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Computer simulations (molecular dynamics) were performed for ensembles of flexible tangent Lennard-Jones chains con-
sisting of n sites (n = 1, 2, 4, 8, and 16). From these simulations, the orthobaric liquid and vapour densities were calculated
not only with the traditional method of simulating a liquid film in coexistence with vapour, but also using the rigorous
thermodynamic condition of satisfying the chemical potential equality between the phases in equilibrium. The agreement
with literature data, as far as such exist, is excellent.
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1. Introduction

Over the previous decades, many publications reported the
properties of the Lennard-Jones (LJ) fluid; the well-known
textbook of Hirschfelder, Curtiss, and Bird [1] already cites
many publications, where properties were calculated from
integral equations, cluster integrals, or similar tools. The
LJ fluid has been studied extensively with computer simu-
lation methods (molecular dynamics (MD) or Monte Carlo
techniques) as well as the statistical–mechanical methods
like the perturbation theory. The amount and the quality of
the thermophysical properties obtained by these methods
have allowed for the development of reference equations of
state (EOSs) for the LJ fluid [2–4], from which the equation
of Mecke et al. [5] is probably the most recent one.

For the LJ dimer fluid, the data situation is also quite
good, and consequently an EOS could also be constructed
[6]. Furthermore, computer simulations have also been re-
ported for flexible tangent LJ chain fluids [7,8]. The number
of publications dealing with this class of fluids, however,
is much smaller than for LJ monomers and dimers. The
properties obtained from these simulations are mostly pVT
and the phase equilibrium; again, an EOS for LJ chains was
also proposed [7].

However, thermophysical properties of LJ chain
molecules have not been explored as thoroughly as for LJ
monomers and dimers, at least not for the whole fluid re-
gion (low to high densities). We have therefore undertaken
computer simulations of flexible tangent LJ chain fluids
with chain lengths between 1 and 16 and have determined
pVT data, chemical potentials, and vapour–liquid phase
equilibria.

∗
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2. Theory

2.1. Interaction potentials

In this work, we consider flexible molecules consisting of n
tangent spherical sites, where n is 1, 2, 4, 8, or 16. The full
site–site LJ interaction potential is

uLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (1)

where ε is the energy constant (or well depth), σ is the diam-
eter of a site, and r is the site–site separation. In this work,
we use the spherically truncated and shifted LJ potential
[9]:

uSTS(r) =
{

uLJ(r) − uLJ(rcut−off ) r < rcut−off

0 r ≥ rcut−off
, (2)

where rcut-off is the cut-off distance. Thus, the spherically
truncated force is given by

F (r) =
{− duLJ(r)

dr
r < rcut−off

0 r ≥ rcut−off
. (3)

The calculations were carried out using the LJ parame-
ters of argon, ε/kB = 119.8 K and σ = 0.3405 nm, where
kB is the Boltzmann constant. Throughout this work, re-

duced (dimensionless) properties are used: t∗ = t
σ

√
ε

mp
,

T ∗ = kBT
ε

, ρ∗ = σ 3ρ, p∗ = pσ 3

ε
, μ∗ = μ

ε
, where t is the

time, mp is the mass of a particle or ‘atom’, T is the tem-
perature, ρ is the atomic number density, p is the pressure,
and μ is the chemical potential.

C© 2014 Taylor & Francis
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A chain is defined as a molecule made of n atoms joined
by strong harmonic bonds described by a simple spring-type
potential [7]:

ubond = −1

2
k (r − σ )2 . (4)

We used a value of 3000 ε/σ 2 for the spring constant
k, as also proposed by Johnson et al. [7]. No bond angle
deformation or torsion potentials are used, i.e., the chain
molecules studied in this work are fully flexible.

2.2. Simulation details

The simulations reported here were based on the molecu-
lar dynamics method, using an NVT ensemble. The temp-
erature was kept constant by velocity scaling. The simula-
tion code was developed by the authors.

The reduced time step was �t∗ = 0.0025 and the cut-
off distance was set to 5.5σ . The number of molecules
were 1000 for n = 1, 800 (1600 atoms) for n = 2, 400
(1600 atoms) for n = 4, 300 (2400 atoms) for n = 8, and
200 (3200 atoms) for n = 16. A Verlet [10] algorithm and
periodic boundary conditions were used. For all properties,
standard deviations were computed in order to obtain the
statistical errors.

At the beginning of a simulation run, the molecules
were placed into an expanded simulation box; then the
box was compressed to the desired density. In contrast to
the common practice of starting from a crystalline initial

configuration, this method does not require designing a
crystal structure (for some non-spherical molecules not a
trivial task) and eliminates the danger that the order of the
crystal affects the structure of the fluid. Equilibration was
observed to be rapid even for dense states; usually around
1 × 106 MD steps were used for this stage, and 5 × 106

MD steps were used for the production stage.

2.3. Phase equilibrium

Phase equilibria were determined directly by simulating a
liquid film in coexistence with vapour [11,12]. In order to
obtain equilibrated films of sufficient thickness, first the liq-
uid was equilibrated in a simulation box with one side five
to eight times longer than the other two sides (Lx = Ly =
11σ and Lz = 55σ–88σ ). Then, forces of opposing direc-
tion were applied on each side of the box (see Figure 1(a)).
These forces acted like a gravitational field forming a liquid
film at the centre of the box. Once the film had been formed,
the gravity was turned off, and the particles began to evap-
orate until equilibrium was reached (see Figure 1(b)). If
necessary, a correction to the centre of mass was made to
avoid any displacement of the film. After equilibrium had
been reached, a density profile was constructed (Figure 2).
For this, the simulation box was divided into 200 equal
slices and the average over time of the number of particles
inside each section was estimated.

The orthobaric bulk liquid and vapour densities, ρ liq

and ρvap, respectively, were first obtained by fitting a

5
0

5

y

gx gx

20 0 20

x

5

0

5

z

5 0
5

y

20 0 20

x

5

0

5

z

Figure 1. (a) Formation of a liquid film and (b) liquid and vapour in coexistence for T∗ = 1.
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Figure 2. Determination of the equilibrium densities from a den-
sity profile for n = 1. •: simulation, —: fitted hyperbolic-tangent
profile, Equation (3). From bottom to top: T∗ = 1.1, T∗ = 1, T∗ =
0.9, T∗ = 0.8, and T∗ = 0.7.

hyperbolic-tangent profile to the local density data [13],

ρ(z) = 1

2
(ρliq + ρvap) − 1

2
(ρliq − ρvap) tanh

(
2z

d

)
,

(5)

where z is the coordinate perpendicular to a vapour–liquid
interface centred at the origin and d is the interfacial thick-
ness.

2.4. Chemical potential

The chemical potential is an important thermodynamic
quantity that controls not only the diffusion of the species,
but also chemical reactions. One practical way to calculate
chemical potentials is Widom’s method [14], according to
which a ʻghostʼmolecule is inserted randomly into a system
of n atoms; the resulting change of the internal energy, �U,
is recorded. The residual chemical potential is obtained as
[15]

μres = −kBT ln

〈
exp

(
− �U

kBT

)〉
, (6)

where μres is the residual chemical potential. In order to
avoid numerical overflow conditions, insertion attempts
were aborted when the distance of the inserted atom from
any other atom becomes less than 0.8σ .

For chains, we try to insert the entire molecule at once.
This is achieved by inserting the first atom randomly; next,
another atom is attached to the first one, and a check for
an overlap with all other atoms in the system is made (if
there is one, the insertion attempt of this chain is aborted;
otherwise, the energy needed for this insertion is recorded).
This procedure is repeated until the complete chain has been
inserted. Then the sum of all single-atom insertion energies
is used in Equation (6).

For the calculation of the total chemical potential, the
ideal-gas chemical potential [16] is also required,

μid = kBT ln
(
Nλ3

/
V

)
, (7)

where λ = h√
2πmpkBT

is the de Broglie wavelength and h is

the Planck constant.
The insertion method outlined above becomes ineffi-

cient for long-chain molecules at high densities, because
the probability of finding vacancies for 8 or 16 atoms gets
very small and a large number of insertion attempts have to
be made to obtain significant contributions to the average
Boltzmann factor in Equation (6). To overcome this diffi-
culty, it is possible to devise sequential insertion schemes.
For this work, however, a more efficient method is used
[17]. According to classical thermodynamics, the residual
chemical potential of a pure fluid can be obtained by

μres = −
∫ Vm

∞
presdVm + pVm − RT . (8)

Using the reduced density as integration variable and
switching to reduced quantities yields

μ∗
res = m

∫ ρ∗

0

p∗
res

ρ2
dρ∗ + mp∗

res

ρ∗ ,

(9)

where

p∗
res = p∗ − ρ∗T ∗

m
(10)

denotes the reduced residual pressure. To compute μ∗
res val-

ues, we constructed smoothing natural cubic spline func-
tions [18] through p

∗
(ρ

∗
) data obtained in this work and

integrated these analytically.
The evaluation of the pressure in a molecular simulation

involves an ensemble average of the pairwise interactions
that can be written explicitly in the usual virial form as
[19]

p = 〈ρkBT 〉 +
〈

1

3V

∑
i

∑
j<i

rij · fij

〉
, (11)

where ρ = N/V is the number density, rij is the intermolec-
ular vector between a pair, and fij denotes the forces exerted
on atom i by atom j. The first term on the right-hand side
of Equation (11) is the kinetic (ideal-gas) contribution and
the second term represents the residual contribution arising
from the interactions.
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3. Results

3.1. Phase equilibrium results

In Figure 1(a), we can observe the formation of the liq-
uid film with the help of an external force (gravity) for
m = 1 and in Figure 1(b), we can observe the coexistence
of the liquid with the vapour. In Figure 2, the density profile
is presented for different temperatures for n = 1, with the
profiles fitted with Equation (5).

If the same method is applied for different tempera-
tures, a T–ρ diagram can be constructed. Figure 3 shows a
comparison of our results with the reference data reported
by Trokhymchuk and Alejandre [9] for the same cut-off
distance.

The ρ liq and ρvap of every system (n = 1, 2, 4, 8, and 16)
were calculated for several temperatures. Figure 4 shows the
vapour–liquid equilibrium diagram for different number of
atoms in the chain compared with reference data reported by
MacDowell and Blas [20]. As expected, the phase envelope
shifts to lower temperatures with increasing chain length.

Figure 3. Reduced orthobaric densities as functions of the re-
duced temperature for n = 1. ◦: MD simulation (this work), �:
Trokhymchuk and Alejandre [9].
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Figure 4. Vapour–liquid equilibrium (temperature vs. density)
for chains of different lengths: �: n = 4, �: n = 8, and �:
n = 16 (this work) and �: n = 4, ♦: n = 8, and �: n = 16
(data from MacDowell and Blas [20]).

Table 1. Reduced orthobaric densities for flexible Lennard-
Jones chains of length n.

T∗ ρ∗
liq ρ∗

vap P∗

n = 1
0.7 0.826(3) 0.0021(3) 0.00096(5)
0.8 0.790(3) 0.0063(2) 0.0048(4)
0.9 0.747(2) 0.0152(5) 0.0123(5)
1 0.694(5) 0.0303(3) 0.0258(5)
1.127 0.618(5) 0.0646(6) 0.0571(4)

n = 2
1 0.824(3) 0.0017(2) 0.00063(5)
1.2 0.755(4) 0.0081(3) 0.0042(6)
1.3 0.716(3) 0.015(4) 0.0084(7)
1.4 0.677(2) 0.026(3) 0.0153(4)
1.5 0.628(1) 0.0488(2) 0.0255(5)
1.6 0.572(4) 0.082(1) 0.0397(7)

n = 4
1 0.857(5) 0.00004(2) 0.0000008(5)
1.2 0.804(4) 0.0005(3) 0.000028(5)
1.4 0.747(3) 0.0015(2) 0.0003(6)
1.6 0.696(3) 0.006(1) 0.0016(5)
1.8 0.628(3) 0.015(5) 0.0056(6)
2 0.549(4) 0.042(3) 0.0142(5)

n = 8
1.6 0.738(2) 0.00009(4) 0.0000075(6)
1.8 0.685(4) 0.0006(2) 0.000079(5)
2 0.629(5) 0.0032(3) 0.00044(6)
2.2 0.570(2) 0.00132(1) 0.0016(4)
2.4 0.503(3) 0.0342(2) 0.0045(5)
2.5 0.465(2) 0.044(1) 0.0068(6)

n = 16
2 0.666(3) 0.00001(2) 0.0000011(7)
2.2 0.616(2) 0.0006(3) 0.000014(6)
2.4 0.563(3) 0.0029(4) 0.000098(5)
2.6 0.507(4) 0.007(4) 0.00043(4)
2.7 0.478(3) 0.0118(3) 0.0008(5)
2.8 0.446(5) 0.019(8) 0.0014(6)

In Table 1, the values for liquid and vapour densities in
equilibrium are presented for n = 1, 2, 4, 8, and 16.

3.2. Chemical potential results

Chemical potentials were obtained by means of Widom’s
insertion method for chain lengths of 1, 2, and 4 up to
reduced densities of 0.9; the values are reported in Table 2.
For chain lengths 8 and 16, at high densities, Widom’s
method became impractical, and thus chemical potentials
could be obtained with this method up to a reduced density
of 0.3 only. Pressures were determined for all chain lengths
up to a reduced density of 0.9 for several temperatures. The
results can be found in Table 3.

Figure 5 shows a μ–p diagram (an example for n =
4), where there appear three regions: vapour, liquid, and
unstable. It is a frequently expressed view that the unsta-
ble region predicted by most EOSs (within the so-called
van der Waals loop) cannot be observed by computer sim-
ulations. Our simulation results show, however, that van
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Table 2. Reduced residual chemical potential for flexible
Lennard-Jones chains of length n.

ρ∗ μ∗
res insertion μ∗

res integration

n = 1, T∗ = 1
0.1 −1.03 −1.02, −0.9911

0.2 −1.91 −1.87
0.3 −2.56 −2.51, −2.4361

0.4 −3.08 −3.02
0.5 −3.55 −3.48, −3.481

0.6 −3.81 −3.75
0.7 −3.52 −3.45, −3.4771

0.8 −2.25 −2.21
0.9 0.37 0.35, 0.2431

n = 2, T∗ = 1.4
0.1 −1.53 −1.59
0.2 −2.84 −2.83
0.3 −3.83 −3.80
0.4 −4.64 −4.61
0.5 −5.34 −5.28
0.6 −5.52 −5.46
0.7 −4.52 −4.46
0.8 −1.43 −1.46
0.9 4.41 4.49, 4.521

n = 4, T∗ = 1.8
0.1 −2.42 −2.37
0.2 −4.49 −4.42
0.3 −6.10 −6.08
0.4 −7.50 −7.39
0.5 −8.25 −8.13
0.6 −7.61 −7.49
0.7 −4.18 −4.11
0.8 3.64 3.66
0.9 17.32 17.86, 17.751

n = 8, T∗ = 2.4
0.1 −3.33 −3.22
0.2 −6.31 −6.18
0.3 −8.53 −8.36
0.4 −9.42
0.5 −8.53
0.6 −3.96
0.7 6.91
0.8 27.26
0.9 61.15, 59.451

n = 16, T∗ = 2.7
0.1 −5.59 −5.50
0.2 −10.57 −10.42
0.3 −13.90 −13.68
0.4 −14.35
0.5 −10.51
0.6 14.93
0.7 26.91
0.8 72.27
0.9 145.72, 142.21

1Johnson EOS.

der Waals loops do appear, but as artefacts of the aver-
aging procedures: in the unstable region, the molecules
tend to segregate, and two phases form. Figures 6–8 show
snapshots of the central portion of the simulation box for
n = 4, T

∗ = 1.8 for the same scale length. Figure 6 represents
a vapour state with ρ = 0.01, which corresponds to point

Table 3. Reduced pressure for flexible Lennard-Jones chains of
length n.

n = 1

p∗

ρ∗ T∗ = 0.8 T∗ = 1 T∗ = 1.2

0.1 0.020(9) 0.051(1) 0.080(3)
0.2 −0.054(7) 0.023(7) 0.092(2)
0.3 −0.145(2) −0.036(4) 0.072(2)
0.4 −0.242(6) −0.114(7) 0.043(4)
0.5 −0.425(3) −0.223(8) 0.031(2)
0.6 −0.665(4) −0.268(3) 0.157(6)
0.7 −0.653(5) 0.038(2) 0.700(2)
0.8 0.056(9) 1.095(1) 2.050(1)
0.9 1.970(7) 3.433(3) 4.757(6)

n = 2

p∗

ρ∗ T∗ = 1.2 T∗ = 1.4 T∗ = 1.6

0.1 0.016(7) 0.033(3) 0.049(4)
0.2 −0.030(2) 0.010(9) 0.047(3)
0.3 −0.102(9) −0.042(1) 0.019(2)
0.4 −0.200(1) −0.114(7) −0.016(8)
0.5 −0.346(4) −0.195(9) −0.022(2)
0.6 −0.460(1) −0.170(4) 0.134(2)
0.7 −0.262(8) 0.240(1) 0.733(1)
0.8 0.698(1) 1.467(2) 2.203(3)
0.9 3.043(3) 4.131(5) 5.162(5)

n = 4

p∗

ρ∗ T∗ = 1.6 T∗ = 1.8 T∗ = 2

0.1 0.007(2) 0.016(3) 0.026(3)
0.2 −0.039(4) −0.015(3) 0.008(6)
0.3 −0.115(8) −0.074(9) −0.032(8)
0.4 −0.217(3) −0.145(2) −0.067(3)
0.5 −0.320(6) −0.182(1) −0.039(3)
0.6 −0.297(2) −0.042(5) 0.212(6)
0.7 0.145(3) 0.571(4) 0.985(8)
0.8 1.464(2) 2.115(4) 2.741(3)
0.9 4.323(1) 5.251(5) 6.143(3)

n = 8

p∗

ρ∗ T∗ = 2.2 T∗ = 2.4 T∗ = 2.6

0.1 0.004(1) 0.010(5) 0.015(6)
0.2 −0.031(4) −0.015(2) 0.001(6)
0.3 −0.087(7) −0.053(6) −0.018(4)
0.4 −0.135(8) −0.068(1) −0.001(7)
0.5 −0.108(9) 0.016(6) 0.140(3)
0.6 0.154(1) 0.372(8) 0.587(6)
0.7 0.956(9) 1.312(7) 1.656(5)
0.8 2.759(5) 3.302(2) 3.827(5)
0.9 6.232(7) 7.019(6) 7.780(3)

(Continued).
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Table 3. (Countinued).

n = 16

p∗

ρ∗ T∗ = 2.5 T∗ = 2.7 T∗ = 2.9

0.1 −0.004(2) −0.0003(2) 0.003(6)
0.2 −0.042(1) −0.0293(6) −0.016(7)
0.3 −0.094(7) −0.0634(8) −0.033(8)
0.4 −0.120(3) −0.0595(2) 0.001(4)
0.5 −0.042(6) 0.0723(5) 0.185(5)
0.6 0.318(1) 0.5198(8) 0.717(2)
0.7 1.280(2) 1.6095(2) 1.929(4)
0.8 3.324(5) 3.8304(4) 4.322(7)
0.9 7.142(8) 7.8812(3) 8.598(6)

Figure 5. μ∗–p∗ diagram for n = 4, T∗ = 1.8.

1 in Figure 5, Figure 7 represents an unstable state (point
2), and Figure 8 represents a metastable liquid state (point
3). In the three situations, the same number of molecules
is used, but we deliberately display the figures at the same
length scale for better visualisation; this is why there appear
to be fewer molecules in the vapour phase (Figure 6).

The segregation of the molecules in the unstable region
is evident. Why is then a van der Waals loop observed?
As pointed out by Yamamoto et al. [21,22], the summa-
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Figure 6. Snapshot of the centre of the simulation box (n = 4,
T∗ = 1.8, and ρ∗ = 0.01).
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Figure 7. Snapshot of the centre of the simulation box (n = 4,
T∗ = 1.8, and ρ∗ = 0.3).
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Figure 8. Snapshot of the centre of the simulation box (n = 4,
T∗ = 1.8, and ρ∗ = 0.8).

tion in Equation (11), when carried out over all molecules,
includes contributions from the liquid and vapour phase
indistinctively including the interfacial region; summations
confined to the liquid or vapour regions only would have
yielded the equilibrium pressure.

Of particular interest is the intersection of the liquid
and vapour branches in Figure 5, which corresponds to
the vapour–liquid equilibrium. In order to determine the
equilibrium, we fitted empirical functions to the branches
and calculated their intersection. As ∂μ/∂p = Vm, the mo-
lar volumes of the coexisting phases can be obtained from
the slopes of the branches. Table 4 shows the orthobaric
densities thus obtained and compares them with densities
obtained from the hyperbolic-tangent fits (cf. Section 3.1).

Table 4. Comparison of orthobaric bulk densities. Method 1:
density profiles fitted with a hyperbolic-tangent equation, method
2: intersection and slopes of chemical potential diagram.

Method 1 Method 2

n T∗ ρ∗
liq ρ∗

vap ρ∗
liq ρ∗

vap

1 1 0.03 0.694 0.029 0.689
2 1.4 0.026 0.677 0.027 0.678
4 1.8 0.015 0.628 0.014 0.627

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
0:

01
 1

9 
Fe

br
ua

ry
 2

01
6 



34 P.V. Ramı́rez-González et al.
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Figure 9. Reduced residual chemical potential as a function of
reduced density for n = 1 at T∗ = 1. •: MD simulation (this
work), ◦: EOS by Johnson et al. [7], �: EOS by Mecke et al.
[5], �: EOS by Quiñones-Cisneros et al. [23], and �: integration
method, Equation (12).

Both methods reproduce the phase equilibrium of the sys-
tems quite well. Figure 9 (n = 1) compares some of the
results with calculations from EOSs, which were carried
out with the ThermoC program package [24].

4. Conclusions

Molecular dynamics simulations were performed for fluid
systems consisting of flexible tangent-sphere LJ chain
molecules with chain lengths between 1 and 16. The
vapour–liquid equilibria of these fluids were determined
either by simulating the evaporation of a liquid film, or
from establishing the chemical potential equalities. The lat-
ter were obtained by means of Widom’s insertion method
or, where this became inefficient, with a thermodynamic
integration method. The advantages of the second method
rely on the fact that it is thermodynamically rigorous and
that the evaluation of the chemical potentials is carried out
over the whole simulation box. This procedure should, in
principle, avoid uncertainties due to the interfacial width
and should provide a more precise estimation of the equi-
librium properties. The disadvantage is the additional effort
required in the calculation of the chemical potentials using
Widom’s insertion method or the extra amount of simula-
tions that is required for the integration procedure. In both
cases, the orthobaric volume obtained with these methods
agreed very well, and they also agreed with data from the
literature, if available.

List of symbols

Fij force exerted on particle i by particle j
h Planck constant
k spring constant

kB Boltzmann constant
n number of atoms or sites in a chain

mp mass of one atom
N total number of atoms
p pressure
r site–site separation

rcut-off cut-off distance
T temperature
t time

ubond bond potential
uLJ site–site interaction potential

V volume of the simulation box
�U change of the internal energy

ε Lennard-Jones energy parameter
λ de Broglie wavelength
μ chemical potential
ρ atomic number density
σ Lennard-Jones site diameter
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[23] S.E. Quiñones-Cisneros, U.K. Deiters, R. Rozas, and T.
Kraska, J. Phys. Chem. B 113 (11), 3505–3511 (2009).

[24] U.K. Deiters, ThermoC project (University of Cologne,
Cologne, 2006). <http://thermoc.uni-koeln.de/index.html>.

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
0:

01
 1

9 
Fe

br
ua

ry
 2

01
6 

http://thermoc.uni-koeln.de/index.html

	Abstract
	1. Introduction
	2. Theory
	2.1. Interaction potentials
	2.2. Simulation details
	2.3. Phase equilibrium
	2.4. Chemical potential

	3. Results
	3.1. Phase equilibrium results
	3.2. Chemical potential results

	4. Conclusions
	Funding
	References



