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Abstract

Painters often acquire a deep empirical knowledge of the way in which paints and inks be-
have. Through experimentation and practice, they can control the way in which fluids move
and deform to create textures and images. David Alfaro Siqueiros, a recognized Mexican
muralist, invented an accidental painting technique to create new and unexpected textures.
By pouring layers of paint of different colors on a horizontal surface, the paints infiltrate into
each other creating patterns of aesthetic value. In this investigation, we reproduce the tech-
nique in a controlled manner. We found that for the correct color combination, the dual vis-
cous layer becomes Rayleigh-Taylor unstable: the density mismatch of the two color paints
drives the formation of a spotted pattern. Experiments and a linear instability analysis were
conducted to understand the properties of the process. We also argue that this flow configu-
ration can be used to study the linear properties of this instability.

Introduction

Hydrodynamic instabilities have been studied extensively [1, 2]. The process of development of
the instability often leads to interesting and visually pleasing patterns. The famous Gallery of
Fluid Motion [3] gives an excellent example of the natural beauty of fluid flows; in many cases,
unstable flows create the most visually interesting images. One could, therefore, expect to find
artists to take advantage of such ‘engine’ to create patterns and textures of aesthetic value. One
example are the patterns created by Jackson Pollock [4]: by dripping fluid threads on top of a
horizontal canvas and using the jetting and folding instabilities [5], he was able to create pat-
terns of surprising appeal. In this investigation we study the works of a well known Mexican
muralist, David Alfaro Siqueiros [6]. We found that the patterns created by Siqueiros using a
particular painting technique are the result of the Rayleigh-Taylor instability.

The works of Siqueiros are, in most cases, full of social themes that reflect his interest and
passions about the power struggle of the working classes. A less known aspect of Siqueiros ca-
reer is his influence in modern art [7]. In 1936 he organized an experimental painting work-
shop in New York [8]. In this event, the participants basically played around with paints,
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splashing, dropping and swirling them to create new and interesting patterns. They also began
using new paints, substrates and canvas orientations, allowing the artists to explore new paint
behaviors. Among the participants was Jackson Pollock himself; it is believed that he started
defining his famous dripping technique in this particular workshop. Also resulting from this
workshop, Siqueiros developed the so-called ‘accidental painting’ technique. The method is de-
scribed by Siqueiros himself in his personal correspondence [9, 10] where he detailed the tech-
nique used to paint the ‘Birth of Fascism’ [11]: “[The painting] is executed al Duco, but in a
way that has not been tried before and which I have discovered through the use of my modern
tools and materials. It involves the use of the ‘accidental painting’, that is, the use of a special
method of absorption of two or more superimposed colors which by infiltrating one into an-
other produce the most magical fantasies and forms that the human mind can imagine”. Essen-
tially, Siqueiros poured layers of paint of different colors on top of each other on a horizontal
canvas. When the correct color combination was used, a spotted pattern with interesting
mixing shades emerged naturally. A more in depth discussion of this subject can be found in
[12, 13].

Fig 1 shows a detail of ‘Collective Suicide’ [14], in which this technique was used. The paint-
ing depicts a dystopian vision of the Spanish conquest of Mexico and the destruction of the in-
digenous culture. Through out large portions of the painting the characteristic spotted patterns
of the ‘accidental painting’ technique can be identified. The figure only shows a small section
where only black and white paint were used. This particular paint combination is studied in de-
tail in this investigation.

Other works in which Siqueiros used this technique are ‘The Birth of Fascism’ [11], ‘Cosmos
and Disaster’ [15] and ‘Landscape in Red’ [16]. It is also interesting to note that other contem-
porary painters have recently adopted Siqueiros technique to produce these distinctive textures
(see for instance [17, 18]).

The main objective of the present study is to understand the physical mechanism to create
these patterns. To our knowledge a rigorous study of the flow physics behind such painting
techniques has not been conducted to date.

Materials and Methods

Following the explanation given by Siqueiros [9, 10], we designed and conducted a series of
controlled experiments, depicted in Fig 2. The tests consisted in pouring layers of paint on top
of each other. The paints were poured onto a horizontal surface, which was a clean glass plate
of 30 by 30 cm”. The glass plate was mounted on a structure and leveled horizontally with an
accuracy of 0.1 degrees with the help of a digital level. First, a volume of the the first paint, of
approximately 50 ml, was poured onto the plate; after a few seconds, once the paint had spread
out to size of approximately 20 cm in diameter, a smaller volume (30 ml) of a second paint was
poured on top of the first layer, as shown in Fig 3. The paints used were cellulose nitrate lacquer
paints fabricated by Comex, of the River series. The viscosity of the fluids was measured using
a viscometer (Brookefield, DV-III, with a No. 2 spindle.) The measurements were conducted
for shear rates in the range 0.1 < 7 < 20s™". Fits to a power-law behavior showed values of the
power index # > 0.93, indicating very small shear thinning effects. Also, for these range of
shear rates, the first normal stress difference could not be measured with a rheometer (TA In-
struments, AR1000N) because its value was too small to be detected (N, < 1Pa). Therefore, we
can assume that the viscoelastic effects in the tests fluids were negligible. In another words, the
fluids could be considered to have a Newtonian behaviour. Note that the typical shear rate in
the experiments is very small, of order O(10~) s~". The density was measured with a pichn-
ometer (25 ml). Most experiments were conducted with the black-white combination to
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Fig 1. An example of the experimental painting technique of Siqueiros. Detail of ‘Collective Suicide’ [14], Approximate image size 16.2 x 16.0 cm?,
Museum of Modern Art, New York (1936).

doi:10.1371/journal.pone.0126135.g001

Solid plate

Fig 2. Experimental setup.
doi:10.1371/journal.pone.0126135.g002
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Fig 3. Image sequence of the preparation of the experiment.

doi:10.1371/journal.pone.0126135.9g003

recreate some particular patterns observed in Siquieros paintings, but also transparent, blue
and yellow paints were used. The physical properties of the paints used are listed in Table 1.

Experimental results

First, we studied the radial spreading of paint over a horizontal plane. This layer is the base of
dual layer that is studied here. The flow is a typical viscous gravity current [19]. The radius of
the layer, R,,, was measured in time and, since the volume of the paint is known, the mean
height, H was inferred. Initially, when the paint is being poured, the radius of the layer in-
creases rapidly with time; once, the paint has been poured completely, the size of the layer con-
tinues to increase but at a slower rate. For both situations, constant flux (CF) or fixed volume
(FV), Huppert [20] found analytical solutions for creeping flow. Fig 4 shows the comparison
between the measurements and the theoretical predictions; clearly, the agreement is remark-
able. From these experiments, the radial velocity of the layer front, U,,, was measured. For the
case shown in the figure, which corresponds to the black paint, U,, was 0.013 mm/s, for a radial
extent of R,, = 10 cm. The Reynolds number, Re = U, Hp,/u, for this case was 2.1 x 10, The
spread of the second layer (on top of the first one) follows a similar trend (not shown) but with
a slightly larger speed. For this flow the capillary number Ca = y; U, /0 = 0.04, assuming a

Table 1. Properties of the fluids used: color, density, viscosity and initial layer thickness.

Color p kg/m?® pPas Hmm
White 1110 2.52 1.2
Black 1002 11.67 2.0
Yellow 1080 3.57 15
Transparent 1008 12.93 2.0
Blue 1002 1.14 1.2
Transparent 1008 12.93 2.0

doi:10.1371/journal.pone.0126135.t001
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Fig 4. Measurement of the spread of the black paint. Radial extent is measured by the size of the liquid
pool, R, = D/2. The mean height is inferred from the initial volume, H,,., = V/(nR?%). The Reynolds number is
Re ~ 10~*. The measurements are compared with the predictions of Huppert [20].

doi:10.1371/journal.pone.0126135.g004

surface tension o = 40 mN/s, from which we can conclude that viscous effects dominate over
surface tension ones.

The first experiment, shown in Fig 5, shows the time progression of the top view of the
white-over-black layer (see also S1 Movie in the Supporting Information section). After the
white paint layer has spread to a certain radius, on top of the black paint (¢ ~ 200 s), the layer
begins to show interesting features. The emergence of dark round blobs in the white layer can
be observed (225 s < t < 300 s); the white fluid surrounds dark blobs. A network of white
threads is formed which become narrower as time advances; the round dark blobs continue to
grow in size. These features are a clear indication that the interface between the two liquids is
moving vertically. For this experiment the density difference between top and bottom was p, —
p1 = 108 kg/m?, which in dimensionless terms corresponds to an Atwood number At = (p, —
p1)/(p2 + p1) = 0.05.

After this initial observation, we conducted a second experiment considering At = -0.05,
considering the same nominal conditions. In other words, in this case, the black paint was
poured on top of the white one. For this condition the appearance of patterns was not observed.
After some time the paints dried without showing any interesting features in the surface.

A third experiment, considering the same black-white paint combination, was conducted to
test the influence of the surface tension of the top layer. The case of At = 0.05 was tested. In this
experiment the same nominal conditions, as in the two previous cases, were considered. After
pouring the second layer of white, a small amount of thinner (a few drops) was poured on top
to form a third layer. In this manner, the surface of the top white layer was covered with thin-
ner. In this way the surface tension of the top layer was reduced. Although this change of
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Fig 5. Image sequence, white over black paint. The time difference in between frames is 63 s. Time progresses from left to right and from top to bottom.
The size of each image is 14.7 x 9.8 mm?. At = 0.05, with H; = 2 mm and H, = 1.2 mm. (See S1 Movie in Supporting Information section).

doi:10.1371/journal.pone.0126135.9g005

surface tension was not quantified, we estimated a reduction of about Ag = 25 mPa m [21].
Therefore, for this experiment the value of the surface tension was lower than the air-exposed
one. In this test, the formation of patterns was observed. In fact, once dried, the patterns were
very similar to those shown in Fig 5 which were obtained leaving the white paint exposed

to air.

A second set of experiments using transparent lacquer and yellow paint was conducted.
Similarly, we found that when the Atwood number was positive (dense fluid on top of light
fluid), the patterns appeared. Fig 6 shows an example of the patterns produced with this color
combination. Although the process is similar to that observed for the white-black combination,
some differences can be observed. In particular, due to the transparent nature of the lacquer,
the internal structure of the layer can be observed. Many multi-arm nots can be identified in-
side de cells. A final set of experiments was conducted using blue and transparent paint. The re-
sults were similar: the patterns appear when the Atwood number is positive and changing the
surface tension did not produce significant changes.

As discussed above, this flow is dominated by viscous effects since the fluids are highly vis-
cous and the spreading velocity is small. Therefore for all cases tested, the Reynolds number is
very small (Re < 107°). Also, considering the surface tension of the paint exposed to air and its
reduction using thinner, the capillary number was Ca < 0.04. The density difference,
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Fig 6. Final pattern, yellow paint over transparent lacquer. At = 0.02, with H; =2 mmand H, = 1.5 mm.
The image size is approximately 14 x 9 mm?. For the expetiments shown here, Re = 1.1 x 107, At = 0.03 and
MN=15x1072

doi:10.1371/journal.pone.0126135.g006

quantified by the Atwood number, was positive and At > 0.003. Under these conditions the ap-
pearance patterns was observed.

One additional factor that may lead to the appearance of the spotted patterns is the radial
motion of the layers as the paint spreads out, as discussed above and shown in Fig 4. To assess
the importance of the radial motion of the fluid we can compare its magnitude to that of the
vertical velocity that would be expected from the density difference. The velocity scale that

characterizes the density difference is U,, = , /gH * 2;1" L The ratio of U, (the radial speed of the

Y Py
n=—/ .
vEH Y Py — Py

Note that this ratio is, in fact, a modified Froude number. For the experiment show in Fig 5, IT
=2.9 x 10~*, which indicates that the radial motion of the spreading layer is much smaller than
the expected velocity resulting from the density difference. For all the tests conducted here IT
was small (IT < 0.1).

From all the experimental tests described above, we can conjecture that the parameter to
generate the characteristic pattern in the accidental painting technique is the density difference.
For all cases the flow is dominated by viscous effects; surface tension does not appear to play a
dominant role.

Hence, the vertical motion that leads to the formation of the characteristic ‘accidental paint-
ing’ pattern must result from a density-driven instability between the two layers. Such instabili-
ty has been vastly studied: the Rayleigh-Taylor (RT) instability [22, 23]. It occurs at the
interface of two fluids with different densities that are accelerated into each other. Under

spreading layer) to Uy, is
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Earth’s gravity, the interface of a dense fluid on top of a light one is RT unstable. Such instabili-
ty is observed in a wide range of physical phenomena, extending from supernova explosions
[24], plasma fusion reactors [25], salt domes [26], weather inversions [27], just to name a few.
A few authors have studied the particular problem of thin viscous layers [28, 29] but, to our
knowledge, the problem that corresponds to the accidental painting technique has not been ad-
dressed before. As observed in Fig 5, the RT instability develops in accordance to the many pre-
vious studies in the subject: initially small perturbations at the interface grow to develop
upward moving plumes and falling spikes. The density disparity determines the initiation and
structure of the instability.

Measurement of the size of the patterns

To obtain a quantitative measurement of the patterns we measured the characteristic size using
image analysis. The characteristic size of the instability in our experiments was determined
from the images by considering the autocorrelation function of the image gray level. The auto-
correlation function for each horizontal line of each digital image was calculated for each time
instant. The auto-correlation function [30] is defined as:

+L
Coo®) =1 [ 6+ Gl 2 (1)
—L
where G(x) is the gray-level function of the image at a given line of the image, 2L is the typical
image size and A is the shift of the function. The characteristic size, L,, is located by finding the
local maxima of the function Cgg(1). We only considered the first, largest peak for each case.
To obtain an average value of the characteristic length for each time, we averaged the value of
the local maximum obtained for each line for the whole picture. Fig 7 shows the average corre-
lation length as a function of time for the experiment shown in Fig 5. Clearly, as time pro-
gresses, the size of the correlation length evolves. At t = 220 s, for the particular set of images
shown in Fig 5, the characteristic size of the blobs increases, reaching a certain mean value (L,
= 3.2 mm). For larger times, as smaller features appear in the image, the correlation length de-
creases. For longer times, the correlation length does not continue to evolve. Afterwards, the
paint begins to dry and the mixing pattern ‘freezes’.

Theory: Linear stability analysis of a dual viscous layer

To complete our study, we conducted a calculation of the stability of the dual fluid layer. In this
manner, we can predict the size of the most unstable perturbation. Such sizes could then be
compared with those found experimentally, as shown in Fig 7. Furthermore, using this scheme,
the effect varying the fluid properties can be explored.

The analysis is done following closely the work of Chandrasekhar [1], which is described in
detail in the Supporting Information section below (S1 Appendix). We considered the instabili-
ty of the interface between two miscible Newtonian viscous layers that rest horizontally on top
of each other. By considering sinusoidal perturbations of the normal mode, we find the disper-
sion relationship of the unstable solution.

Fig 8 shows the calculated dispersion relationships. The thick continuous line shows the re-
sult obtained for the black-white unstable layer, listed on Table 1. Clearly, we observe that the
layer is unstable for all wave lengths shown in the figure; more importantly, the dispersion rela-
tion shows a maximum value for a particular value of the wave number (k,,qx = 155.3 m™,
which corresponds to 1/k,,,, = 6.4 mm). Hence, the system will be unstable but the distur-
bances at the critical wave length will grow faster than the others. Hence, experimentally, one
may expect to observe disturbances of a size corresponding to the maximum. From the images
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Fig 7. Correlation length as a function of time. The horizontal dashed line shows the average of the
measurement, L., for 230 < t < 300s. This measurements correspond to the images shown in Fig 5.

doi:10.1371/journal.pone.0126135.g007

and the measurement of size shown in Fig 7, it is clear that, indeed, there is a characteristic size
in which the instability mainly manifest itself. The vertical gray line in the figure shows the
wave length corresponding to the characteristic size of the blobs measured experimentally
(Lpiob = 4.2 mm). Furthermore, the maximum of the dispersion relation shown in Fig 8 corre-
sponds to a characteristic time of about 200 s, which is also in good agreement with the time in
which the disturbances are first observed in the image sequence shown in Fig 7. Although, the
measurement corresponds to slightly larger wave lengths, the agreement is very good, consider-
ing that the theoretical curve was calculated considering a confined layer and that the thickness
of the layer does not evolve in time (as it actually occurs experimentally).

The calculation of the unconfined layer (described in detail in the Supplementary Informa-
tion Section) is shown in Fig 9 for the same fluid combination and thicknesses considered in
Fig 8. Clearly, the resulting dispersion relation is not greatly affected by the fact that the layer is
unconfined. Most notably, the agreement between the prediction and the measurement
is closer.

It is important to emphasize that these calculations, by themselves, do not demonstrate that
the phenomena is a result of a Rayleigh-Taylor instability. However, they serve as supporting
evidence to substantiate the hypothesis of this investigation.

With this theoretical framework, we considered additional scenarios. We calculated the dis-
persion relationships for layers of different thicknesses, different viscosity and density con-
trasts. For simplicity, we used the confined flow calculation. The dashed and dashed dotted
black lines in Fig 8, show the theoretical prediction for thinner layers. We can observe that the
same general behavior is retained but the maximum of the curve shifts to the left, which makes
the difference between the prediction and the experimental measurement even smaller. We

PLOS ONE | DOI:10.1371/journal.pone.0126135 May 5, 2015 9/13
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Fig 8. Dispersion relation of the black/white layer. The solid black line shows the results considering the
values in Table 1 (At = 0.05). The dashed and dashed-dotted black lines show the influence of reducing the
layer thickness: (- — =), Hy =1 mm, H, = 0.6 mm; (- - =), H; = 0.4 mm, H> = 0.2 mm. The red lines show the
effect of changing the fluid viscosities, keeping the rest of the parameters fixed (layer thicknesses and
densities). The red dashed line shows the prediction for smaller viscosities: u; =5.79 Pa s, y, = 1.26 Pa s);
the red dashed-dotted line shows the case for higher viscosities: y; =23.14Pa s, y, = 5.04 Pa s). The blue
lines show the effect of changing the density difference, keeping the rest of the parameters fixed. The blue
dashed line shows the prediction for a smaller density difference (At = 0.02) produced by reducing the density
of the top or bottom layer (0, = 1002 kg/m?®, p, = 1050 kg/m®); the blue dashed dotted line corresponds also to
a smaller density difference (At = 0.02) but by increasing the density of the bottom layer (o, = 1050 kg/m?®, o,
=1110 kg/ms). The vertical gray line shows the experimental measurements of the mean blob size from Fig 5.
Note that both n and k are shown in dimensionless form, considering, (g2 o1/u- )% and

(gp2/u2) """ respectively.
doi:10.1371/journal.pone.0126135.g008

tested two other variations of the system: changes of fluid viscosity (easily achieved by using
paint thinners) and changes in densities (achieved by changing the color of the paints). We
found that when the fluid viscosity is varied, shown by the red lines in Fig 8, both the most un-
stable mode and speed change. The speed decreases as viscosity increases; the size decreases
with viscosity but not in a significant manner. On the other hand, when the density difference
is reduced, shown by the blue lines in Fig 8, the speed of the most unstable mode decreases but
the size remains relatively unchanged.

As an additional and final test, we conducted a direct comparison of the predictions of the
linear stability calculation with the blob sizes measured directly from two paintings of Siqueiros
where the technique was used. We strived to make a fair comparison: we chose two particular
works in which the black-white combination was used. The first one is ‘Collective Suicide’ [14]
(shown partially in Fig 1); the second one is “The birth of Fascism’ [11]. We measured the
mean size directly from the paintings, considering regions where the characteristic blob-like
pattern appeared clearly. We picked approximately 50 blobs in each case to obtain a good

PLOS ONE | DOI:10.1371/journal.pone.0126135 May 5, 2015 10/13



el e
@ ) PLOS ‘ ONE Fluid Dynamics Instabilities in Painting

x 107

2.5

\

A Y
Y

Y
Y

T
~
~
~
~
e e

1.5

N

n, (@70, /)"

0.5

T
~

0 10 20 30 4q,3 50 60 70
k (gp/m3)

Fig 9. Dispersion relation of the black/white layer. Results shown for At = 0.05 and H; =2.0 mm and H, = 1.2 mm. The continuous line shows the
dispersion relation from considering the confined fluid layer; The dashed line shows the dispersion relation from a triple fluid layer, considering air properties
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doi:10.1371/journal.pone.0126135.g009

average value of the size. We obtained Lcg = 5.56 mm and Lgr = 7.60 mm, for each painting.
The measurements are shown Fig 9 by the vertical dashed lines, in terms of the wave-length.
Clearly agreement is remarkable. We must, however, be mindful of the fact that the values of
the physical properties of the paints used in these two works are unknown. The only property
that is known, for sure, is the color. The paints that were used in the experiment are as close as
those used originally by Siqueiros: they are cellulose nitrate compounds. However, it is most
likely that exact composition is not the same. Through out the years, the composition of paints
has been changing to reduce the use of toxic solvents.

It is interesting to note the agreement between the measurements and the prediction of the
linear instability analysis. The flow studied here has two important characteristics that make it
amenable for such a simplified theoretical treatment: it is viscous and thin (low Re), which jus-
tifies the use of linearized momentum conservation equations from which the linear instability
theory is developed. Also, after the instability manifests itself, the pattern does not evolve sub-
stantially because it ‘freezes’ as a result of drying paint. We think that this particular setup
could be used as a new method to study the RT instability in the linear regime. In fact, non line-
ar effects, which appear quickly after the initiation of the instability, make the analysis more
challenging. Using the present configuration some of these complications could be prevented
or, at least, delayed.

PLOS ONE | DOI:10.1371/journal.pone.0126135 May 5, 2015 11/183
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Conclusions

In summary, we have shown that the Rayleigh-Taylor instability is responsible for the genera-
tion of patchy and spotted patterns that appear in the paintings of Siqueiros where the acciden-
tal painting technique was used. We have shown, by conducting controlled experiments and by
an instability analysis, that the density disparity between the different paint layers drives the in-
stability and produces textures with aesthetic value. Understanding the flow physics can help
conservationists and artists. We also argue that this flow could be used as an alternative method
to study the linear properties of the Rayleigh-Taylor instability.

Supporting Information

S1 Movie. The file S1 Movie shows a time sequence of the images shown in Fig 5.
(RAR)

S1 Appendix. The file S1 Appendix shows the details of the instability analysis that was
conducted to support that the Rayleigh-Taylor instability was responsible for the pattern
formation observed in the experiments and in Siqueiros paintings.

(PDF)
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