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a b s t r a c t

A mathematical model which predicts the performance of vertical and horizontal wells intersecting
fractures is presented. Based on the formulation originally proposed by Guo and Schechter (1997), this
model predicts the transient pressure behavior with variable flow-rate both during the increasing
pressure stage and in the declining pressure and flow-rate situation. The flow in the matrix and that in
the fracture are coupled to allow the calculation of the pressure distribution in the matrix and in the
fracture, as functions of space and time. The model is consistent with transient pressure analyses in
finite-conductivity vertical fractures (Cinco-Ley and Samaniego, 1981), and presents a useful tool for
productivity analyses of hydraulically fractured wells during the rapid decline stage. Comparisons with
real well data are analyzed and discussed.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Several factors control the final output of the hydraulic frac-
turing process. Fracture dimensions (half fracture length, fracture
width, and fracture height) are of particular importance together
with data related to the orientation of fractures as well as the rock
and fluid properties (Rbeawi and Tiab, 2012). The Naturally Frac-
tured Reservoirs (NFR) are among the most common and im-
portant reservoirs around the world, due to the large extent of oil
reserves therein contained. The NFR have a very complex structure
and therefore, mathematical models which may predict the pres-
sure behavior are needed. These models are classified according to
the inter-porosity transfer flow regime and they are based on
Warren and Root's theory (Cinco-Ley and Samaniego, 1981;
Najurieta, 1980; Ley and Samaniego, 1982; Streltsova, 1982).

Nelson (1985) categorized naturally fractured reservoirs into four
different types, with regard to reservoir simulations and perfor-
mance, and pressure and rate-transient-test interpretation. Kuchuk
and Biryukov (2012), on the other hand, divide them into four
categories: (a) continuously (dual-porosity) fractured reservoirs,
l.com (D. Silva),
(b) discretely fractured reservoirs, (c) compartmentalized faulted
basement reservoirs and (d) unconventional fractured basement re-
servoirs. Biryukov and Kuchuk (2012) and Kuchuk and Biryukov
(2012) presented transient-pressure solutions for conductive and
nonconductive faults and fractures, and showed their pressure-
transient behavior. Kuchuk and Biryukov (2012) investigated the
pressure transient behavior of continuous and discrete naturally
fractured reservoir with semianalytical solutions for a vertical well,
they performed history matching of the pressure-transient data
generated from their discrete and continuously fractured reservoir
models with the Warren and Root (1963) dual porosity type models
obtaining incorrect reservoir parameters.

Attention has been focused on the modeling of the pressure
transient behavior for either horizontal or vertical wells, with or
without hydraulic fractures. As a result, several models were de-
veloped based on the use of the source solution and Green's
function to solve unsteady-state flow problems in the reservoir.
Gringarten and Ramey (1973) used the source function and
Newman product method for solving transient flow problem. Al-
though this approach is extremely powerful in solving 2D and 3D
problems, it has some limitations related to incorporate the in-
fluence of storage and skin effects. In this context, the transient-
flow solutions have been extended to predict the behavior of in-
finite-conductivity vertical fractures in homogeneous formations
or in dual-porosity media. Ozkan (1988) presented an extensive
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Fig. 1. Geometry of a reservoir section drained by a wing of a fracture. The wellbore
is located at x y z 0= = = . Oil flows along the z-direction.
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literature of different solutions for the diffusivity equation in terms
of the Laplace transform to reduce the limitations in the source
solution presented by Gringarten and Ramey (1973). Benjamin
(1978) used a finite element model to study the pressure behavior
of a well intersecting vertical fracture at the center of closed
square reservoir. Wong et al. (1986) analyzed the data using curve-
matching and pressure and its derivative for vertical-fractured
wells with no skin and no wellbore storage effects, and included
cases where both skin and wellbore storage effects are present
during the bi-linear flow period. Cinco-Ley and Meng (1988)
analyzed results obtained from the transient behavior of a well
intersected by a vertical fracture in a double porosity reservoir.
Two models were introduced: the first one is semi-analytical and
the second one is a simplified fully-analytical model. Song et al.
(2011) studied pressure transient behavior of a horizontal well
with transverse fractures and provided a description of pressure
transient flow regimes with corresponding analytical solutions.
Raghavan et al. (1997) developed a mathematical model to discern
the characteristic response of multiply fractured horizontal wells.
Three significant flow periods have been observed based on this
model: the early-time period in which the system behaves like one
with n-layers, the intermediate-time period in which the system
reflects the interference between the fractures, and late-time
period in which the system behaves as a single-fracture horizontal
well with equal distances between the outermost fractures. Wan
and Aziz (1999) developed a general solution for horizontal wells
with multiple fractures. They showed that four flow-regimes can
be observed: the early-linear, transient, late-linear, and late- time
radial flow. Zerzar et al. (2003) combined the boundary element
method and Laplace transformation to present a comprehensive
solution for multiple vertical-fractured horizontal wells. Seven
flow regimes have been identified: bilinear, first-linear, elliptical,
radial, pseudo-radial, second-linear, and pseudo-steady state. Al-
Kobaisi and Ozkan (2004) presented a hybrid numerical–analytical
model for the pressure transient response of horizontal wells in-
tercepted by a vertical fracture. This model can be used as a
pressure-transient analysis or as a diagnostic tool to interpret
complex characteristics and to investigate the influence of various
fracture properties on the production performance of fractured
horizontal wells. Anh and Tiab(2009) solved the analytical model
presented by Cinco-Ley (1974) for the pressure transient behavior
caused by an inclined fracture associated to a vertical wellbore.
This model uses the uniform-flux and infinite-conductivity frac-
ture solution for different inclination angles. Both type-curve and
Tiab's direct synthesis (TDS) techniques have been used to esti-
mate formation parameters such as the permeability, skin factor,
and fracture length (Boussila and Tiab, 2003). Al-Kobaisi et al.
(2006) focused on the pressure-transient characteristics in the
early-time flow regimes. They described the fracture-storage in-
duced by flow regimes in multiple-transverse fractured horizontal
wells.

Detailed reservoir information is essential for the petroleum
engineer to analyze the current behavior and future performance of
the reservoir. Pressure transient testing is designed to provide the
engineer with a quantitative analysis of the reservoir properties. A
transient test is essentially conducted by creating a pressure dis-
turbance in the reservoir and recording the pressure response of the
wellbore. The type-curve analysis approach was introduced in the
petroleum industry by Agarwal et al. (1970). It is known that a type-
curve is a graphical representation of theoretical solutions to tran-
sient and pseudo-steady-state flow equations; they are usually
presented in terms of dimensionless pressure, time, wellbore radius
and wellbore storage factor (e.g., PD, tD, rD and CD). The Gringarten
type-curve analysis (Gringarten et al. (1970)) and the pressure-de-
rivative method use the concept of the type-curve approach.

In this work, consideration is given to the analytical Guo and
Schechter (1997) model, extended to the case of transient flow
behavior. A fractal matrix and time-dependent pressure and flow
variables are considered in the calculations, giving rise to matrix
and fracture pressure distributions as functions of space and time
in the increasing and decreasing pressure and flow-rate stages.
This model can be used as a pressure-transient analysis or diag-
nostic tool to interpret complex characteristics and to investigate
the influence of various fracture properties on the production
performance of fractured horizontal wells.
2. Mathematical model

2.1. Model description

In the Guo and Schechter (1997) model, the geometry of a re-
servoir section drained by a fracture wing is shown in Fig. 1. We
follow the development of the model allowing oil to flow within
the drainage boundaries z ze( = ± ) to the fracture face in the z-
direction. The velocity of the oil in the matrix is described by
Darcy's law:

v x
k
z

p p x ,
1

z
m

e
e fμ

( ) = ( − ( ))
( )

where vz(x) is the Darcy velocity in the z-direction within the
matrix at a lateral distance x from the fracture tip. μ is the oil
viscosity, ze is the drainage distance of the fracture, pe is the
pressure at the drainage boundary, pf(x) is the pressure in the
fracture at point x and km is the matrix permeability. It has been
shown that the porosity and fractures of geological formations
exhibit fractal characteristics under many length scales (Katz and
Thompson, 1985), and that the nature of the fractal porous med-
ium influences their transport properties (Schmittbuhl et al.,
2008). Makse et al. (2000) found that the permeability of porous
media decreases when the fractal dimension (associated to pores
space) decreases. In this model, the flow into the fracture through
the porous matrix along the z-axis is considered, since the pores
are interconnected to form channels or capillaries. The perme-
ability in the porous or fractal medium can be evaluated following
Turcio et al. (2013):
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Here km is the function of the porosity ϕ, the characteristic
length L0, the minimum and maximum porous radii (rmin and rmax)
and the fractal dimensions DT and Df. The volumetric flow rate of
oil in the fracture at point x can be determined by:
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where Q(x) is the volumetric flow rate in the fracture at point x
and h is the fracture height. If the average width of the fracture is
w, the velocity in the fracture vf(x) can be calculated:
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The Darcy velocity in the fracture with permeability kf is:
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substituting Eq. (4) into Eq. (5) yields:
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differentiation of Eq. (6) with respect to x gives:
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Eq. (7) may be rewritten in the following form:
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where FCD is the dimensionless conductivity in the fracture
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Eq. (8) is the same equation used by Cinco-Ley and Samaniego
(1981) in steady-state, i.e.,
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where the pressure gradient of the fracture-matrix interface is:
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The z-coordinate is equivalent to the y-coordinate in the Cinco-
Ley and Samaniego (1981) reference system. The boundary con-
ditions for Eq. (8) are:

x p x pAt 0 in the wellbore , 12f w= ( ) = ( ) ( )

d
dx

p x p p v0, 0 at the edge of the fracture . 13f f e f( ) = = ( = ) ( )

The second condition was also considered by Cinco-Ley and
Samaniego (1981) for the infinite well case. The analytical solution
of Eq. (8) subjected to boundary conditions given in Eqs. (12) and
(13) is

p p x p p cxexp , 14e f e w− ( ) = [ − ] (− ) ( )

where c FCDz x2/ e f= ( ). Note that the pressure in the fracture pf
varies from pw at the wellbore (x¼0) and the difference p pe f( − )
decreases exponentially. pe is only attained when c has a large
value (very small conductivity ratio). If the conductivity ratio is
large, c is very small and hence the steady-state pressure in the
fracture is near pw. The volumetric flow-rate in the fracture can be
evaluated using Eq. (3). Substituting Eq. (14) into Eq. (3) we
obtain:
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Note that when the fracture length is large, the flow rate is
proportional to the pressure gradient between wellbore and that
at the edge of the matrix. The pressure distribution in the matrix
p x z,m ( ) can be obtained analytically considering linear flow:
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Upon substitution of Eq. (14) into Eq. (16), the following ex-
pression is obtained:

p p x z p p cxexp . 17m f e w− ( ) = *[ − ] (− ) ( )

2.2. Transient regime

The solution of the pressure diffusion equation along the frac-
ture (Eq. (10)) requires the solution of the time-dependent pro-
blem of the matrix, which is expressed by the following pressure-
diffusion equation:

p
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where t t mη* = is the dimensionless time and ηm is the matrix
hydraulic diffusivity. Eq. (16) is the solution of Eq. (18) at large
times. Thereafter, it is necessary to evaluate the pressure gradient
in the matrix at the interface dpm dz/ z 0( *) = , and finally solving the
time-dependent Eq. (10). Solution of Eq. (18) is:
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This equation satisfies the initial condition:
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since the following equality holds: n z zsinn n
2

1
1 n
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∞ (− ) , as

t → ∞ the steady-state solution is attained, i.e., p z* = *. This con-
dition implies that the initial pressure distribution in the matrix
follows the pressure distribution along the interface with the
fracture (linear flow in the fracture).

Boundary conditions for Eq. (18) are:

z p p x p0, at the interface 0 , 21m f* = = ( ) ( * = ) ( )

z p p x p1, at the far edge of the matrix 1 . 22m e* = = ( ) ( * = ) ( )

The matrix pressure gradient along the interface dpm dz/ z 0( *) =

can be calculated using Eq. (19):
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at the fracture-formation interface:



Fig. 2. Pressure along the fracture length as a function length for various fracture
conductivities. w¼0.001 m, x 200 mf = , z 200 me = , p 2000 psie = , p 1000 psiw = .
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Substituting Eq. (24) into Eq. (10), the time-dependent equation
for the pressure in the fracture to solve is:
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where ηf is now the fracture diffusivity with the initial condition
given by Eq. (20) and with boundary conditions:
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2.3. Flow rate

The time-dependent oil flow rate can be evaluated as follows:
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Substituting Eq. (14) into Eq. (24) yields:
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substitution of Eq. (29) into Eq. (28) and upon integration:
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where the time-dependent function f(t) has the form:
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Initially, at t¼0, Q¼0, since due to Fejer's theorem,
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for large times, f t 0( ) = , the flow rate reaches the maximum value
at steady-state (see Eq. (38)). The asymptotic solution of Eq. (38) at
large times for the case when the fracture conductivity is also
large c 0( → ) is:
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This equation represents the maximum attainable flow-rate.
For higher values of c (decreasing fracture conductivity) a decrease
of the flow rate for long times is expected.

2.4. Declining pressure and flow-rate regimes

To model this behavior, a change in the boundary conditions in
Eq. (18) is made. Initially, the pressure and flow rate are at their
maxima, and for subsequent times, pn and Q tend asymptotically
to zero. Therefore, the solution equation (19) is modified to:
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Initially, at time zero the steady-state solution is confirmed, i.e.,
p z* = *. For long times, Eq. (34) tends to p 0* = . Calculation of the
pressure gradient gives:
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at the interface:

p p x
dp
dz

n t
1

1 2 1 1 exp ,
36e f

m

z n

n

0 1

2 2∑ π
− ( ′) *

= + ( − ) ( − ( − *))
( )*= =

∞

substituting Eq. (36) into Eq. (28) gives:
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at short times, we obtain Eq. (38) for the flow rate:
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For long times, the pressure gradient at the interface tends to
zero, and hence the flow rate.
3. Results and discussion

In this section, the analytical and numerical predictions of the
model are presented. Fig. 2 presents the pressure along the frac-
ture length for various conductivity ratios (Eq. (14)). The pressure
increases from its value at the wellbore, up to the maximum
pressure (reservoir pressure or drainage pressure), but depends
strongly on the conductivity ratio. Lower c-values correspond to
larger fracture conductivities. For large fracture conductivity, the
pressure increases from the wellbore pressure x 0( = ) up to the
reservoir pressure along a large distance. For decreasing fracture
conductivity, the reservoir pressure is attained in short distance
from the wellbore. Hence, the effective pressure gradient along the
fracture increases as the conductivity in the fracture diminishes.
This behavior is the same presented by Guo and Schechter (1997)
at steady-state. Fig. 3 presents results according to Eq. (38), where
the flow rate is plotted with permeability ratio. As the perme-
ability in the fracture increases, the flow rate increases ex-
ponentially. With respect to the matrix pressure distribution,



Fig. 3. Flow rate as a function of permeability ratio.
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Fig. 4a–d depicts the steady-state or long-time isobaric profiles in
the z x– plane for various permeability ratios. The wellbore is lo-
cated at the origin z x0, 0( = = ), the fracture is located at
z x0, 0 1( = < < ) and the edge of the reservoir length is z¼1 for

x0 1< < . There are two fixed pressures: the reservoir pressure pe
and the wellbore pressure pw; the reservoir pressure is fixed at
z x1, 0 1( = < < ). The maximum pressure gradient p p z/e w e( − ) in
highly conductive fractures covers a good proportion of the
Fig. 4. Matrix pressure distribution under steady-state for var
fracture length, since the pressure in the fracture approaches the
pressure in the wellbore. As the conductivity ratio diminishes (Fig.
4d) there are progressively smaller fracture lengths where the
pressure gradient in the matrix is large. For smaller conductivity
ratios, the fracture length with large pressure gradient reduces
gradually (Fig. 4b and c). The extreme case is presented in Fig. 4a,
where the low conductivity fracture reduces the length to near the
wellbore vicinity. Fig. 5a–f shows the development of the pressure
distribution in the matrix as a function of time, such that for long
times, the profiles shown in Fig. 4a–d are attained. These figures
correspond to the case when the fracture conductivity is moder-
ately large. Initially, the pressure in the fracture is the same as that
of the matrix, except in the limit of the reservoir, corresponding to
zero pressure-gradient between fracture and matrix, or the con-
dition of zero flow-rate. This condition allows starting from zero
flow-rate up to that consistent with increasing pressure gradient.
For non-dimensional times of the order of 0.05, the pressure
gradient develops t 0.5( = ) to eventually attain the steady-state
condition at long times. For decreasing fracture conductivity, the
variation of the pressure gradient dp dz/ in the x-direction becomes
non-uniform, since it diminishes along the x-axis, inducing a re-
duction in the flow rate. A low fracture conductivity induces an
increase in the difference between the pressure gradient dp dz/ at
x¼0 and at x¼1, and in the extreme case of very low fracture
conductivity, there is a small region where the pressure gradient is
large, implying a large reduction in the flow rate. Based on these
profiles, it is illustrative to plot the development of pressure pro-
files in the matrix as a function of time (see Fig. 6). At short times,
ious values of the non-dimensional fracture conductivity.



Fig. 5. Matrix pressure distribution for various dimensionless times. Wk k/ 1000 inf m = .
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the pressure gradient between the fracture and the matrix is near
zero, this is, p 0* = , except for z 1* = , where p 1* = . As time pro-
gresses, the pressure gradient develops up to a constant value,
namely, steady-state at long times p z( * = *). Fig. 7 shows the de-
velopment of the fracture pressure along the fracture length for
several times, according to the solution of Eq. (25). The initial
condition imposed is that, at t¼0, the pressure in the matrix pm( )
is equal to the pressure along the fracture pf( ) which means zero

pressure gradient or no-flow condition. The pressure profiles
attain the steady-state pressure distribution for long times, given
by Eq. (14). Indeed, as time increases, Eq. (25) reduces to Eq. (8),
whose solution is Eq. (14). This is the case of where at long times,
within a short length from the wellbore, the matrix pressure at-
tains the value of the drainage pressure (see Fig. 5f, for z¼0).

Fig. 8a describes the variation of the flow rate in the initial
stage of the production and after the maximum flow rate, where it
declines. The exponential increase and decrease is in accord to the
solution given by Eqs. (30) and (37). At short times, both in the



Fig. 6. Non-dimensional pressure as a function of non-dimensional distance along
the matrix, for various dimensionless times. Wk k/ 1000 inf m = .

Fig. 7. Pressure along the fracture as a function of fracture length for various non-
dimensional times. Wk k/ 1000 inf m = .

Fig. 8. Flow rate as a function of time. (a) Predictions of the production and de-
clining stages. (b) Data from Table 1 (points) and predictions (continuous line).

Table 1
Data used for matching the production decline, as reported in Agarwal et al. (1970).

Month during 1952 March April May June

Matrix permeability (md) 0.8 0.8 0.8 0.8
Water saturation 0.38 0.38 0.38 0.38
Residual oil saturation 0.15 0.15 0.15 0.15
Oil viscosity (cP) 0.90 0.95 1.0 1.0
Formation volume factor 1.310 1.295 1.285 1.285
Fracture spacing (ft) 3 3 3 3
Fracture length (ft) 600 600 600 600
Fracture height (ft) 15 15 15 15
Initial fracture width (in) 0.005 0.005 0.005 0.005
Initial fracture porosity 0.6 0.6 0.6 0.6
Number of fractures 5 5 5 5
Reservoir pressure (psig) 1650 1600 1500 1400
Bottom hole pressure (psig) 1000 1000 800 750
Stress sensitivity factor 0.1 0.1 0.1 0.1
Calculated oil rate (bopd) 101 89 84 75
Actual oil rate (bopd) 100 85 80 75

R.O. Vargas et al. / Journal of Petroleum Science and Engineering 136 (2015) 23–31 29
increasing and decreasing modes, there is a linear relation of flow
rate with time, which parallels the data shown in Table 1 for the
decreasing mode. Data from Table 1 shows that the actual flow
rate decreases linearly with time. Data points are indicated in
Fig. 8b, and model predictions as a continuous line.

The Gringarten graphical type curve format is shown in Fig. 9. In
this figure, the dimensionless pressure PD versus the dimensionless
ratio t C/D D is plotted. The resulting curves with varying CD values
represent different well conditions. All the curves merge, in early
time, corresponding to pure-wellbore storage flow. During later
times, at the end of the wellbore storage-dominated period, curves
correspond to infinite-acting radial flow. Bourdet et al. (1983) pro-
posed that flow regimes can have clear characteristic shapes if the
pressure derivative rather than pressure is plotted versus time on
the log–log coordinates. The use of this method for the entire well
test will produce two straight lines that characterize the wellbore
storage-dominated flow and the transient-flow period. Fig. 10 pre-
sents the pressure derivative versus t C/D D varying CD. The early-time
points are identified with straight lines with 45 angle slopes. Severe
oscillations are neglected, since the radial infinite-acting state is not
sufficiently clear.
4. Conclusions

Cinco-Ley and Samaniego (1981) have presented a



Fig. 9. Dimensionless pressure type curves for various dimensionless storage coefficient.

Fig. 10. Pressure derivative type curves for various dimensionless storage coefficient.

R.O. Vargas et al. / Journal of Petroleum Science and Engineering 136 (2015) 23–3130
mathematical model by which, in a simple and concise form,
steady-state predictions on the performance of vertical and hor-
izontal wells intersecting fractures are exposed. The model allows
a rigorous coupling of flows in the matrix and along the fracture,
inasmuch as a unique pressure distribution in the fracture is used
for both flows in the matrix and fracture. The model has been used
in real situations where hydraulically fractured horizontal wells
and vertical wells in naturally fractured reservoirs exist, generat-
ing the data shown in Table 1. Nonetheless, the transient decline of
pressure and production rate cannot be calculated with this
model. On the other hand, Cinco-Ley and Samaniego have devel-
oped techniques for analyzing pressure transient data for wells
intercepted by a finite-conductivity vertical fracture, which is
based on the bilinear flow theory, considering transient linear flow
in both fracture and formation. We have shown here that the time-
dependent generalization of the Guo et al. model is consistent
with the Cinco-ley et al. model, and furthermore, that transient
data of these complicated wells may be predicted.

Numerical simulations show that this simple and easy to im-
plement model accurately reproduces previously reported data
and can be used as a pressure-transient analysis or diagnostic tool
to interpret complex characteristics and to investigate the influ-
ence of various fracture properties on the production performance
of fractured horizontal wells.
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