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In this paper new results on linear viscoelastic thermal Marangoni convection are presented. The
constitutive equation assumed is that of the Maxwell viscoelastic fluid. The competition between sta-
tionary and oscillatory convection is shown by means of plots of codimension-two points where the
corresponding critical Marangoni numbers are the same. The variation of these points is investigated in a
wide range of magnitudes of the thickness and thermal conductivity of the wall. Also, a discussion is

given about the dependence they have on the Biot number of the fluid-atmosphere interface. Besides, it
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is shown how the range of the viscoelastic relaxation time corresponding to this points is modified by the
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1. Introduction

Thin liquid films stability has important industrial applications.
The problem of surface coating is one of them. The finishing of the
coating is intimately related with the thermal Marangoni stability.
The fractures found after solidification of the layer are strongly
related with the Marangoni convection cells. The phenomenon has
been investigated for Newtonian fluids since many years ago.
Pearson [1] investigates the stationary stability of a thin layer with
flat free surface considering different thermal boundary conditions.
Scriven and Sternling [2] investigates for the first time the effect of
free surface deformability. Takashima [3] considers the stationary
free surface deformation of the layer and Takashima [4] includes
the time dependence of the problem taking into account for the
first time the effects of gravity in both papers. Mctaggart [5] studies
the double diffusive problem of Marangoni convection when the
free surface is flat. The Marangoni convection is investigated from a
boundary layer point of view by Christopher and Wang [6].
Emphasis is put on the influence the Prandtl number has on heat
transfer. Two free deformable surfaces can be present as in Ref. [7].
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Convection in a layer with a free deformable surface and a
deformable membrane is investigated in Ref. [8]. When the tem-
perature gradient across the layer is large it is important to take into
account the temperature variation of viscosity as in Slavtchev and
Ouzounov [9] and Kalitzova-Kurteva et al. [10] for stationary con-
vection with deformable free surface and in Slavtchev et al. [11] for
oscillatory convection and deformable free surface. The control of
Marangoni convection is important to avoid fractures in the solid-
ification process as is investigated by Bau [12] and Or et al. [13]. In
particular, Kechil and Hashim [14] assume free surface deformation
and include viscosity dependence on temperature. An application
to microchannels is presented in the paper by Pendse and Esmaeeli
[15] who investigate the Marangoni flow in two superposed fluids
when a spatially periodic temperature is applied to the wall. It is
shown that the competition between thermal and hydrodynamic
effects is reflected in the flow strength when the relative thickness
of the layers is varied.

In applications the liquid usually presents a non Newtonian
behavior. One important property is the viscoelasticity of the fluid
(see Bird et al. [22]). In natural convection the viscoelastic linear
and nonlinear effects have been investigated, for example, by
Martinez-Mardones and colleagues [16—20]. In particular, in
Ref. [17] one of the goals is to find the codimension-two point
between stationary and oscillatory instability to investigate the
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Nomenclature

a wave number

ac critical wave number

Bis free surface-atmosphere Biot number
Bi,, wall Biot number

dw/ds

fluid layer thickness

wall thickness

shear rate tensor

heat transfer coefficient
Marangoni number
critical Marangoni number
free surface normal vector
pressure

pressure perturbation
Prandtl number
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T temperature

T liquid temperature

Tw wall temperature

Ty temperature profile

u perturbation velocity Xx-component

v fluid velocity vector

% perturbation velocity y-component
w perturbation velocity z-component
Greek

6 temperature gradient

r surface tension

n dynamic viscosity

0 temperature perturbation

K fluid thermal diffusivity

Kw wall thermal diffusivity

A adimensional relaxation time (Weissenberg number)
At relaxation time

u viscoelastic parameter

7 kinematic viscosity

p fluid density

a oscillation frequency

T shear stress tensor

X X Xw

Xf fluid thermal conductivity

Xw wall thermal conductivity

possibility of nonlinear traveling and stationary waves. For a review
of this problem see Ddvalos-Orozco [21].

Viscoelasticity have been taken into account in Marangoni
convection by a number of authors. Getachew and Rosenblat [23]
investigate the problem of a flat free surface assuming a very
good conducting wall. Their main concern is to calculate the points
where the curves of criticality of stationary convection intersect
those of oscillatory viscoelastic convection. These intersections are
called codimension-two points (see Ref. [17]). Wilson [24] in-
vestigates the instability growth rates of viscoelastic fluids with
particular interest on slightly supercritical situations. Siddheshwar
et al. [25], for temperature dependent viscosity, explore the oscil-
latory Marangoni instability of different non Newtonian fluids, in
particular, the Maxwell fluid. They also assume a variety of thermal
boundary conditions.

From the point of view of the linear equations, the stationary
and oscillatory Marangoni convections differ not only by the
absence of the time derivative in the stationary problem, but also
by the presence of the Prandtl number in the oscillatory case.
Physically, in stationary Marangoni convection the fluid particles
are able to describe closed trajectories. This is due to the shear flow
produced by the thermal perturbations which, from the wall, reach
the free surface and modify the temperature dependent surface
tension. If hot particles are continuously able to reach the free
surface the cellular flow can be sustained heating from the wall. In
oscillatory convection, all particles move at once in trajectories due
to the shear flow produced by the weakening of surface tension.
Nevertheless, they are not able to complete closed trajectories
when the fluid has relatively high thermal diffusivity. In non
dimensional form this is determined by the Prandtl number, that is,
the ratio of the mass diffusivity (kinematic viscosity) over the heat
diffusivity. Under these conditions, the fluid particle cools easily
and it is not able to reinforce the shear flow by the weakening of
surface tension. Consequently, the strong surface tension of the
cold regions of the free surface dominate and the surface shear
works in the opposite direction making all the particles in the bulk
to go backwards to the wall where they are heated again to repeat
the same process.

Therefore, depending on the Prandtl number the Marangoni
convection may be stationary or oscillatory, as will be shown
presently. However, it is well known that the linear Marangoni
convection of a Newtonian fluid layer with a flat free surface only
can be stationary (see Ref. [26]). If the free surface of a Newtonian
fluid layer is allowed to deform, thermocapillary oscillations may
appear first [2,4]. However, the case of a viscoelastic fluid layer with
a flat free surface is different. The new degrees of freedom of the
macromolecules added to the liquid motion by means of the
constitutive equations, allow oscillatory Marangoni convection to
appear for a smaller temperature gradient than that of the New-
tonian fluid for some magnitudes of the Prandtl number and
relaxation times [23].

The effect of a thick wall in Marangoni convection is investigated
by Takashima [27]. The simultaneous effect of gravity and ther-
mocapillarity is investigated by Yang [28] including a wall with
finite thickness. A temperature dependent viscosity is assumed by
Char and Chen [29] in a liquid layer on a thick slab. A deformable
free surface is assumed by Abidin et al. [30] in the presence of
buoyancy effects. The heat generation and properties of a thick wall
are considered in thermocapillary convection by Arifin and Bachok
[31]. The non uniformity of the basic temperature gradient may
have important consequences on the instability. This is taken into
account by Shivakumara et al. [32] including a thick slab. The
deformability of the free surface is assumed in a layer on a thick
wall by Gangadharaiah [33].

The results of thermocapillary convection including a thick
slab are more realistic than those of an infinitely good conducting
wall. This effect has also been investigated in natural convection
of a Maxwell viscoelastic fluid by Pérez-Reyes and Davalos-
Orozco [34]. There it is shown that for certain magnitudes of the
Prandtl number a codimension-two point is found where sta-
tionary and oscillatory convection compete to be the first un-
stable one for a range of values of the non dimensional relaxation
time (Weissenberg number). An important difference between
this paper and ref. [34] for natural convection is that here the
results are only focused on the codimension-two points and not
on the curves of criticality. However, the curves of criticality have
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to be calculated to generate the curves of the codimension-two
points.

The goal of the present paper is to calculate the codimension-
two points that occur in the Marangoni convection of a Maxwell
viscoelastic fluid layer coating a thick wall with finite thermal
conductivity. The free surface is considered to be flat but suscep-
tible to thermocapillary shear stresses. The Biot number at the free
surface-atmosphere interface is also taken into account. The results
of this research are important because in real situations the liquid
layers lay on non ideal walls which have finite thickness and
thermal conductivity. In particular, the investigations presented in
the open literature on viscoelastic films assume from the onset that
the wall is made of a very good or a very bad heat conducting
material. As will be shown presently, differences in the thickness of
the wall may also have important consequences on the critical
parameters of the problem. In this aspect, the results presented
below are new with respect to those published before. That is,
careful calculations are done in a very wide range of magnitudes of
the wall Biot number to show that the middle section of this range
is very important and must be taken into account when the sta-
bility of the layer is the relevant goal in applications. If the stability
of real coating problems is based on results of a very good con-
ducting wall, it is possible that the wall finishing will be different
from the expected one.

The paper is organized as follows. The equations of motion and
boundary conditions are presented in the next section. The nu-
merical results are given in Section 3. The last Section 4 are the
conclusions.

2. Thermocapillary convection

The physical system under investigation consists of a thin layer
of viscoelastic incompressible fluid of depth dr and thermal con-
ductivity xfcoating a wall of thickness dy, and thermal conductivity
Xw» as seen in Fig. 1. Gravity has been neglected and the system is
heated from the outer side of the wall and cooled at the flat free
surface in contact with an inviscid atmosphere. Due to the tem-
perature dependent surface tension, the free surface is susceptible
to shear stresses leading to Marangoni convection.

An important difference of this system with respect to those
with very good or very bad thermal conducting walls is the pres-
ence of the ratios of fluid to wall thermal conductivities x and wall
to fluid thicknesses d. They appear in the boundary conditions and
are defined as y = xs/xw and d = d/dj, respectively.

The governing equations for Marangoni convection of a visco-
elastic Maxwell fluid layer are the balance of momentum, heat
diffusion and continuity equations:

v 1

— = _-VP4+V. 1
dar p T (1)
%:szT (2)

Z atmosphere

A

X¢ liquid d;

Xw wall -d

Fig. 1. Sketch of the system under research. A viscoelastic liquid layer coating a thick
wall of thicknesses dfand d,, and thermal conductivities x; and x, respectively.

v-V=0 (3)
The temperature in the wall satisfies

oT -

a_["/v = vaz TW (4)

<7 .
where d/dt =9/dt + V -V. The shear stress tensor 7 satisfies the
constitutive equation for a Maxwell fluid model:
g

T—i-lrgt:Zne (5)

where e is the shear rate tensor and &/ Zt is a nonlinear operator
which could be one of the upper convected, the lower convected or
the corotational time derivatives, depending on the viscoelastic
model selected. Note that when the hydrostatic state is perturbed,
all the time derivatives of the linear equations are the same as the
linear operator /7t = d/dt = 9/dt.

The boundary conditions are:

V=0 at z=0 (6)
T =-Vl at z=df (7
Tw=Ty+AT at z=—dy (8)
T=Tw and xn-VI=1-VI, at z=0 (9)
—xf VT =Hy(T-Ty) at z=ds (10)

where 7 is a normal vector which in the case of a flat free surface is
in the z-direction and therefore -V = d/0z. Hp is the heat transfer
coefficient. The gradient of the surface tension VI = (d['/dT)v T
depends on the temperature gradients and has projections on the x
and y-directions. Notice that dI"/dT < 0 in common fluids.

The nondimensional temperature profiles in hydrostatic con-
ditions are:

T(z) = —z — xd (11)
Tw(z) = —xz — xd (12)

for the fluid and the wall, respectively. They were made adimen-
sional subtracting Tp + AT from the dimensional temperatures and
then dividing by ATBis/(1 + Bis + xdBis). Here, the free surface-
atmosphere Biot number is Bis = Hpdy/Xs.

The main flow variables are perturbed from the hydrostatic state
using U = (u(x,y,z,t),v(x,y,z,t),w(x,y,z,t)), pxyzt), 0xyzt),
T'(x,y,z,t), as the velocity, pressure, temperature and shear stress
perturbations, respectively. The variables are made non dimen-
sional using dyfor lengths, ATBis/(1 + Bis + xdBis) for temperature, v/
dr for velocity, dfz/K for time and p(K/df)z for pressure and shear
stresses.

The non dimensional linearized equations for the perturbations
are:

19U op ,

%—w:vza (14)
ou ov ow

a"‘@‘i‘af (]5)
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where Pr = [k is the Prandtl number. The perturbations of the
shear stress tensor and shear rate tensor e’ satisfy:

or’
' A =2¢ 16
T + T (16)
Here, it is assumed that the perturbations are in the marginal
state and that they have a normal modes representation in the
form:

(0,0} = {U/(2),/ (2),W(2).0/ (2)., 6}, (2) Yexpli(lex + my + o)
(17)

where k and m are wave numbers in the x and y directions,
respectively, and ¢ is the frequency of oscillation. In the marginal
state the growth rate is zero.

The operator 1 + A3/at is applied to the linear momentum
equation to introduce e’ by means of the linear constitutive equa-
tion. Then, the rotational operator is applied twice. Finally, the
normal modes are introduced in all the equations to obtain:

(132 e 7ia)0’(z)+w’(z) =0 (18)

(DZ - a2) (M(D2 - a2) - %)W’(z) -0 (19)

where D = d/dz and a = k* + m? is the magnitude of the wave-
number. The viscoelastic parameter for the Maxwell fluid is defined
as u = 1/(1 + igA).

The thermal boundary conditions for the perturbation ampli-
tudes are:

0,=0 at z=—dy (20)

0 =@, xD¢=D6, at z=0 (21)

Notice that it is possible to reduce the two temperature
boundary conditions at z = 0 into one condition. That is:

D¢ —Biwd =0 at z=0 (22)
where the Biot number which describes the heat transfer at the

wall—fluid interface is defined by Bi, = gq/xtanh(qd), with
q = a® + io. The other boundary conditions are

w=Dw=0 at z=0 (23)

W = uD*W +a?Ma¢ =D6#' +Bis =0 at z=1 (24)

The Marangoni number is defined by

M — ((—ar/ar)df) (

PVK 1 + Bis + xdBis

ATBi; )

The solutions of the set of Egs. (18) and (19) with the boundary
conditions from Egs. (20)—(24) form an eigenvalue problem for Ma
which depends on all the other parameters of the problem in the
general implicit form

F(Ma, a, s, 2, x,d, Pr,Bis, Biy) = 0. (25)

In fact, this is a solvability condition needed to have a solution
different from the trivial one for the amplitudes of the perturbation
normal modes.

3. Numerical results

The solution of Ma in Eq. (25) is obtained numerically with the
Maple package. The Eq. (25) is complex due to the presence of the
frequency of oscillation. The marginal Ma is calculated fixing all the
parameters except a and ¢. For a given a the roots of the complex
Ma are obtained. Then, ¢ is varied until the imaginary part of the
complex Ma is zero. In this way, the set (a, ¢, Ma) becomes a point of
the marginal curves. The critical Ma, is calculated varying a,
following the same procedure, until the minimum of Ma is ob-
tained. The corresponding wavenumber and frequency are called
critical and written as a. and o.. The goal is to find the range of the
Weissenberg number A for which stationary and oscillatory con-
vection will compete to be the first unstable one, that is, to find the
codimension-two points of the instability. High precision numeri-
cal calculations were performed using more digits than those used
by default. The default number of digits used by Maple is 10.
Nevertheless, more precision is need due to the large changes the
marginal parameters have with a small variation of the Weissen-
berg number A. Therefore, to avoid round-off errors, it was decide to
increase the number of digits used by Maple. Tests were done first
with 15 digits and then with 20 and 25 digits. It was found that 20
digits were good enough to avoid large oscillations in the numerical
values of the critical parameters. However, the running time of the
program increases considerably as a consequence.

Assuming that the Prandtl number is very near to that of water,
two Prandtl numbers are used in the calculations Pr = 2 (water
between 85 and 90 °C) and Pr = 10 (water between 5 and 10 °C).
The free surface Biot number will have the magnitudes Bis = 0, 0.1,
2, 5. Two magnitudes of d = 0.1 and 100 will be used because no
important differences are observed in the ranges d < 0.1 and
d > 100.

The results are plotted in graphs of Ma., a; and o vs. x. The
magnitudes of y are inside the range 10~'° < y < 10'°, that is, from a
very good conducting wall to a very bad conducting wall. The
curves of codimension-two points are plotted in the ranges where
the Ma. of stationary and oscillatory Marangoni convection are the
same. Thus, the corresponding curves of wavenumbers and fre-
quencies of oscillation are determined. Of particular importance in
this paper are the corresponding curves of the Weissenberg num-
ber A vs. x. This is because they show where the increase of A makes
oscillatory convection the first unstable one when crossing the
codimension-two curves.

3.1. Stationary Marangoni convection

The critical curves of stationary Marangoni convection are ob-
tained setting from the onset ¢ = 0. In this way the flow behavior is
Newtonian because u = 1. The Prandtl number does not play a role
here. The problem includes the effect of Bis, d and y inside Bi,, in
contrast to the work of Pearson [1].

The critical curves are calculated fixing Bis and d. The results are
presented in plots of Ma, and a. against y as in Fig. 2. According to
the definition (see above Eq. (23)), Bi,, decreases when y increases.
Therefore, the wall becomes a bad heat conductor when  is large
and a good heat conductor when y is small. As seen in Fig. 2, for
stationary Marangoni convection Ma. decreases with x. In both
limits the magnitudes of Ma, and a. differ according to the
magnitude of Bi. This is illustrated in Table 1. From the table it is
clear that an increase of y is destabilizing and that an increase of Big
is stabilizing. This magnitudes are important to determine the
limits for the codimension-two points investigated in the following
sections.

In Fig. 2 it is shown that the influence of d is only relevant in the
middle range of y. This difference is more important when Bi;s < 2.
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Steady Case
2604 Bi=5
240 N d=0.1
d=100
220
200
180
160 Bi =2
Mac s d=0.1
140 - \
d=100
120 -
107 Bi=0.1
80 d=0.1
Bi=0
607 d=100
B R R e L L e R M M b R e M b ]

10" 10° 10° 10" 10* 10° 10° 10" 10° 10° 10"
X
(a)

Steady Case

25+ d=100 X 4701 Bi =5

1 d=100 d=0.1 Bi =2
20 i

10" 10® 10° 10" 10® 10° 10° 10* 10° 10° 10"

(b)

Fig. 2. Steady convection. Variation of a) the critical Marangoni number Ma. and b) the
critical wave number a. with y, for Bis = 0,0.1,2,5 and thicknesses d = 0.1 and 100.

There, Ma. may show differences up to more or less 15 units (see
Fig. 2a). Now, as seen in Fig. 2b, the influence of d on a. is notable for
Bis < 2. Clearly, a. decreases with y until it reaches its smallest
magnitude in the limit x — oo. That limit is zero in the particular
case of Big = 0.

It is important to point out that the results shown in Fig. 2 are in
agreement with those presented by Takashima [27]. Yet he only
calculates curves for d up to d = 10. Those curves are inside the

Table 1
Limit magnitudes of stationary Ma. and a..
x—0 x—0 X— X— o Differences Differences
Bis Ma, ac Ma, ac Maco—Mdcoo  Ac0—0co
0 79.607 1.993 48 0 31.606 1.993
0.1 83426  2.028 58.150 1.06 25.276 0.968
2 150.678 2.386 131.016 1.984 19.661 0.402
5 250.597 2.598 227.662 2274 22.935 0.324

range of our calculations. Notice that the parameter he uses cor-
responds to the algebraic inverse of y in this paper.

3.2. Oscillatory convection

Here it is of interest to calculate the Ma, corresponding to
viscoelastic oscillatory Marangoni convection. The magnitude of
Ma, depends on ¢, Pr and A and on those parameters of stationary
convection. For given a, y, Bis, Pr and A, Ma is solved from Eq. (25)
using Maple. The Marangoni number is complex Ma = Ma, + iMa;
due to the presence of ¢, where Ma; is the real part and Ma; is the
imaginary part. The Marangoni number should be real. Thus, it is
necessary to calculate the root of Ma; = 0 with respect ¢. This root is
the marginal ¢ which is substituted into Ma, to obtain the marginal
Marangoni number Ma = Ma,. With all the other parameters fixed,
a new a is given to calculate another marginal ¢ and Ma. This
process is followed until a minimum is found of all the marginal
Ma's. This minimum is called the critical Marangoni number Ma,
with its corresponding critical wavenumber a. and critical fre-
quency of oscillation ¢.. The other parameters are varied to give all
the curves of criticality. Sample curves are found in Fig. 3. Notice

Pr=2,Bi =2
3
150 - N )
4
\ .
145 \\ .
\ 7
Ma | s
140 - \\\ .
I "
130 113

X
(a)
Pr=10, Bi =0
80 3
2
75 ! 4
1\ 5
1l .
Ma 65 \\\\ 7
i \ 8
55 9
] L\ 10
50 \ 11
. 12
B e M R R L A R R R R R R s s e e i a

10" 10® 10° 10* 10% 10° 10° 10* 10° 10° 10"

(b)

Fig. 3. Codimension-two points calculation with Ma. vs x plots. Two samples: 3a)
Pr =2 and Bis = 2.1: stationary: d = 100, 2: stationary d = 0.1. Critical curves for the A’s:
3:0.0594, 4: 0.0606, 5: 0.0614, 6: 0.0622, 7: 0.063, 8: 0.0638, 9: 0.0645, 10: 0.0654, 11:
0.0662, 12: 0.0668, 13: 0.0678, 14: 0.0684. 3b) Pr = 10 and Bis = 0. 1: stationary d = 100,
2: stationary d = 0.1, Critical curves for the A's: 3: 0.0548, 4: 0.0585, 5: 0.06, 6: 0.0622,
7: 0.0659, 8: 0.0696, 9: 0.0770, 10: 0.0807, 11: 0.0844, 12: 0.0867.
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that for a fixed Bis the curves of Ma, vs x are almost horizontal. That
is, the calculated change is only around one hundredth in the range
of x used.

This small dependence of Ma. of oscillatory convection on x has
the influence of the Prandtl number. Calculations for Pr = 0.1 and
0.5 have been done too in order to check the numerical results with
those of Getachew and Rosenblat [23] and for the sake of com-
parison with the results of this paper. For Pr = 0.5, Ma, has varia-
tions of a few decimals and for Pr = 0.1 it has variations of a few
units. The a; and o, of both cases only have variations of a few
decimals. Therefore, it can be said that for 0.1 < Pr < 10, the critical
Mac, a- and o are almost constant in the range of x investigated and
that the wall geometry and thermal boundary conditions have no
effect on the oscillatory instability. In this regard, for fixed Bis; and
Pr, the variation of Ma, of the codimension-two points with respect
to x is due to the dependence on A of the oscillatory Ma, and to the
dependence on y of the stationary Ma,.

Fig. 3a shows results for Pr = 2 and Bis = 2. The curves of criti-
cality decrease with an increase of A. Thus, A has a destabilizing
effect. In this example, oscillatory convection is the first unstable
one in a range of x starting from A > 0.0594. Only oscillatory con-
vection appears for A > 0.0684. The example of Fig. 3b shows results
for Pr = 10 and Bi; = 0. When A > 0.0548 oscillatory convection is
the first unstable one in a range of x. Oscillatory convection prevails
for all x when 4 > 0.0867.

Pr=2

0.08 4
0.07 4 —
Bi-2 d=100
0.06 1 d=0.1
005 & e d=100
5—/—
0.04 1 d=0.1

L e M M e M B R M R e M i s i e e e e

10" 10® 10° 10° 10° 10" 10° 10* 10° 10° 10"
X
(a)
Pr=2
100
%0 Bi=5

70 4

From the results of Fig. 3, it is clear the sensitivity of the
convective instability to small variations of the Weissenberg
number A. From A = 0.0594 to 0.0684, Ma. decreases from 150.67 to
131.01, as shown in Fig. 3a (see also Table 1).

It is important to point out that, to determine the codimension-
two curves of the instability, a larger number of curves of criticality
of oscillatory convection have to be calculated than those shown in
Fig. 3a and b. The codimension-two curves are obtained approxi-
mating the points of intersection (that is, those corresponding to
the same Ma;) between the stationary and oscillatory curves of
criticality for the two values of d, as will be shown in the following
subsection.

3.3. Codimension-two points

The codimension-two points are presented first for the Weis-
senberg number A against x, which is of main importance in this
paper. The Prandtl number is fixed as Pr = 2 in Fig. 4. Fig. 4a shows
how 1 for the codimension-two point increases with y for all the
magnitudes of Bis. In particular, that increase is more important for
small Bi; where notable separations exist between the curves of
d =100 and 0.1

The physical meaning of the curves in Fig. 4a is that for A's larger
than those of the codimension-two curves, the first unstable
viscoelastic thermocapillary convection is oscillatory. Therefore,

Pr=2
1204 o _
s d=0.1
-~
1.0 d=100
10.5
10.0
9.5
9.0
857 Bi=2

80 -m

0
C
60
%018i,=2 d=100
a0 d=0.1
Bi=0.1
20 d=100

Bi.=0

10" 10* 10° 10" 10% 10°

()

d;;j§§§fsz;;:::::::::::
204

10° 10° 10° 10"

Fig. 4. Codimension-two points. 4, a. and ¢, against ¥, for Pr = 2 with Bi; = 0, 0.1, 2, 5, and d = 0.1 and 100. Notice that the magnitudes of a. are different from those of the stationary
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from the A point of view, it is easier to have oscillatory convection
for small y.

In contrast, the curves of a. of oscillatory convection in Fig. 4b of
the codimension-two points, show a decrease with respect to x.
However, it is shown that in the case of oscillatory convection, a
never tends to zero when Bis — 0 and x — oo, as it occurs in sta-
tionary convection in Fig. 2b.

The frequency of oscillation at the codimension-two points
follows a similar tendency as the wavenumber, that is, it decreases
with y. It is interesting to see that the frequency does not tend to
zero when Bis — 0 and x — . This is due to the finite wavenumber
found in these two limits and to the important influence visco-
elasticity has on thermocapillary convection.

The next Fig. 5 for Pr = 10 shows the relevant role played by the
Prandtl number on the codimension-two points. In Fig. 5aitis shown
how the magnitudes of A decrease considerably. However, the
behavior with respect to y is similar to that of Fig. 4a. The curves of
the wavenumber in Fig. 5b present a different reaction with respect
to the change of Pr. With Pr = 10 their magnitudes increase more
than hundred percent in some cases, mainly for small values of Bi;.
The behavior of the curves of a. with respect to x is similar to that of
Fig. 4b. The corresponding frequencies of oscillation shown in Fig. 5¢
increase with Pr = 10 up to seven times the magnitudes of Fig. 4c for
small Bi;. However, their behavior with respect to y is similar.

Pr=10

0.09 4

0.08

0.07
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The results of Figs. 4 and 5 have been checked with the results of
Getachew and Rosenblat [23] (see their Table 1). They correspond
to y = 107'° and Bi; = O of the figures. The case of Pr = 2 is
corroborated by interpolation using a number of data of each col-
umn of their Table 1. Observe that the results of Pr = 10 correspond
very well to those of [23]. Besides, the numerical algorithm was
checked against all the data of their Table 1. To the authors best
knowledge there is no paper published in the open literature with
Bis > 0. It is important to point out that it is not possible to compare
with the results of Siddheshwar et al. [25] because of the lack of
numerical results for the Maxwell fluid and due to the very scarce
numerical results for the Oldroyd model (for constant viscosity).
They only calculate the case Pr = 10 for an Oldroyd fluid with a
Weissenberg number equal to 0.3 and ratio of the retardation and
relaxation times equal to 0.33 (very large and far from the Maxwell
fluid model).

The results presented above can be seen in a different way. The
Marangoni numbers of the codimension-two points are now
plotted in Fig 6 against a., o. and A. The plots are grouped into
“columns” which are tagged with the corresponding characteristic
of the flow and Prandtl number. If the flow is stationary the “col-
umn” is tagged with “st”. When the flow is oscillatory the “column”
is tagged with the corresponding Prandtl number, that is, Pr = 2 or
Pr = 10. Notice that only Fig. 6a has three plot “columns”. The

Pr=10
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reason is that it includes plots of the wavenumbers of stationary
convection which, as explained above, are different from those of
oscillatory convection. It is noteworthy that the separation of the
curves due to d = 0.1 and 100 is only clear in the “column” of sta-
tionary convection (st) in Fig. 6a when Bis is 0 and 0.1. The reason is
that the scale adopted to review the results is not wide enough to
show the separation in the other plots.

In this way, Fig. 6 gives us a full panorama of the thermocapillary
behavior of the Maxwell viscoelastic fluid. The parameters involved
in the problem are shown as a map of its behavior. The magnitude
of the parameters are shown just beside the corresponding curve.

Ma, is plotted against a. in Fig. 6a. By definition the range of Mac
of the codimension-two points is the same as that of the stationary
Ma, for a fixed Bis and independent of Pr. Observe that the Mar-
angoni numbers of the codimension-two points increase with Big
which therefore has a stabilizing effect. The corresponding mag-
nitudes of the wavenumbers increase with Pr, as shown in the
“columns” for Pr = 2 and Pr = 10.

The frequencies of oscillation in Fig. 6b increase too with Pr.
However, when Pr = 10 the influence of Bis is stronger as seen by
the large inclination of the “column”, where Ma. and ¢, have a
remarkable increase.

The “columns” of the codimension-two points in Fig. 6¢ are also
inclined but in a different direction. This means that Ma, of the
codimension-two points decreases with an increase of A. Thus, A has

a destabilizing effect. It is clear that an increase of Bis stabilizes.
Notice that for Pr = 10 smaller magnitudes of 1 can destabilize the
flow and that the curves of criticallity can cross through the
codimension-two points in a shorter range of 1.

3.4. Importance of d

The thicknesses ratio has important influence on the instability.
This effect is transmitted to the codimension-two curves, as is
apparent in the figures presented above. Yet it is not clear quanti-
tatively how large is the separation between the two curves of
d = 0.1 and 100 for each of the parameters under investigation such
as a. for stationary (st) convection, a. for oscillatory convection, o
and A. These parameters have different magnitudes for each Bi
used in this paper. It is found that the largest separation of the
curves of d = 0.1 and 100 is located not exactly but near to y = 10.
Therefore, Table 2 is used to present the numerical calculation of
the separation of the two curves at y = 10. Four magnitudes of the
parameter Big = 0, 0.1, 2 and 5 are used which correspond to each
column in the table.

It is clear that the separation of the codimension-two curves, for
each of the parameters, decreases with the increase of Bis. A slight
increase is observed for Bis = 5 when Pr = 10, but it is important to
remember that the differences found at y = 10 not necessarily are
uniform. Observe that Pr = 10 imposes an extra effect on the
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Table 2
Difference between d = 0.1 and 100.

Effect at oy = 10

Big 0 0.1 2 5

Ma, st 13.276 8.386 3.398 3.068
ac st 1.404 0.533 0.122 0.079
Pr=2

A 0.02150 0.01143 0.00163 0.00068
ac 0.424 0.265 0.114 0.038
oc 3.403 2.189 1.164 0.798
Pr=10

A 0.01454 0.00767 0.00088 0.00031
ac 0.789 0.445 0.104 0.114
[ 25.958 15.849 5.203 5.263

oscillatory case producing large differences of the frequencies of
oscillation in comparison with Pr = 2.

From Table 2 it is possible to conclude that the increase of Bis
improves the heat conducting properties at the surface-
atmosphere boundary. Consequently, the thicknesses ratio be-
comes less relevant.

4. Conclusions

The codimension-two points of Marangoni convection in a
Maxwell viscoelastic fluid layer have been investigated under the
influence of a number of parameters. They are the Weissenberg
number /, the thicknesses ratio d, the heat conductivities ratio y,
the Prandtl number Pr and the fluid-atmosphere Biot number Bi;.
All of them have an important effect on the Marangoni instability.

It is found that A has to grow to reach the codimension-two
point when y increases. Physically, this means that when the wall
heat conductivity decreases in relation with that of the fluid, the
fluid elasticity has to increase in order to allow oscillatory con-
vection to compete to be the first unstable one. Further, when the
relative wall thickness increases by means of d, A has to increase
even more. On the contrary, when the heat flux through the free
surface Bi; increases, the A needed to reach the codimension-two
point is smaller. Notice that the ranges of A are reduced too and
that Ma, increases considerably stabilizing the system.

It is shown that the increase of heat conductivities ratio de-
creases the stationary Marangoni number. This makes the compe-
tition between stationary and oscillatory convection more difficult.
Therefore, it is necessary to increase the Weissenberg number
(more elastic fluid) to allow oscillatory convection to be the first
unstable one.

It is demonstrated that this effect is modified by the Prandtl
number. An increase of Pr (that is, a decrease of the heat diffusivity
of the fluid) decreases the magnitude of 1 but, on the contrary, it
increases the magnitudes of the wavenumber and the frequency of
oscillation corresponding to the codimension-two points.

The separation between the curves of d = 0.1 and 100 is
important to show the relevance of this parameter on the stability.
Geometrically, their meanings are that the thickness of the wall is
10 times smaller and 100 times larger than that of the fluid layer,
respectively. Table 2 presents the separation of the curves, for fixed
x = 10 and for different parameters taking into account that they
depend on Big. It is clear that the separations of A and the other
parameters of the problem decrease with an increase of Bis. Phys-
ically, the relative increase of heat flux across the free surface (Bis)
makes ineffective the geometry of the thick wall reflected in the
parameter d.

In comparison with previous papers on viscoelastic Marangoni
convection, this work presents results more useful in realistic
practical and laboratory conditions. The reason is that the

geometric and physical properties of the wall are taken into ac-
count. Notice that the use of the results of ideal wall thermal
boundary conditions in applied coating problems may lead to un-
expected results. Therefore, from the results of this paper, it is
important to consider the relevance of the middle section of the
range of x to understand the stability and the codimension-two
points expected in applications.

The next step is to calculate the codimension-two points of an
Oldroyd fluid where an extra parameter appears. That is, the
retardation time.
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