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Abstract We present a quasi-two-dimensional numerical simulation of the flow of
a thin layer of electrolyte past a pair of localized Lorentz forces, named magnetic
obstacles, placed side by side. Opposing Lorentz forces are produced by the interac-
tion of the magnetic field created by a pair of small permanent magnets and a D.C.
current applied tranversally to the main flow. By varying the separation between the
magnets and the intensity of the applied current, different flow regimes are analyzed.
The attention is focused on the interference of the wakes created by the magnetic
obstacles.

1 Introduction

The flow past solid obstacles is certainly one of the most widely studied problems
in fluid dynamics and constitutes in itself a classic subject of research (Zdravkovich
1997). Its importance stems from countless applications where determining the
behavior of flows past bluff bodies is of practical interest. From the point of view of
dynamical system, the understanding of the spatio-temporal behavior of the wakes
formed in flows past solid obstacles presents interesting challenges. When more than
one obstacle is present, investigating the interference of wakes becomes a relevant
issue (Gal et al. 1996). In fact, the behavior of coupled wakes created by a pair
of cylinders placed side by side in a uniform flow has been studied experimentally
and theoretically by several authors and different flow regimes have been identi-
fied according to the separation between the cylinders (Zdravkovich 1985; Le Gal
et al. 1990; Peschard and Gal 1996; Sumner et al. 1999). But, wakes are not only
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produced by solid obstacles. It has been shown that localized magnetic forces in
flows of electrically conducting fluids act as obstacles for the flow. When the con-
ducting fluid is a liquid metal, the relative motion of the fluid and a localized magnetic
field induces electric currents that interact with the same field to produce a Lorentz
force braking the liquid (Cuevas et al. 2006; Votyakov et al. 2007). In the case of an
electrolyte, due to the low conductivity of the fluid, induced currents are negligible
but an opposing Lorentz force can still be created if an electric current is externally
applied (Honji 1991; Honji and Haraguchi 1995; Afanasyev and Korabel 2006).
In both cases, experimental and theoretical studies have shown the appearance of
different flow regimes such as steady vortices, vortex shedding, and even turbulent
wakes (Honji and Haraguchi 1995; Afanasyev and Korabel 2006; Votyakov et al.
2008; Kenjeres et al. 2011). In fact, the term magnetic obstacle was coined (Cuevas
et al. 2006) to emphasize that localized Lorentz forces produce flow behaviors that
in some aspects resemble flows past solid obstacles, although very important differ-
ences exist.

So far, investigations of flows past magnetic obstacles have mainly addressed the
problem of a single obstacle in liquid metal flows (see, for instance, Votyakov et al.
2008; Kenjeres et al. 2011; Tympel et al. 2013). Recently, the flow in an array of three
magnetic obstacles has been simulated numerically (Kenjeres 2012), a situation that
may have relevance for heat transfer applications (Zhang and Huang 2013). Flows
of electrolytes past magnetic obstacles have been less explored. Honji (1991) and
Honji and Haraguchi (1995) performed experiments in a shallow layer of salt water
contained in a long tank, where a D.C. current was applied transversally to the tank’s
long axis, while a permanent magnet located externally was dragged at a constant
velocity along the center line of the water tank. Similarly, more extensive experiments
were performed by Afanasyev and Korabel (2006). These authors considered flows
produced by a single magnet as well as by two magnets with opposite orientations,
aligned with the direction of motion and separated by a short distance. However, to
the best of our knowledge, the electrolytic flow created by a pair of magnetic obstacles
side by side has not been previously considered. This problem is interesting, since
the analogous flow with solid obstacles has been investigated extensively so that
flow regimes are well characterized (Zdravkovich 1985; Peschard and Gal 1996;
Sumner et al. 1999). In the present paper, we explore numerically the flow past a
pair of magnetic obstacles side by side and compare the flow regimes with those
corresponding to the flow past solid cylinders.

2 Formulation of the Problem

We consider the flow of a shallow layer of an electrolyte in a rectangular container
affected by localized Lorentz forces, i.e. magnetic obstacles. The forces are produced
by the interaction of magnetic fields generated by two permanent magnets and a D.C.
electrical current applied transversally to the main flow through electrodes located in
the lateral walls and connected to a power source. Square magnets whose side length
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Fig. 1 Sketch of the electrolytic flow past a pair of magnetic obstacles side by side. See details in
the text

L is much smaller than the distance between lateral walls, are placed beneath the
bottom wall of the container with an orientation such that resulting Lorentz forces
oppose the oncoming flow and generate vorticity. Figure 1 shows a sketch of the
problem under consideration. Since the thickness of the fluid layer is assumed to be
small compared with horizontal dimensions, we use a quasi-two-dimensional (Q2D)
numerical model that only considers the component of the applied magnetic field
normal to the plane of motion. This component can be expressed as

B0
z (x, y, z) = B(x, y)g(z), (1)

where B(x, y) reproduces the variation of the magnetic field in the x–y plane and is
modeled by a dipolar field distribution created by a square magnetized surface uni-
formly polarized in the normal direction, for which an explicit analytical expression
is available (McCaig 1977; Cuevas et al. 2006). In fact, the shape of the magnets is
irrelevant provided the plane of flow is separated from the surface of the magnet, so
that border effects are smoothed out (Figueroa et al. 2009). In turn, g(z) = exp(−γ z)
models the decay of the magnetic field in the normal direction z (normalized by the
layer thickness h), where γ = 0.51 is an empirical constant obtained from fitting the
decay of the magnetic field in the vertical direction (Beltrán 2010) with experimental
data from a permanent magnet (Honji 1991). In addition, the Q2D model assumes
that the momentum transfer through the thin electrolytic layer is mainly diffusive so
that the velocity field can be expressed as

u(x, y, z, t) = [u(x, y, t) f (x, y, z), v(x, y, t) f (x, y, z), 0], (2)



418 J. Román et al.

where u and v are the mean velocity components in the x–y plane, while f (x, y, z)
reproduces the velocity profile in the layer thickness (Beltrán 2010). Since the elec-
trical conductivity of the electrolyte is low compared with that of liquid metals, and
the magnetic field intensity of permanent magnets is weak, induced currents in the
fluid are negligible. Therefore, it becomes unnecessary to solve the induction equa-
tion to determine the induced magnetic field. Only the applied current is relevant for
calculating the Lorentz forces (Figueroa et al. 2009).

Substituting Eqs. (1) and (2) in the three-dimensional equations of motion and
averaging along the height of the fluid layer, we obtain the Q2D equations. A detailed
description of the averaging procedure can be found in (Beltrán 2010; Figueroa et al.
2009). In dimensionless terms, the equations of motion in the Q2D approximation
take the form

∂u

∂x
+ ∂v

∂y
= 0, (3)

∂u

∂t
+

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂ P

∂x
+ 1

Re
∇2⊥u + u

τ
− Q B0

z , (4)

∂v

∂t
+

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂ P

∂y
+ 1

Re
∇2⊥v + v

τ
, (5)

where the overline in the velocity components was dropped and subindex ⊥ denotes
the projection of the ∇ operator on the x–y plane. The velocity components, u and v,
the pressure, P , the applied current density, j , and the applied magnetic field, B0

z , are
normalized by U , ρU 2, J0 and Bmax , respectively. Here, U is the uniform entrance
velocity, ρ is the mass density, Bmax is the maximum intensity of the magnetic field,
and J0 is the magnitude of the applied current density. Dimensionless coordinates
x and y are normalized by L , while time, t , is normalized by L/U . Dimensionless
parameters Re and Q stand for the Reynolds number Re = U L/ν, where ν is the
kinematic viscosity, and the Lorentz force parameter Q = J0 Bmax L/ρU 2 which
is the ratio of a magnetic pressure drop caused by the applied Lorentz force and
the free-stream dynamic pressure. Essentially, Q characterizes the strength of the
Lorentz forces. The third term on the right-hand-side of Eqs. (4) and (5) represents
the Rayleigh friction between the fluid and the bottom wall. It involves a characteristic
dimensionless timescale, τ , for the decay of vorticity due to dissipation in the viscous
layers and is given by (Beltrán 2010)

τ−1 = γ (1 − e−γ )
1
γ
(1 − e−γ ) + γ

2 e−γ − 1
. (6)

The considered boundary conditions are the following. At the entrance, a uniform
flow is imposed in the x-direction, therefore

u = 1, v = 0, at x = 0, 0 ≤ y ≤ H. (7)
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At the outlet, Neumann boundary conditions are used, that is,

∂u

∂x
= ∂v

∂x
= 0, at x = X L , 0 ≤ y ≤ H. (8)

At the side walls, we use no-slip conditions:

u = 0, v = 0, at y = 0, H, 0 ≤ x ≤ X L . (9)

Here, H is the separation between lateral boundaries which determines the solid
blockage of the confined flow, characterized by the blockage parameter β = 1/H .
In turn, X L is the total length of the channel. The magnetic obstacles are located at
distances Xu from the entrance and Xd from the outlet. All the lengths are measured
in dimensionless units. The centers of the magnets are separated by a dimensionless
distance D = d/L , where d is the dimensional separation. Figure 2 shows a sketch
of the flow conditions considered for the numerical solution.

A finite volume method implemented with a SIMPLEC algorithm is used to solve
the governing equations (3)–(6) with boundary conditions (7)–(9). The diffusive and
convective terms are discretized using a central difference scheme. Accurate tem-
poral resolution is provided by choosing a small enough time step and employing a
second order scheme for the time integration. The numerical solution was obtained
in a rectangular domain with a length of X L = 35 dimensionless units in the stream-
wise direction and H = 7 units in the cross-stream direction using an equidistant
orthogonal grid of 212 × 202 nodes. It was determined that an upstream distance
Xu = 10 and a downstream distance Xd = 25 guarantee results that are nearly
independent of the location of the obstacles.
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Fig. 2 Sketch of the geometry and boundary conditions considered for the analyzed flow
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3 Numerical Results

In a similar way as when the obstacles are solid cylinders, flows past a pair of
magnetic obstacles side by side present different regimes according to the flow con-
ditions. While hydrodynamic regimes are governed only by the Reynolds number
and the dimensionless separation distance D (provided three-dimensional effects are
neglected), in the present case flow regimes are controlled by Q, in addition to Re
and D. The variation of these parameters leads to steady or time-dependent regimes,
as occurs in flows with a single magnetic obstacle (Honji and Haraguchi 1995;
Afanasyev and Korabel 2006). We present numerical results for a pair of magnetic
obstacles side by side with a fixed Reynolds number, Re =1,000, and investigate
the variation of Q and D on the flow dynamics. We consider flow conditions where
vortex shedding is present and explore the effect of separation distance D on the
coupling of the wakes behind the obstacles. The parameter Q is varied in the range
1.5 ≤ Q ≤ 10, and for a given D, the value of Q corresponds to the minimum value
where vortex shedding appears. In turn, four different values of D are explored,
namely, 1, 1.5, 2, and 3, which are of interest since results for the hydrodynamic flow
past a pair of solid obstacles are available in the literature for these cases (Peschard
and Gal 1996; Zdravkovich 1985).

In hydrodynamic flows, it has been reported that for large distances between the
cylinders, the pair of wakes presents a weak coupling where in phase and out of
phase vortex shedding can appear. In turn, for shorter distances a strong coupling
arises and only in phase shedding is observed which produces a unique von Kár-
mán street (Peschard and Gal 1996; Zdravkovich 1985). At intermediate range of
coupling, a bistable regime can emerge which is characterized by a biased flow that
gives two possible values for the vortex shedding frequency. The biased flow is an
intermittent flow between two asymmetric states. That is, through the gap the biased
flow divides asymmetric states with narrow and wide wakes which can intermittently
interchange between the two cylinders (Zdravkovich 1985), apparently driven by a
random process (Peschard and Gal 1996). We now show that similar regimes are
observed in the wakes created by a pair of magnetic obstacles side by side.

Figure 3 shows the Lagrangian tracking of flows obtained numerically for different
values of D, with the corresponding minimum value of Q where vortex shedding
appears. For the smallest separation distance, D = 1 (see Fig. 3a), the magnets are in
contact and act as a larger magnetic obstacle that gives rise to a single wake similar
to the von Kármán street. If the gap between the obstacles is increased to D = 1.5,
we find a bistable regime where the flow pattern is rather complex, as is observed
in Fig. 3b. A further increase to D = 2 (see Fig. 3c) leads to a more structured flow
pattern with two interlaced wakes in phase. For the larger gap explored, namely
D = 3, the separation between the wakes is neatly defined and the in phase behavior
still persists, as observed in Fig. 3d.

To improve the understanding of the flow behavior and the coupling of the wakes
behind the magnetic obstacles, the velocity component in the x-direction is shown
in Fig. 4 as a function of time at two distinct points located on the central line of each
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(a) (b)

(c) (d)

Fig. 3 Lagrangian tracking of the numerically calculated flow past a pair of magnetic obstacles
side by side at different separation distances. Re =1,000. a D=1, Q = 2.7. b D=1.5, Q = 2.9.
c D=2, Q = 2.4. d D=3, Q = 2.3

(a) (b)

(d)(c)

Fig. 4 Velocity component in the x-direction as a function of time at two different points. Blue
(red) line corresponds to the point located at the central line of the upper (lower) obstacle five
dimensionless units downstream. Re =1,000. a D = 1, Q = 2.7. b D = 1.5, Q = 2.9. c D = 2,
Q = 2.4. d D = 3, Q = 2.3
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obstacle, five dimensionless units downstream. For D = 1 (Fig. 4a), corresponding
to the single wake of a large magnetic obstacle, the velocity signals oscillate in
antiphase. This is consistent with the fact that a large oscillating vortex structure
is formed behind the obstacle so that in the symmetrically located points where
the signals are registered, the velocity in the x-direction takes opposite values. For
D = 1.5 which corresponds to the bistable flow, velocity oscillations do not present
a defined structure. This seems to be a characteristic feature of this regime as it has
been reported in the literature for the case of circular cylinders (Zdravkovich 1985;
Peschard and Gal 1996). Figure 4c clearly shows in phase oscillations of the velocity
signals when D = 2 where even the amplitude of the oscillations coincides. Finally,
when D = 3 (Fig. 4d), although velocity oscillations are in phase, amplitudes do not
coincide which indicate a weaker coupling of the wakes.

Important information can also be obtained from the Fourier analysis of the tem-
poral behavior of the velocity signals, particularly for determining the dominant
dimensionless frequency of the flow, that is, the Strouhal number. It is precisely at
this frequency at which the greatest amount of energy in the flow is transported.
Figure 5 shows the power spectrum obtained through the fast Fourier transform of
the corresponding velocity signals presented in Fig. 4 for different values of D. Only
the spectrum at one point is shown since it coincides with the one at the other
point. In Fig. 5a (D = 1), a clear dominant characteristic frequency of 0.152 and its
corresponding harmonics are shown. This frequency is close to the ones obtained

(a) (b)

(d)(c)

Fig. 5 Power spectrum calculated by the Fast Fourier Transform of the velocity signals presented
in Fig. 4. Re =1,000. a D = 1, Q = 2.7. b D = 1.5, Q = 2.9. c D = 2, Q = 2.4. d D = 3,
Q = 2.3
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experimentally by Honji and Haraguchi (1995) for the flow past a single magnetic
obstacle. Further, it almost coincides with the value of 0.150 corresponding to the
flow past a solid cylinder (Zdravkovich 1997). For the bistable flow at D = 1.5
(Fig. 5b), it does not exist a clear dominant frequency since this local analysis does
not capture the global behavior of the biased flow that may present two distinct char-
acteristic frequencies for the vortex shedding. Finally, Fig. 5c,d display very similar
Strouhal numbers of 0.235 and 0.237 for D = 2 and D = 3, respectively. It could be
expected that for a large enough separation distance, the dominant frequency of each
wake should be close to that of a single magnetic obstacle (≈0.152). The difference
with the latter case for D = 2 and D = 3 manifests that the coupling of the wakes
is still present at these separation distances. In fact, for the flow past a pair of solid
cylinders side by side, the uncoupling of the wakes is observed at D ≈ 5.5 (Le Gal
et al. 1990).

A characteristic feature of the bistable regime is the tendency of the flow in the
gap between the obstacles to tilt towards one obstacle at a given time and towards the
other obstacle at a later time. This deflection breaks the symmetry of the flow pattern
(Le Gal et al. 1990). Figure 6 illustrates this phenomenon through the instantaneous
velocity fields at two different times for the bistable regime observed when D = 1.5.

Although in previous results only time-dependent flows were considered, at lower
values of Q steady flow patterns displaying a vortex pair are found (Román 2013).
With the aim of describing the studied flow in a more complete way, Fig. 7 presents
a map that shows the regions of steady and time-dependent behavior in terms of the
analyzed values of Q and D, for Re =1,000. The transition zone between steady
and unsteady flows is presented with a gray strip since it is not possible to determine
an exact value for this transition. This map is built based on the time behavior of the
velocity signals. It is observed that for a fixed D, vortex shedding disappears as Q
decreases.
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Fig. 6 Instantaneous velocity fields for the bistable regime. Re =1,000, Q = 2.9 and D = 1.5. a
t = 1975, b t = 1992
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Fig. 7 Stability map of the
flow past a pair of magnetic
obstacles side by side. The
gray strip displays the
transition zone between
steady and time-dependent
flow. Re =1,000
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4 Concluding Remarks

In this work, we have investigated numerically using a Q2D model the flow past a
pair of magnetic obstacles side by side at a fixed Reynolds number, Re =1,000.
We analyzed the coupling of the wakes behind the magnetic obstacles under vortex
shedding conditions for different values of the dimensionless separation distance,
namely, D = 1, 1.5, 2, and 3. From the numerical velocity field, Lagrangian tra-
jectories were obtained which allow to visualize different flow structures. A strong
coupling was found for D = 1 where the pair of obstacles act as a large magnetic
obstacle that produces a single wake whose dominant frequency is close to the one
found experimentally (Honji and Haraguchi 1995) and almost coincide with that of
the flow past a solid cylinder. A more complex pattern was found for D = 1.5 where
an intermediate coupling leads to a bistable regime, characterized by a biased flow
with asymmetric flow structures. Finally, a weaker coupling of the wakes was found
for D = 2 and D = 3, where well defined in phase wakes are observed. In general
terms, it can be stated that the flow past a pair of magnetic obstacles side by side
presents similar regimes as those observed in the wakes created by a pair of solid
cylinders.
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