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In this paper we apply the usual perturbative methodology to evaluate the one-loop effective potential in
a nonlocal scalar field theory. We find that the effect induced by the nonlocality of the theory is always very
small and we discuss the consequences of this result. In particular we argue that, looking at one-loop
corrections for matter fields, it is not possible to find signals of the nonlocality of the theory in cosmological
observables since, even during inflation when energies are very high, nonlocality-induced corrections are
expected to be very small.
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I. INTRODUCTION

Higher-derivative field theory models actually attract
great attention due to two main reasons. The first one is
of cosmological nature. For instance, cosmological models
have been considered, which are based on the inclusion of
finite higher derivatives (see [1] and references therein),
with Lagrangian density L¼FðR;□R;□2R;…;□mR;□−

R;…;□−mRÞ. Such models are capable to explain inflation
and dark energy in a unified framework [2,3] (see also [4] for
a complete review). The second reason is connectedwith the
possibility to construct an higher-derivative theory which
can be a viable quantum gravity candidate, together with
other approaches to this scenario, namely, Loop Quantum
Gravity, Strings and Noncommutative Geometries (see [5]
for a review).
Among the theories addressing questions related to

quantum gravity, one has received a great deal of atten-
tion, the so-called Horava-Lifshitz gravity (H-LG) [6].
This assumes a foliation of the spacetime and is charac-
terized by a Lagrangian density which contains higher
than first order spatial derivatives and is invariant under
foliation-preserving diffeomorphisms. Such a theory is
power-counting renormalizable due to the higher spatial
derivatives which make the graviton propagator to con-
verge to zero more rapidly than 1=k2 at high wave
numbers k [7]. Moreover H-LG has been shown to be a
viable model of gravitation at the cosmological and
astrophysical level [6]. Among different implications of

the H-LG, one should mention the consistency with the
well-known gravitational solutions, such as black holes
[8], Friedmann-Robertson-Walker solutions [9], and
Gödel-type metrics [10], and some new cosmological
concepts such as bouncing Universe [11] and anisotropic
scaling [12], as well as the quantum studies that allow one
to discuss the possible construction of a renormalizable
gravity theory (see Ref. [13]).
Despite its advantages, H-LG involves an apparently

strong problem: the loss of diffeomorphism invariance
and then the loss of Lorentz symmetry in flat spacetime,
as discussed in [14]. To avoid this problem exploiting
the better convergence of the graviton propagator in higher
derivative theories, one can consider covariant higher
derivative theories of gravitation as in [15], which are
invariant under spacetime diffeomorphisms. The main
problem here is that such theories usually contain a
physical ghost (a state of negative norm) and therefore
they violate the unitarity. It is worth mentioning the papers
[16], where the higher-derivative extensions of different
field theory models were introduced without breaking the
unitarity; however, in these theories the higher derivatives
are present only in a term proportional to Lorentz-breaking
parameters which leads to specific effects like large
quantum corrections and fine-tuning.
In order to overcome this problem, a new class of higher

derivative theories which manifestly preserve Lorentz
invariance, the nonlocal quantum gravity (NLQG) models,
has been proposed recently [17,18]. These models were
partially inspired by [15], and their construction was done
in order to fulfill the following hypotheses: (i) Classical
solutions must be singularity-free; (ii) Einstein-Hilbert
action must be a good approximation of the theory below
the Planck energy scale; (iii) the theory must be perturba-
tively quantum renormalizable on a flat background; (iv) the
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theory must to be unitary; and (v) Lorentz invariance must
be preserved.
Models in the framework of NLQG are both renorma-

lizable and ghost-free [17,18], and therefore, they have no
shortcomings of Einstein’s gravity related to these points.
The typical Lagrangian density for NLQG is a nonpoly-
nomial extension of the renormalizable quadratic Stelle
theory [15] and it has the following structure:

L ¼ R −
�
Rμν −

1

2
Rgμν

�
γð□=Λ2ÞRμν; ð1Þ

where the form factor γðzÞ is a function without poles,□ is
the covariant D’Alembertian operator and Λ is an invariant
mass scale, which we expect to be close to the Planck mass,
since we want that our theory reduces to Einstein’s theory
in the low energy limit. We stress that 1=Λ represents the
length scale above which the theory is fully nonlocal. Note
that the local behavior of the theory is recovered at energies
below Λ and that all degrees of freedom present in the
action can be embedded in the function γð□=Λ2Þ.
It is convenient to express the form factor γð□=Λ2Þ

introducing a new form factor Vð□=Λ2Þ defined as

γð□=Λ2Þ≡ Vð□=Λ2Þ−1 − 1

□
; ð2Þ

so that the propagator of the theory is

Gðk2Þ ¼ Vðk2=Λ2Þ
k2

�
Pð2Þ −

Pð0Þ

2

�
; ð3Þ

where Pð0Þ and Pð2Þ are the spin zero and spin two
projectors.1

Since one wants to recover Einstein’s gravity for small
momenta, one needs to impose that Vð0Þ ¼ 1 and VðzÞ≃ 1
for jzj ≪ 1. It is now evident that, if VðzÞ has no poles, the
only propagating degrees of freedom correspond to the two
polarizations of Einstein’s theory, and thus the theory does
not contain ghosts. As a consequence, the function γðzÞ
cannot be polynomial, otherwise the function VðzÞ would
have a pole at zi. Therefore, in order to avoid ghosts, we have
to pay a price, namely, NLQG must contain derivatives of
arbitrary order, which means that it must be nonlocal.
Moreover, from (3) it follows that, if VðzÞ goes to zero for
jzj ≫ 1 sufficiently fast, the theory is super-renormalizable,
since this requirement improves the convergence of the
integrations over loops (see for instance [17] for details).

The class of nonlocal theories (1) have nice properties.
It has been shown in [21] that NLQG has 2 degrees of
freedom corresponding to the spin 2 graviton and at most
one extra scalar degree of freedom: any further extra degree
of freedom in fact would correspond to a ghost or a
tachyon, breaking the unitarity of the theory. Moreover,
in [21,22] it has been shown that, at the cosmological level,
NLQG reduces to the Rþ ϵR2 Starobinsky model [23] with
the identification ϵ≡ 1=Λ2 up to corrections of order 1=Λ4.
Therefore, NLQG gives a viable inflation in agreement
with Planck data [24] for Λ ∼ 10−5MP [21,22].
A further relevant feature of NLQG is that, due to higher

derivatives, it can be free from the singularities which affect
Einstein’s gravity. In fact, in NLQG the linearized equa-
tions for gravitational perturbations of Minkowski back-
ground typically reads expð□=Λ2Þ□hμν ¼ M−2

P τμν [18],
where τμν is the stress energy tensor of matter. For a
pointlike source of massm this gives a Newtonian potential
h00 ∼ erfðrΛ=2Þm=rM2

P, where erfðzÞ is the error func-
tion of argument z, which is finite for all r ≥ 0. This shows
how black hole singularities of general relativity can be
removed in NLQG (see also [25]). With similar arguments
one can show that also the big bang singularity can be
removed and a nonsingular bouncing cosmology can be
obtained [26].
The problem with NLQG is that, due to the high

complexity of the theory, it is very difficult to perform
explicit calculations. This is why, in order to understand the
basic properties of nonlocal models, it is interesting to
consider toy models, e.g. nonlocal scalar field theory. The
properties of nonlocal scalar fields has been first studied by
Efimov in a series of seminal papers [27–29]. Specifically,
the quantization scheme has been described in [27], the
unitarity of the theory has been demonstrated in [28] and
the causality has been discussed in [29]. Here we also
mention that a nonlocal version of QED has been studied in
[30] and nonlocal vector field theory has been introduced
in [31].
More recently, in [32] has been considered the case of a

nonlocal scalar field with specific self-interactions which
have been chosen to present the same symmetries of the
NLQG; a toy model depiction of a nonlocal gravity. The
form factor in (2) has been chosen in such a way that
VðzÞ ¼ expð−zÞ and the graviton propagator in (3) has an
exponential suppression, so that it is asymptotically free.
In particular, the two-point function is still divergent, but it
can be renormalized by adding appropriate counterterms, so
that the ultraviolet behavior of all other one-loop diagrams as
well as the two-loop, two-point function remains finite.
In this paper we consider a nonlocal scalar field model

with generic potential and calculate the one-loop correc-
tions to this quantity. We show that the corrections induced
by the nonlocality of the theory, with respect to the local
one, are very small even in the strong field limit, i.e., when
the typical energies are of the order or much greater than Λ.

1The projectors are defined by [19,20] Pð2Þ
μν;ρσðkÞ¼

1
2
ðθμρθνσþθμσθνρÞ− 1

D−1θμνθρσ , P
ð1Þ
μν;ρσðkÞ ¼ 1

2
ðθμρωνσ þ θμσωνρþ

θνρωμσ þ θνσωμρÞ, Pð0Þ
μν;ρσðkÞ ¼ 1

D−1 θμνθρσ , P̄ð0Þ
μν;ρσðkÞ ¼ ωμνωρσ ,

θμν ¼ ημν −
kμkν
k2 , ωμν ¼ kμkν

k2 , where D is the dimension of the
spacetime.
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This implies that it turns out to be very hard to find traces of
the nonlocal nature of the theory looking at the one-loop
corrections to the bare potential. For instance, one might
hope to find nonlocality signatures in very energetic
contexts, for instance in inflation. If the inflaton field,
which is responsible of the nearly exponential of the early
universe, is actually nonlocal, one can seek traces of the
nonlocality of the theory in cosmological observables.
However, since the one-loop corrections to the inflaton
potential would be very small, it is impossible to detect the
effect of one-loop corrections to the cosmological observ-
ables, even using the most precise measurements currently
available, as the cosmic microwave background radiation
temperature and polarization measurements made by
Planck [24]. This suggests us that one should look for
the signals of nonlocality studying other physical effects.
This paper is organized as follows: In Sec. II we introduce

the nonlocal scalar field action and discuss its properties.
In Sec. III we calculate the one-loop correction to the
potential for different nonlocal field actions. Finally we
leave to Sec. IVour conclusions and most relevant remarks.

II. NONLOCAL SCALAR FIELD

In this paper we consider nonlocal scalar fields with a
Lagrangian density given by

L ¼ −
1

2
ϕFð□=Λ2Þϕ − VðϕÞ; ð4Þ

where VðϕÞ is the scalar field potential which describes
self-interactions [for instance VðϕÞ ¼ λϕ4=4!] and FðzÞ is
a nonpolynomial analytic function, which in most cases can
be represented by a series expansion

FðzÞ≡X∞
n¼0

fnzn; ð5Þ

with fn ≠ 0 for any n > n0, with n0 ∈ N. By definition
Fð□=Λ2Þ contains derivatives of arbitrary order, which
makes the theory nonlocal.
From Eq. (4) it is immediate to recognize that the free

field propagator of the theory is

Gðk2Þ ¼ −
1

Fð−k2Þ ð6Þ

and this expression makes evident that to each zero of the
function FðzÞ corresponds a pole in the propagator, and
therefore a physical particle.
This conclusion is made more evident by the following

considerations (see [33]). Suppose that FðzÞ has a finite
number M of zeros. Due to the Weierstrass factorization
theorem, we can decompose it as

FðzÞ ¼ fðzÞ
YM
a¼1

ðzΛ2 þm2
aÞra ; ð7Þ

where the function fðzÞ has no zeros and no poles and ra
corresponds to a positive integer number. We can therefore
use a field redefinition,

φ≡ fð□=Λ2Þ1=2ϕ; ð8Þ

so that the Lagrangian given by Eq. (4) becomes

L ¼ −
1

2
φ
YM
a¼1

ð□þm2
aÞraφ − VðΓð□=Λ2Þ−1=2φÞ: ð9Þ

At this point one can introduce the M independent fields
φ as

φa ≡Y
b≠a

ð□=Λ2 þm2
bÞrbφ; a ¼ 1; 2…M: ð10Þ

and express the field ϕ as a superposition of the fields φa as

ϕ ¼ fð□=Λ2Þ−1=2
XM
a¼1

ηaφ
2; ð11Þ

where the coefficients ηa satisfy the relation

XM
a¼1

ηa
ðzþm2

aÞra
¼

�YM
a¼1

ðzþm2
aÞra

�−1

: ð12Þ

Therefore the Lagrangian density (9) can be expressed as

L ¼ −
XM
a¼1

1

2
ηaφ

að□þm2
aÞraφa

− V

�
Γð□=Λ2Þ−1=2

XM
b¼1

ηbφ
b

�
: ð13Þ

Restricting to the case in which all zeros of FðzÞ are
simple, i.e., ra ¼ 1∀ a, one has that the theory contains M
interacting constituent scalar fields. Since the ηa have
alternating sign, thus some of these constituent fields are
ghosts. We also note the following: from Eq. (13) it is
evident that, in the new variables, the nonlocality of the
theory is contained only in the potential V, and therefore it
follows that a noninteracting nonlocal theory is in fact local.
Since from the previous considerations it follows that

the unique ghost-free case is that with M ¼ 1, from now
on we limit our interest to functions of the type FðzÞ ¼
fðzÞðz −m2Þ, so that

L ¼ −
1

2
ϕfð□=Λ2Þð□þm2Þϕ − VðϕÞ; ð14Þ
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from which we can write the propagator, which is given by

Gðk2Þ ¼ 1

fð−k2=Λ2Þðk2 −m2Þ : ð15Þ

From the knowledge of the propagator it is possible to
obtain the one-loop correction to the scalar field potential,
as is explained in the next section

III. ONE-LOOP CORRECTIONS

In this section we calculate the one-loop effective
potential for this theory. To do it, we generalize the formula
(9–119) of [34], to find the one-loop correction to the scalar
field potential

Vð1Þ ¼ −
i
2

Z
d4k
ð2πÞ4 ½ln ½1 − Gðk2ÞV 00� þGðk2ÞV 00

þ 1

2
ðGðk2ÞV 00Þ2�: ð16Þ

The second and third terms in (16) are added, as in the
standard local case, to comply with the prescription of
normal ordering, which avoids the inclusion of tadpole
diagrams, and corresponds to the one-loop diagrams of the
two- and four-point functions [34].
Performing a Wick rotation, we obtain

Vð1Þ ¼ 1

2

Z
d4kE
ð2πÞ4 ½ln ½1 − Gð−k2EÞV 00� þ Gð−k2EÞV 00

þ 1

2
ðGð−k2EÞV 00Þ2�: ð17Þ

Therefore, to calculate the one-loop correction to the
potential we only need to know the form of the propagator
Gðk2Þ. In what follows we make this calculation explicitly
in the case of some specific choice of the function FðzÞ
which reduces to the local model at Λ → ∞.

A. Case 1

We first consider the theory described by the Lagrangian
density,

L ¼ −
1

2
ϕðexpð□=Λ2Þ□þm2Þϕ − VðϕÞ; ð18Þ

where we have considered the same exponential nonlocal
factor used in [32]. This Lagrangian provides the scalar
propagator

Gðk2Þ ¼ 1

k2 exp ð−k2=Λ2Þ −m2
: ð19Þ

From Eq. (17) and after integration over the solid angle,
one has

Vð1Þ ¼ 1

ð4πÞ2
Z

∞

0

dkEFðkE;Λ; m; V 00Þ; ð20Þ

where

FðkE;Λ; m; V 00Þ

≡ k3E

�
ln

�
1þ V 00

k2E exp½k2E=Λ2� þm2

�

−
V 00

k2E exp½k2E=Λ2� þm2

1

2

�
V 00

k2E exp½k2E=Λ2� þm2

�
2
�
;

ð21Þ

From the last expression we deduce the following: the
departure from the standard local result is given by
integration at high momenta kE ≳ Λ, where the exponential
expðk2E=Λ2Þ is significatively different from unity.
Therefore, if V 00=ðk2E expðk2E=Λ2Þ þm2Þ ≪ 1 at such high
momenta, the integrand is very small and the effect of
nonlocality is negligible. Thus we expect two significantly
different regimes: the strong field regime V 00 ≳ Λ, where
the effect of nonlocalities is stronger, and the weak field
regime V 00 ≪ Λ, where a similar effect is weaker.
Before proceeding with the explicit calculation of (20),

let us recall the one-loop correction in the case of a local
model. The local model is obtained in the limit Λ → ∞, and
it is given by

Vð1Þ
local ¼

1

ð4πÞ2
Z

∞

0

dkEF∞ðkE;m; V 00Þ

¼ 1

ð8πÞ2
�
ðV 00 þm2Þ2 ln

�
1þ V 00

m2

�

− V 00
�
3

2
V 00 þm2

��
; ð22Þ

where we have defined

F∞ðkE;m; V 00Þ ¼ lim
Λ→∞

FðkE;Λ; m; V 00Þ

¼ k3E

�
ln

�
1þ V 00

k2E þm2

�
−

V00

k2E þm2

þ 1

2

�
V 00

k2E þm2

�
2
�
: ð23Þ

It is useful for our proposal, to express Eq. (20) as

Vð1Þ ≃ 1

ð4πÞ2
Z

∞

Λ
dkE½F0ðkE;Λ; V 00Þ − F∞ðkE;m; V 00Þ�

þ Vð1Þ
local ¼ Vð1Þ

local þ δVð1Þ; ð24Þ

where

δVð1Þ ≡ Vð1Þ
a þ Vð1Þ

b ð25Þ
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represents the deviation from the result obtained in the local
theory and where we have defined

Vð1Þ
a ≡ −

1

ð4πÞ2
Z

∞

Λ
dkEF∞ðkE;m; V 00Þ

¼ −
1

ð8πÞ2
�
ln

�
1þ V 00

Λ2 þm2

�

× ðV 00ðV 00 þ 2m2Þ þm4 − Λ4Þ

−
V 00

2ðΛ2 þm2Þ ð3V
00m2 þ 2m4 þ V 00Λ2 − 2Λ4Þ

�

ð26Þ
and

Vð1Þ
b ≡ 1

ð4πÞ2
Z

∞

Λ
dkEF0ðkE;Λ; V 00Þ; ð27Þ

with

F0ðkE;Λ; V 00Þ≡ FðkE;Λ; m ¼ 0; V 00Þ

¼ k3E

�
ln

�
1þ V00

k2E exp½k2E=Λ2�
�

−
V 00

k2E exp½k2E=Λ2�

þ 1

2

�
V 00

k2E exp½k2E=Λ2�
�

2
�
: ð28Þ

While Vð1Þ
a is calculated exactly, it is not possible to find an

analytic expression for Vð1Þ
b , and we have to perform its

expression by making some simple assumption, namely,
considering the strong and weak field limits.

1. Strong field limit

Let us proceed with the calculation of (27) in the strong
field limit V 00 ≫ Λ2. First of all let us divide the integration
region in two intervals: I1 ≡ ½Λ; k̄� and I2 ≡ ½k̄;∞½, where
k̄≡ Λ

ffiffiffiffiffiffijXjp
and X is the solution of the equation

X exp½X� ¼ V 00=Λ2, which is approximately given by

X ≃ ln ½V 00=Λ2� − ln ½ln ½V 00=Λ2��: ð29Þ
Therefore, since V 00=Λ ≫ 1 one has k̄ > Λ.
The contribution to Vð1Þ coming from the integration

over I1 is therefore

Vð1Þ
I1
ðk̄Þ≃ 1

ð4πÞ2
Z

k̄

Λ
dkEF0ðkE;Λ; V 00Þ

¼ 1

6ð8πÞ2 ½6V
002ðEI½−2k̄2=Λ2� − EI½−2�Þ

þ 3ðk̄4 − Λ4Þ þ 2ðk̄6 − Λ6Þ=Λ2

þ 12V 00Λ2ðexp ½−k̄2=Λ2� − 1Þ − 6Λ4 ln ½V 00=Λ2��;
ð30Þ

where EiðzÞ≡ −
R∞
−z dt exp½−t�=t is the exponential inte-

gral function and Eið−2Þ≃ −0.0489. Note that in the
calculation we have neglected 1 with respect to V 00=
k2E exp½k2E=Λ2�.
Let us calculate the contribution arising from the

integration over I2. Since in this region V 00=k2E
exp½k2E=Λ2� ≪ 1, we can expand the logarithm in
F0ðkE;Λ; V 00Þ in power series and then integrate, so that
we obtain

Vð1Þ
I2
ðk̄Þ≃ 1

ð4πÞ2
Z

∞

k̄
dkEF0ðkE;Λ; V 00Þ

¼ Λ4
X∞
n¼3

Cnðk̄Þ
�
V 00

Λ2

�
n
; ð31Þ

where

Cnðk̄Þ≡ ð−1Þnþ1

2ð4πÞ2
1

n3−n
Γð2 − n; nk̄=Λ2Þ ð32Þ

with Γða; xÞ being the incomplete Gamma function.
Therefore one has

Vð1Þ
b ¼ Vð1Þ

I1
ðk̄Þ þ Vð1Þ

I2
ðk̄Þ: ð33Þ

To evaluate the effect of nonlocality we can estimate the
value of δVð1Þ=Vð1Þ

local in the strong field limit. From (22),
(30), (31) and (26), one has

Vð1Þ
local ≃

�
V 00

8π

�
2

ln ½1þ V00=m2�; ð34Þ

Vð1Þ
a ≃ −

�
V00

8π

�
2

ln ½1þ V 00=Λ2�; ð35Þ

Vð1Þ
I2

≃
�
V 00

8π

�
2

jEi½−2�j: ð36Þ

So,

Vð1Þ
I3

<

�
V 00

8π

�
2

ln ½1þ V 00=k̄2�≃
�
V 00

8π

�
2

ln ½1þ V 00=Λ2�:

ð37Þ

The estimations given by Eqs. (34)–(36) are obtained
by taking the limit V 00 ≫ k̄2 ≫ Λ2 ≫ m2 in Eqs. (22), (30),
(31) and (26). To obtain (37) it is necessary to note that,
since the function gðxÞ ¼ ln½1þ x� − xþ x2=2 grows
monotonically for any x > −1, one has
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Vð1Þ
I3

<
1

ð4πÞ2
Z

∞

k̄
dkEk3E½ln ½1þ V 00=k2E�

− V 00=k2E þ ðV 00=k2EÞ2=2�

¼ k̄4

ð8πÞ2 ½V
00=k̄2ð1 − V 00=2k̄2Þ

þ ln ½1þ V 00=k̄2�ððV 00Þ2=k̄4 − 1Þ�: ð38Þ

Therefore, from Eqs. (34)–(37) it follows that δVð1Þ ≃
Vð1Þ
a and therefore

δVð1Þ

Vð1Þ
local

≃ ln ½1þ V 00=Λ2�
ln ½1þ V 00=m2� ≪ 1; ð39Þ

which gives a measure of the effect of the nonlocality
of the scalar field on the one-loop corrections of the
bare potential. The conclusion is that, even in the strong
field limit, since Λ ≫ m, one has δVð1Þ=Vð1Þ

local ≪ 1, and
therefore, this effect is very small.

2. Weak field limit

Let us consider now the weak field limit in which
V 00=Λ2 ≪ 1 but V 00 ≫ m2. Since in this limit one has
V 00=k2E exp½k2E=Λ2� ≪ 1 for any kE ≥ Λ, one can always
expand the logarithm in (27) in power series and then
integrate, so that one obtains

Vð1Þ
b ðk̄Þ≃ 1

ð4πÞ2
Z

∞

k̄
dkEF0ðkE;Λ; V 00Þ

¼ Λ4
X∞
n¼3

CnðΛÞ
�
V 00

Λ2

�
n
; ð40Þ

where

CnðΛÞ≡ ð−1Þnþ1

2ð4πÞ2
1

n3−n
Γð2 − n; nÞ: ð41Þ

Now, taking the limit Λ2 ≫ V 00 ≫ m2 in (22), (26) and
(38), we obtain the result given by Eq. (34) and for Vð1Þ

a

we get

Vð1Þ
a ≃ −

2

3

�
1

8π

�
2 V003

Λ2
: ð42Þ

So,

Vð1Þ
I3

<

�
1

8π

�
2 V 003

Λ2
2Γð−2; 3Þ; ð43Þ

which finally gives

δVð1Þ

Vð1Þ
local

≃ V 00

Λ2

1

ln½V 00=m2� ≪ 1: ð44Þ

The comparison of (44) with (39) shows that the relative
correction to the result obtained in the local theory is much
stronger in the strong field limit.

B. Case 2

A second example is easily obtained considering the
Lagrangian density

L ¼ −
1

2
½ϕTð□Þð□þm2Þϕþ VðϕÞ�; ð45Þ

where we can choose Tð□Þ ¼ exp½−□=Λ2�. Calculations
are the same as in the previous case. In fact the one-loop
correction is given by

Vð1Þ ¼ 1

ð4πÞ2
Z

∞

0

dkEGðkE;Λ; m; V 00Þ; ð46Þ

where

GðkE;Λ; m; V 00Þ≡ k3E

�
ln

�
1þ V 00 exp½−k2E=Λ2�

k2E þm2

�

−
V 00 exp½−k2E=Λ2�

k2E þm2

þ 1

2

�
V 00 exp½−k2E=Λ2�

k2E þm2

�
2
�
: ð47Þ

From the simple observation that

G∞ðkE;m; V 00Þ ¼ lim
Λ→∞

GðkE;Λ; m; V 00Þ
¼ F∞ðkE;m; V 00Þ;

G0ðkE;Λ; V 00Þ≡GðkE;Λ; m ¼ 0; V 00Þ ¼ F0ðkE;Λ; V 00Þ
ð48Þ

one immediately realizes that one can repeat the same steps
of the previous section and arrive to the same results,
especially to Eqs. (39) and (44), for strong and weak
approximations.

C. Case 3

A further example in which we expect a different result is
given by the nonlocal Lagrangian density

L ¼ −
1

2
½ϕTð□Þð□þm2Þϕþ VðϕÞ�; ð49Þ

where the factor Tð□Þ was introduced in [17], and is
given by
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Tð□Þ≡ exp ½Hð−□=Λ2Þ�; ð50Þ

where

HðzÞ≡ 1

2
½γE þ ln ½pnðzÞ2� − Eið−pnðzÞ2Þ�

¼
X∞
k¼1

ð−1Þkþ1

2kk!
ðpnðzÞÞ2k; ð51Þ

and pnðzÞ is a polynomial of order n such that pnðzÞ ≪ 1,
for any z≲ 1 and pnðzÞ≃ zn, for z≳ 1. These conditions
imply that HðzÞ≃ 1 for z≲ 1 and HðzÞ≃ zn for z≳ 1.
In this case the one-loop correction is given by

Vð1Þ ¼ 1

ð4πÞ2
Z

∞

0

dkEQðkE;Λ; m; V 00Þ; ð52Þ

where now

QðkE;Λ; m; V 00Þ≡ k3E

�
ln

�
1þ V 00

exp ½Hðk2E=Λ2Þ�ðk2E þm2Þ
�

−
V 00

exp ½Hðk2E=Λ2Þ�ðk2E þm2Þ

þ 1

2

�
V 00

exp ½Hðk2E=Λ2Þ�ðk2E þm2Þ
�

2
�
:

ð53Þ

It is worth noting that in this case, we have

Q∞ðkE;m; V 00Þ ¼ lim
Λ→∞

GðkE;Λ; m; V 00Þ
¼ F∞ðkE;m; V 00Þ;

G0ðkE;Λ; V 00Þ≡GðkE;Λ; m ¼ 0; V 00Þ ≠ F0ðkE;Λ; V 00Þ;
ð54Þ

and thus, we expect different results compared with
previous cases.
The one-loop correction can be expressed again as in

Eq. (24), where now

δVð1Þ ≡ Vð1Þ
a þ Vð1Þ

b ; ð55Þ

and Vð1Þ
a ≡ − 1

ð4πÞ2
R
∞
Λ dkEQ∞ðkE;m; V 00Þ is the same as in

(26), while

Vð1Þ
b ≡ 1

ð4πÞ2
Z

∞

Λ
dkEQ0ðkE;Λ; V 00Þ ð56Þ

must be calculated.
In what follows we consider the two previous limiting

cases.

1. Strong field limit

In the limit V 00 ≫ Λ2, once again, we can divide the
integral (56) into two parts:

Vð1Þ
I2

≡ 1

ð4πÞ2
Z ~k

Λ
dkEQ0ðkE;Λ; V 00Þ ð57Þ

and

Vð1Þ
I3

≡ 1

ð4πÞ2
Z

∞

~k
dkEQ0ðkE;Λ; V 00Þ; ð58Þ

where the ~k is defined by the relation V 00Λ2n=~k2þ2n ¼ 1.
One has

Vð1Þ
I2

¼ 1

2ð8πÞ2
�
4
V 00Λ2

n − 1

��
Λ2

V 00

�
n−1=nþ1

− 1

�

þ V 002

n

�
1 −

�
Λ2

V 00

�
2n=nþ1

�
þ ðnþ 1Þð~k4 − Λ4Þ

− Λ4 ln

��
V 00

Λ2

�
2
��

≃ 1

2n

�
V 00

8π

�
2

ð59Þ

and

Vð1Þ
I3

¼ C#

�
Λ2

8π

�
2
�
V 00

Λ2

�
2=nþ1

; ð60Þ

where C# ¼
P∞

m¼3
ð−1Þmþ1

m½m
2
ðnþ1Þ−1� > 0 is a real number.

As a conclusion, we can say that the estimation given by
Eq. (39) remains valid also for the form factor (60).

2. Week field limit

In the weak field limit V 00 ≪ Λ2, one has

Vð1Þ
b ¼ Λ4

ð8πÞ2
X∞
m¼3

ð−1Þmþ1

m½m
2
ðnþ 1Þ − 1�

�
V 00

Λ2

�
m
; ð61Þ

and therefore, we obtain the same results as in Eq. (44).

IV. CONCLUSIONS

In this paper we have considered nonlocal scalar field
models with generic potential and studied the effect of
the nonlocality on the one-loop corrections to the bare
scalar field potential. Three different models have been
considered. All of them reduce themselves to the local
model for the case where Λ → ∞. Moreover, in order to
estimate the influence of the nonlocality we have con-
sidered two different situations: the strong and weak
field limits. We have found that the nonlocality effect is
stronger in the strong field limit, i.e., V 00 ≫ Λ2, but indeed
very small.
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The implications of this finding are important and
suggest us to ask the question whether nonlocality of
fundamental fields might have observable cosmological
signatures. In fact, one might suppose that the inflaton field
is nonlocal, so that during inflation, at very high energies,
corrections due the scalar field potential associated with
nonlocality might play some role in the generation of
cosmological perturbations. However, due to the extreme
smallness of such corrections, we expect that their trace in
cosmological observables should not be detected.
Let us make this claim more clear and let us consider

the slow roll parameters ϵ and η, the power spectrum of
curvature perturbations PζðkÞ and the spectral tilt nðkÞ.
These quantities are determined by the complete effective
potential Veff of the inflaton field, and their expressions are

ϵ ¼ M2
Pl

2

�
V 0
eff

Veff

�
2

; ð62Þ

η ¼ M2
Pl
V 00
eff

Veff
; ð63Þ

PζðkÞ ¼
1

24π2M4
Pl

Veff

ϵ
; ð64Þ

and

nðkÞ − 1 ¼ −6ϵþ 2η; ð65Þ
where MPl is the Planck mass (see [35]).
In the case of a nonlocal inflaton field, the effective

scalar field potential will be

Veff ¼
m2

2
ϕ2 þ VðϕÞ þ Vð1Þ

local þ δVð1Þ ¼ V local
eff þ δVð1Þ;

ð66Þ

where V local
eff ≫ δVð1Þ and again δVð1Þ represents the non-

locality-induced corrections to the effective inflaton poten-
tial. Since in our case one has that

δVð1Þ=V local
eff ≲ ðV 00=Λ2Þ= lnð1þ V 00=m2Þ ð67Þ

is extremely small (assuming Λ ∼MPl) and since ϵ, η, PζðkÞ
and nðkÞ are measured with nearly percent precision [24],
one concludes that there is no chance to detect the effect of
δVð1Þ with current experimental precision. This suggests that
one should look for other physical effects in order to detect
signals of the nonlocal nature of the physical fields.
It is interesting to note that the methodology of so-called

coherent states [36] proposed as a manner to implement
the noncommutativity alternative to the well-known Moyal
product approach, effectively represents itself as an equiv-
alent description of the nonlocal field theory discussed in
this paper. Therefore, as a by-product of our study, we
arrive at some justification for the coherent states approach.
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