping processes
between cages and, therefore, is characterized by rate and
length coefficients that depend on the volume fraction. The rate
coeflicient is affected by the existence of attractive hydrody-
namic interactions leading to the formation of temporary clus-
ters. These structures are responsible for the dynamic arrest in
the system and the breakdown of the Stokes-Einstein relation.
The corresponding effective temperature is smaller than the
bath’s temperature and the comparison of our result for the
diffusion coefficient, Eq. (18), with experimental data is very
satisfactory.

Both approaches can be interpreted in a unified fashion if
one considers that the thermally activated process, associated
to the diffusion equation, Eq. (12), is related to an intermittent
behavior of the velocities of the particles in such a way that,
when the cages open and the particles jump from one cage
to another, the distribution of velocities also deviates from its
equilibrium Gaussian form.*° In this case, an effective temper-
ature smaller than that of the heat bath should appear that
characterizes the breakdown of the Stokes-Einstein relation.
This intermittent behavior is actually implicit in the thermally
activated hopping process we used to calculate the long-time
diffusion coefficient.

Finally, we used a DEMT to calculate interpolating func-
tions for the effective diffusion and the viscosity of hard
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and porous spheres valid for both short and long times [see
Egs. (11) and (19)]. Although simple, these closed expressions
are very accurate and fit experimental and numerical data
remarkably well.

Summarizing, in this contribution, we have shown that the
breakdown of the Stokes-Einstein relation at short and long
times can be explained in terms of the deviation of the particles
velocity distribution from their equilibrium Gaussian form,
leading in turn to the appearance of effective temperatures. We
also provided very accurate and simple formulas that provide
a description which complements the procedures and views of
hydrodynamic theories.

ACKNOWLEDGMENTS

This work was supported by UNAM DGAPA under Grant
Nos. (CIM) IN-110613 and (ISH) IN-113415 and by the
MICINN of Spain under Grant No. (APM) FIS2011-22603.

IG. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. N dgele, and E. Wajnryb,
J. Chem. Phys. 132, 014503 (2010).

2G. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. N dgele, and E. Wajnryb,
J. Phys.: Condens. Matter 22, 322101 (2010).

3G. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. Nigele, and E. Wajnryb,
J. Chem. Phys. 134, 244903 (2011).

“D. Bonn and W. K. Kegel, J. Chem. Phys. 118, 2005 (2003).

SW. van Megen, T. E. Mortensen, S. R. Williams, and J. Muller, Phys. Rev. E
58, 6073 (1998).

6S. Jabbari-Farouji, D. Mizuno, M. Atakhorrami, F. C. MacKintosh, C. F.
Schmidt, E. Eiser, G. H. Wegdam, and D. Bonn, Phys. Rev. Lett. 98, 108302
(2007).

7F. H. Stillinger, Science 267, 1935 (1995).

8C. A. Angell, Chem. Rev. 102, 2627 (2002).

9G. D. J. Phillies, Macromolecules 17, 2050 (1984).

10A. L. Kholodenko and J. F. Douglas, Phys. Rev. E 51, 1081 (1995).

1IN, Pottier, Phys. A 345, 472 (2005).

12M. Tokuyama and I. Oppenheim, Phys. A 216, 85 (1995).

13A. J. Banchio, G. Nigele, and J. Bergenholtz, J. Phys. Chem. 111, 8721
(1999).

14p N. Pusey and W. van Megen, Nature 320, 340 (1986).

I5R. H. Orttewill and N. St. J. Williams, Nature 325, 232 (1987).

16A van Veluwen and H. N. W. Lekkerkerker, Phys. Rev. A 38, 3758
(1988).

17W. van Megen and S. M. Underwood, J. Chem. Phys. 91, 552 (1989).

18E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz,
Science 287, 627 (2000).

19C. I. Mendoza and 1. Santamarfa-Holek, J. Chem. Phys. 130, 044904
(2009).

201, Santamaria-Holek and A. Pérez-Madrid, J. Phys. Chem. B 115, 9439
(2011).

21B. J. Zwolinski, H. Eyring, and C. E. Reese, J. Phys. Chem. 53, 1426
(1949).

228, Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes
(McGraw-Hill, New York, 1941).

231, Santamaria-Holek, J. M. Rubi, and A. Pérez-Madrid, New J. Phys. 7, 35
(2005).

24D, Bedeaux, R. Kapral, and P. Mazur, Phys. A 88, 88 (1977).

25C. W. J. Beenakker and P. Mazur, Phys. A 120, 388 (1983).

26C. W. I. Beenakker and P. Mazur, Phys. A 131, 311 (1985).

27p. Mazur and W. van Saarloos, Phys. A 115, 21 (1982).

28Van P. Carey, Statistical Thermodynamics and Microscale Thermophysics
(Cambridge University Press, Cambridge, 1999).

29C. 1. Mendoza, J. Chem. Phys. 135, 054904 (2011).

30, Naspreda, D. Reguera, A. Pérez-Madrid, and J. M. Rubi, Phys. A 351,
14 (2005).


http://dx.doi.org/10.1063/1.3274663
http://dx.doi.org/10.1088/0953-8984/22/32/322101
http://dx.doi.org/10.1063/1.3604813
http://dx.doi.org/10.1063/1.1532349
http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1103/PhysRevLett.98.108302
http://dx.doi.org/10.1126/science.267.5206.1935
http://dx.doi.org/10.1021/cr000689q
http://dx.doi.org/10.1021/ma00140a030
http://dx.doi.org/10.1103/PhysRevE.51.1081
http://dx.doi.org/10.1016/S0378-4371(04)01003-9
http://dx.doi.org/10.1016/0378-4371(94)00280-7
http://dx.doi.org/10.1063/1.480212
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1038/325232a0
http://dx.doi.org/10.1103/PhysRevA.38.3758
http://dx.doi.org/10.1063/1.457492
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1063/1.3063120
http://dx.doi.org/10.1021/jp204459b
http://dx.doi.org/10.1021/j150474a012
http://dx.doi.org/10.1088/1367-2630/7/1/035
http://dx.doi.org/10.1016/0378-4371(77)90159-5
http://dx.doi.org/10.1016/0378-4371(83)90061-4
http://dx.doi.org/10.1016/0378-4371(85)90001-9
http://dx.doi.org/10.1016/0378-4371(82)90127-3
http://dx.doi.org/10.1063/1.3623472
http://dx.doi.org/10.1016/j.physa.2004.12.005

