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In this paper natural convection is investigated under an inclined temperature gradient with a negative
vertical component. This is translated into a negative vertical Rayleigh number RV . This is important in
applications when, for example, RV < 0 is used to stabilize a liquid layer but a horizontal temperature gra-
dient still persists. Interesting results are found from the numerical analysis of the linear equations. New
codimension-two points, where the stationary and oscillatory convection modes compete to be the first
unstable one, are found by increasing the magnitude of the negative RV . Besides, the longitudinal
stationary modes intersect again for RV < 0. Calculations for seven magnitudes of the Prandtl number
are presented in detail.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of a liquid due to buoyancy effects is the source of
different problems when solidification of the material is the final
goal of an industrial process. A method to avoid convective
motions is to maintain the room at a very well controlled uniform
temperature. If this is not possible, the motion can be suppressed if
the system is cooled from below. This phenomenon occurs when a
thermal inversion exists in the atmosphere. However, this method
fails if a horizontal temperature gradient is imposed in addition to
the cooling vertical temperature gradient. As found in nature,
industry and in the laboratory, temperature gradients are not only
in the vertical direction but appear inclined with respect to gravity.
As will be shown presently, an inclined temperature gradient is
able to destabilize a horizontal fluid layer even when it is cooled
from below. Furthermore, it has the possibility of changing the first
unstable modes of instability as well.

The case of a purely horizontal temperature gradient was inves-
tigated many years ago to explain phenomena in molten metals
[1,2] and in the atmosphere (the so called Hadley circulation [3]).
Some applications to the problem of crystal growth were made
by Lappa [4]. Under the assumption of a small aspect ratio this
problem has also been investigated by other authors like Kuo
et al. [5], Kuo et al. [6] and Wang et al. [7], Laure [8] and Laure
and Roux [9] and Hughes and Griffiths [10] (review of oceano-
graphic applications). The nonlinear problems were investigated
in [7,9,11] and experiments were performed in [12,13]. The effect
of a vertical magnetic field was included by Baaziz et al. [14]. For
a comprehensive review of this problem and others related with
convection see [15,16].

Linear convection under a purely vertical temperature gradient
is reviewed in Chandrasekhar [17]. As mentioned above, it is diffi-
cult to find a pure vertical or horizontal temperature gradient.
Therefore, a number of papers are devoted to investigate the
influence of an inclined temperature gradient on the stability of a
horizontal fluid layer. This case was investigated by Weber [18],
Sweet et al. [19], Bhattacharyya and Nadoor [20] and Weber [21].
These papers introduced simplifying assumptions in the calcula-
tions. Nield [22] is the first to make a more complete numerical
calculation introducing a wider range of Prandtl numbers. The non-
linear energy method is used by Kaloni and Qiao [23] who pointed
out the important result that the curves of Nield [22] should
decrease when the horizontal Rayleigh number increases.

The two papers by Nield [22] and Kaloni and Qiao [23] were the
motivation to make numerical calculations of the linear problem
under an inclined temperature gradient in a wider range of the
horizontal Rayleigh number and Prandtl number (see Ortiz-Pérez
and Dávalos-Orozco [24,25]). Those papers present the
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Nomenclature

d thickness of the layer
D=Dt Lagrange operator
D ¼ d=dz symbol of z-derivative
g acceleration of gravity
k x-direction wavenumber
k vertical unit vector
l y-direction wavenumber
LO1 even longitudinal oscillatory mode
LO2 odd longitudinal oscillatory mode
LS1 even longitudinal stationary mode
LS2 odd longitudinal stationary mode
Obo oblique mode
p
0

pressure perturbation
Pr Prandtl number
RV vertical Rayleigh number
RVC vertical critical Rayleigh number
RH horizontal Rayleigh number
Tðx; zÞ main temperature profile
T 0 nondimensional temperature
To transversal oscillatory mode
Ts transversal stationary mode

�u0 ¼ ðu0;v 0;w0Þ nondimensional velocity perturbation
uðzÞ x-direction perturbation amplitude
UðzÞ x-direction main flow
VðzÞ y-direction main flow
wðzÞ z-direction perturbation amplitude

Greek
a wavenumber magnitude
aC critical wavenumber magnitude
aT coefficient of volumetric expansion
bH horizontal temperature gradient
DT vertical temperature difference
h amplitude of temperature perturbation
j thermal diffusivity
m kinematic viscosity
q0 reference density
r frequency of oscillation
rC critical frequency of oscillation
/ perturbation propagation angle
/C perturbation critical propagation angle
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competition among a variety of modes to be the first unstable one.
In particular, codimension-two points, where the stationary and
oscillatory modes compete to be the first unstable one, were found
including those calculated for the new oblique oscillatory mode.
The way to see how this occurs is by looking at the marginal
curves. Let’s say that the marginal curve of the stationary mode
has a minimum (the critical) at some height of the vertical
Rayleigh number and that the marginal curve of the oscillatory
mode has a minimum at a lower height (that means that it is more
unstable). When changing one of the parameters, in particular the
horizontal Rayleigh number, the minimum of the stationary mode
decreases and the minimum of the oscillatory mode increases in
such a way that at some magnitude of the horizontal Rayleigh
number both minima have the same magnitude in the vertical
Rayleigh number (but different critical wavenumber). At this point,
the codimension-two point, both modes compete to be the more
unstable. All the calculations in [24,25] assume positive vertical
Rayleigh numbers (heating from below). Here, the calculations
are focused on natural convection under an inclined temperature
gradient but under the assumption of a negative vertical Rayleigh
number (cooling from below). As will be seen presently, these con-
ditions will prove to be very fruitful and will lead to new interest-
ing phenomena.

The next section presents the equations of motion for the
description of the fluid flow and heat transfer of the system under
investigation and reviews the numerical method used to solve the
linear system of equations. The results of the numerical calcula-
tions are given in Section 3 along with a detailed analysis of the
main temperature profile. The discussion is presented in Section 4.
Fig. 1. Sketch of the system. The two solid walls are separated a distance d and have
a negative temperature difference DT < 0. The walls are also subjected to a
horizontal temperature gradient of magnitude bH in the x-direction. The lateral
walls are assumed to be located very far from the region under investigation.
2. Equations of motion

A schematic representation of the system under investigation is
shown in Fig. 1. The difference with respect to previous work
[24,25] is that here it is assumed that the temperature difference
between the upper and lower solid walls satisfies DT < 0. Gravity
is perpendicular to the fluid layer in the negative direction of the
z-axis. A horizontal temperature gradient of magnitude bH is
imposed in the x-direction. Here, the interest is on the stability
of the flow in a middle region far from the lateral walls. Thus,
the flow in the x-direction due to bH has the form of a very large
cell. The corresponding dimensional main velocity profile depends
only on the z-coordinate as UðzÞ.

The equations of motion and heat transfer are made non dimen-
sional by means of the following quantities. The thickness of the
layer d is used for distances, d2

=j for time (j is the thermal
diffusivity), j/d for velocity, q0jm=d2 for pressure (q0 is a reference
density) and DT/RV for temperature. Here the vertical Rayleigh
number is defined as RV ¼ gaT d3DT=mj and the horizontal
Rayleigh number is RH ¼ RV dbH=DT = gaT d4bH=mj. g is the acceler-
ation of gravity and aT is the coefficient of volumetric expansion.
Hence, the non dimensional equations of motion, heat diffusion
and mass conservation are, respectively:

Pr�1 D�u0

Dt
¼ �rp0 þ T 0kþr2�u0 ð1Þ
DT 0

Dt
¼ r2T 0 ð2Þ
r � �u0 ¼ 0 ð3Þ

where use is made of the Boussinesq approximation. Here,
�u0 ¼ ðu0;v 0;w0Þ is the velocity vector, k is a vertical unit vector, p0
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is the pressure, T 0 is the temperature and D=Dt is the Lagrange oper-
ator. The walls are located at z = ±1/2 and are assumed to be rigid
and very good conductors. There, the velocity and temperature sat-
isfy the conditions:

�u0 ¼ 0 ð4Þ
T 0 ¼ �RV=2� RHx ð5Þ

The solution of the main flow and temperature profiles in the
region far from the lateral walls is obtained from the following
three equations.

D3UðzÞ ¼ �RH ð6Þ
D3VðzÞ ¼ 0 ð7Þ
D2Tðx; zÞ ¼ �RHUðzÞ ð8Þ

where the operator D stands for d=dz. Note that the flow is closed
and should satisfy the zero mass flux condition by making zero
the integrals of the main velocity components in the range of z.
The results are

UðzÞ ¼ RH
z

24
� z3

6

� �
ð9Þ
VðzÞ ¼ 0 ð10Þ
Tðx; zÞ ¼ R2
H

7z
5760

� z3

144
þ z5

120

� �
� RV z� RHx ð11Þ

It is important to observe that the numerical calculations are done
under the assumption RV < 0. Thus, the main temperature profile
differs from that of previous results [24,25] (see discussion below).
This has important consequences on the stability, as will be shown
presently. More general temperature profiles have been investi-
gated by Lappa [26] and Andreev and Stepanova [27].

The system is subjected to linear perturbations [22,24,25] and
the Eqs. (1)–(3) are transformed into the following.

½PrðD2 � a2Þ � iðkU � rÞ�ðD2 � a2Þwþ ikwD2U � Pra2h ¼ 0 ð12Þ
½ðD2 � a2Þ � iðkU � rÞ�hþ RHu�wDT ¼ 0 ð13Þ
Fig. 2. Graphs of RVC vs RH for Pr = 0.14. New codimension-two point between Ts
and LO1 for RV < 0. Presented in the form (RH ;RVC ;aC ;rC ) for TS it appears at
(3052.00, �2617.14, 2.44, 0) and for LO1 at (3052.00, �2617.14, 1.75, 19.54). The
region below the curves is stable.
½PrðD2 � a2Þ � iðkU � rÞ�ð�a2uþ ikDwÞ þ l2wDU ¼ 0 ð14Þ

It is assumed that the dependent variables have the form
GðzÞ exp½iðkxþ ly� rtÞ�, where GðzÞ represents the amplitude of
any of the perturbations and k and l are the x and y-components

of the wavenumber with magnitude a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
. Therefore,

k ¼ a cos / and l ¼ a sin /, where / is the angle of propagation of
the perturbation. r is a complex number whose real part is the fre-
quency of oscillation of the perturbation and its imaginary part is
the growth rate.

The amplitudes u and w are the x- and z-components of the
velocity perturbation and h is the temperature perturbation. They
satisfy the boundary conditions for solid and very good heat con-
ducting walls, that is, w = Dw = u = h = 0 at z ¼ �1=2.

The numerical Galerkin method [28,29] in this paper follows
that of Hart [30] as used in [24,25]. The good convergence has
already been verified and the number of expansion terms have
been increased as needed. Due to the symmetries [24,25] found
in Eqs. (12)–(14), numerical calculations are performed only for
the angles / between 0� and 90�.
3. Numerical results

The numerical calculations are focused on magnitudes of the
Prandtl number where the results are not expected and are in con-
trast to the case of RV > 0. In this way, the first calculations are for
Pr = 0.14, which correspond to molten iron at 1870 �C [31]. Notice
that in all the figures, the flow is stable in the region below the
curves of criticality. As shown in Fig. 2 in a plot of RVC vs RH , the
curve of the first longitudinal oscillatory mode LO1 intersects that
of the transverse stationary mode TS, point after which TS becomes
the first unstable one. Therefore, for Pr = 0.14 and RV < 0 a new
codimension-two point is found. Based on the results of Fig. 3 in
[24] these two curves also have a codimension-two point for
RV > 0. If the data are presented in the form (RH;RVC ;aC ;rC) the
first codimension-two point [24] appears at (1661.00, 1425.83,
2.64, 0) for TS and at (1661.00, 1425.83, 2.27, 12.31) for LO1. The
second new one appears at (3052.00, �2617.14, 2.44, 0) for TS

and at (3052.00, �2617.14, 1.75, 19.54) for LO1. Notice the negative
RVC .

It is important to point out that this new codimension-two
point discussed above, starts to appear very near to Pr = 0.14 as
can be seen by the close distance between the two curves. The
critical wavenumbers of both modes decrease with RH while the
critical frequency of oscillation of LO1 increases. Note that in this
figure the first and second longitudinal modes LS1 and LS2 are not
shown because they only appear for very large RH when RVC < 0
and never become the first unstable ones. Physically mode TS

and LS1 appear from natural convection with vertical temperature
gradient. It is found [24] that TS is the most unstable when shear
flow increases with RH and that LS1 first stabilizes. The increase of
shear flow with RH has stabilizing effects, until certain magnitudes,
which work against buoyancy forces. This produces the first oscil-
latory longitudinal mode LO1 which now competes against TS.
However, the cooling from below returns the dominance to TS.
These two modes have a one cell structure [24].

The case of Pr = 0.16 is investigated in order to find out if these
two modes TS and LO1 behave in the same way increasing Pr
slightly. For example, molten iron at 1830 �C [31] corresponds to
Pr = 0.16. In fact it is shown that the two curves still meet at a
codimension-two point but for a larger magnitude of negative RV ,
as seen in Fig. 3. The full picture is as follows. The first
codimension-two point for positive RV appears for TS at (1178.00,



Fig. 3. Graphs of RVC vs RH for Pr = 0.16. New codimension-two point between Ts
and LO1 for RV < 0. Presented in the form (RH ;RVC ;aC ;rC ) for TS it appears at
(6919.00, �24885.04, 2.38, 0) and for LO1 at (6919.00, �24885.38, 1.09, 31.66). The
region below the curves is stable.

Fig. 4. Graphs of RVC vs RH for Pr = 0.2. New codimension-two point between LO1

and LS1 for RV < 0. Then, LS1 and LS2 intersect again. Presented in the form
(RH ;RVC ;aC ;rC ), the new codimension-two point between LO1 and LS1 is at (15290.9,
�106232.46, 0.58, 41.28) and (15290.9, �106232.46, 7.77, 0), respectively, and the
second intersection between LS1 and LS2 is at (16725, �155536.86, 7.70, 0) and
(16725, �155536.86, 7.77, 0), respectively. The region below the curves is stable.
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2296.14, 2.80, 0) and for LO1 at (1178.00, 2296.77, 2.52, 9.41). The
second new one appears for TS at (6919.00,�24885.04, 2.38, 0) and
for LO1 at (6919.00, �24885.38, 1.09, 31.66). The critical wave num-
bers of the two modes are a decreasing function of RH and the crit-
ical frequency of oscillation of LO1 increases with RH . Again the first
and second longitudinal modes LS1 and LS2 are far away and are not
relevant in this figure.

It is interesting to observe in Fig. 2 of [24] for Pr = 0.2, that these
two modes already separate in such a way that apparently they are
not able to intersect again for any negative RV . Therefore, it is of
interest to investigate here what happens when Pr = 0.2. In fact,
due to the increase of RVC in the curve of TS [24], a new unexpected
codimension-two point is found for negative RV . As shown in Fig. 4,
now the first longitudinal oscillatory mode LO1 first intersects the
first longitudinal stationary mode LS1 when RH ¼ 15290:9 and
RVC ¼ �106232:46. These two modes are even forming one
convection cell. This concept comes from the analytical solutions
of natural convection [17] which in the absence of shear (RH ¼ 0)
present symmetry with respect to the origin forming one cell.
The symmetry is best seen in the second even mode (RH = 0) which
presents three cells where the two close to the walls rotate in the
same direction. This mode is very stable in the absence of shear but
becomes mode LS1 when RH > 0 [25]. After the codimension-two
point the mode LS1 is the first unstable one. Nevertheless, for a
further increase of RH , numerical results demonstrate that modes
LS1 and the second longitudinal stationary mode LS2 are able to
intersect again for RH ¼ 16725 and RVC ¼ �155536:86. Their first
intersection is irrelevant for Pr = 0.2, but it is important only for
Pr > 0.5 (strict inequality, see [24,25]). In this way, the stability
panorama changes in a relevant way when RVC is negative.

The second odd longitudinal mode LS2 also appears from the odd
mode of natural convection [17] in the absence of shear (RH ¼ 0).
This mode is very stable with a very large critical RV . It stabilizes
further with RH and, after a certain point with RVC > 0, its critical
curve decreases very fast to become relevant for RVC < 0. The odd
mode LS2 shows two anti-symmetric convection cells rotating in
different directions [25].

Written in the form (RH;RVC ;aC ;rC) the first codimension-two
point between TS and LO1 is at (1008, 2652.39, 2.88, 0) and (1008,
2652.39, 2.62, 8.55), respectively. The new codimension-two point
between LO1 and LS1 is located at (15290.9,�106232.46, 0.58, 41.28)
and (15290.9, �106232.46, 7.77, 0), respectively. The second inter-
section between LS1 and LS2 is found at (16725,�155536.86, 7.70,0)
and (16725,�155536.86, 7.77,0). Clearly, the last two intersections
have negative RVC . At the codimension-two point, the one-cell
structure of the first longitudinal oscillatory (even) mode LO1

changes into the three-cell structure of the first longitudinal sta-
tionary (even) mode LS1 [24,25]. However, the cooling from below
and the increase of shear by RH transforms the pattern into the
two-cell structure of the second longitudinal stationary (odd) mode
LS2. Note that when Pr = 0.2 the oblique oscillatory ObO mode is still
not able to appear for any RH .

This magnitude of RVC ¼ �106232:46 at the intersection
between LO1 and LS1 is very large. However, the tendency of the
magnitude of RVC in the curve LO1 is to increase to positive magni-
tudes with Pr, as can be seen in the next Fig. 5. Note that the RVC of
mode TS increases faster. The importance of this intersection only
persists until the appearance of the new oblique oscillatory mode
ObO, event which occurs somewhere in the range 0.2 6 Pr 6 0.45
(see Fig. 5). The critical wave number of LO1 decreases monotoni-
cally with RH and those of LS1 and LS2 change slowly below and
above a value of 8, respectively. The critical frequency of LO1

increases monotonically with RH .
When Pr = 0.45, it is shown in Fig. 4 of [24] that the new oblique

oscillatory mode ObO is already present. It is interesting that ObO is
the first unstable one (below LO1) when the angle of propagation of
the perturbation is / ¼ 86� and (8300, 1582.34, 1.4, 60.38). As
shown in [24], ObO intersects LS1 when Pr = 0.4886 and RVC ¼ 0
(see Fig. 4(b) of [24]). However, it is demonstrated in Fig. 5 for
Pr = 0.45 that the one-cell oblique oscillatory mode ObO and the
three-cell even longitudinal stationary mode LS1 intersect in a
new codimension-two point for RV < 0. After the intersection the
first unstable mode is LS1. The full picture now may be described
as follows. Presented in the form (RH;RVC ;aC ;rC), the first codimen-
sion two point appears at (1105.00,3588.98,2.88,0) for TS and at
(1105,3587.95,2.71,10.43) for LO1.

The second new codimension two point is located at
(12637.95,-5655.59,8.17,0) for LS1 and at (12637.95,-5655.79,1.59,
108.79) with / ¼ 67� for ObO. In addition, the even three-cell mode
LS1 and the odd two-cell mode LS2 intersect again at the points
(18627, �135181.5, 8.48, 0) for LS1 and (18627, �135181.5, 8.55,
0) for LS2. After that point, LS2 is the first unstable mode.
Evidently, the magnitude of the negative Rayleigh number at the



Fig. 5. Graphs of RVC vs RH for Pr = 0.45. New codimension-two point between ObO

and LS1 for RV < 0. Then, LS1 and LS2 intersect again. Presented in the form
(RH ;RVC ;aC ;rC ), the new codimension-two point between ObO and LS1 is at
(12637.95, �5655.69, 8.17, 0) for LS1 and at (12637.95, �5655.69, 1.59, 108.79)
and / = 67� for ObO . The second intersection between LS1 and LS2 is at (18627,
�135181.5, 8.48, 0) and (18627, �135181.5, 8.55, 0), respectively. The region below
the curves is stable.

Fig. 6. Graphs of RVC vs RH for Pr = 1. Presented in the form (RH ;RVC ;aC ;rC ), the new
intersection point between LS1 and LS2 occurs at (19975, �132766.15, 9.14, 0) for LS1

and (19975, �132766.15, 9.18, 0) for LS2. The region below the curves is stable.

Fig. 7. Graphs of RVC vs RH for Pr = 10. Presented in the form (RH ;RVC ;aC ;rC ), the
new intersection point between LS1 and LS2 occurs at (20757, �120860.80, 9.79,0)
for LS1 and (20757, �120860.80, 9.81,0) for LS2. The region below the curves is
stable.

1218 A.S. Ortiz-Pérez, L.A. Dávalos-Orozco / International Journal of Heat and Mass Transfer 90 (2015) 1214–1220
intersection is smaller with respect to that of Pr = 0.2. The
wavenumbers of the oblique oscillatory mode are almost constant
for negative RV . Those of LS1 and LS2 are below and above 8, respec-
tively. However, the frequency of oscillation of ObO increases with
RH faster than that of LO1. The angle of propagation of the perturba-
tion decreases with RH but the slope is less steep for RV < 0.

The results presented above correspond to Prandtl numbers
smaller than one. Here, the Prandtl number is one or larger than
one as investigated in Refs. [24,25]. Those papers show the impor-
tant competition between the stationary modes LS1 and LS2. They
cover a very large instability region with respect to RH . Mode LS1

is the first unstable one for relatively small RH . Then, the transver-
sal oscillatory mode TO is the first unstable one in a very short
range. For larger magnitudes of RH the mode LS2 is the first unstable
one up to an intersection point after which LS1 becomes the first
unstable one. For a further increase of RH , those curves touch the
axis RVC ¼ 0 with LS1 as the first unstable one. From this stability
picture, it is clear that only the stationary modes LS1 and LS2 are
able to be the first unstable ones for RV < 0.

In order to check what happens with these modes, a first test is
made using the approximate analytical formulas for LS1 and LS2 pre-
sented in Appendix A of [25]. Those formulas are very accurate for
Pr P 10. According to the numerical results, both curves LS1 and LS2

intersect each other again for negative RV . Consequently, mode LS2

can become the first unstable one for a second time. These results
have been confirmed by means of a higher order Galerkin algo-
rithm and are shown in Figs. 6–8 where Pr = 1, 10 and 100,
respectively.

When presented in the form (RH;RVC ;aC ;rC), the new intersec-
tion points between LS1 and LS2 occur for Pr = 1 at (19975,
�132766.15, 9.14, 0) for LS1 and (19975, �132766.15, 9.18, 0) for
LS2, for Pr = 10 at (20757, �120860.80, 9.79, 0) for LS1 and (20757,
�120860.80, 9.81, 0) for LS2 and for Pr = 100 at (20825.87,
�119354.52, 9.86, 0) for LS1 and (20825.87, �119354.52, 9.88, 0)
for LS2. Notice that the magnitudes of the negative RVC decrease
even more with Pr in comparison with the previous Prandtl num-
bers (Pr < 1) used. It is important to stress again that the results of
the approximate analytical formulas of Ref. [25] are valid for
Pr P 10 and that consequently their numerical results lead to the
conclusion that the second intersection between LS1 and LS2 occurs
for all Pr P 10 when RVC < 0. The wavenumbers of LS1 and LS2

increase monotonically with RH and their magnitudes are very
similar.

3.1. Importance of the main temperature profile

According to the results presented above, the flow still presents
instabilities and changes of modes even under a negative vertical
temperature gradient. The question arises about the possibility of
a complete stabilization in the presence of a horizontal tempera-
ture gradient. This is a difficult question because the shear flow
due to RH is still present and is able to produce flow instabilities.
Note that only the z-dependent part of the temperature profile is
considered. That is

TðzÞ ¼ R2
H

7z
5760

� z3

144
þ z5

120

� �
� RV z: ð15Þ

The roots of the first derivative of TðzÞ with respect to z, give the
location of the maximum and the minimum of the temperature.



Fig. 8. Graphs of RVC vs RH for Pr = 100. Presented in the form (RH ;RVC ;aC ;rC ), the
new intersection point between LS1 and LS2 occurs at (20825.87, �119354.52,
9.86,0) for LS1 and (20825.87, �119354.52, 9.88,0) for LS2. The region below the
curves is stable.
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They are responsible for the existence of the two unstable regions
near to the walls and the stable region in between (see [24,25]).
Their locations are at:

zmax;min ¼ �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30þ 21600

RV

R2
H

svuut ð16Þ

Notice that the roots with a plus sign inside the first square root are
outside the range of the walls and have no importance here. The
three roots z = 0, 1/2 and �1/2 of the second derivative are the loca-
tions of the inflection points of the temperature profile. Substitution
of Eq. 16 into the second derivative shows that the root with the
plus sign corresponds to a minimum and that of the minus sign
to a maximum. Observe that both roots approach to the walls loca-
tions z = ±1/2 increasing the negative magnitude of RV in the term
30–21600 RVj j/R2

H . Accordingly, the negative RV has a stabilizing
effect by reducing the thickness of the unstable regions near to
the walls. As can be seen from the results presented above, even
at large magnitudes of negative RV the system still admits convec-
tive instabilities. Therefore, the magnitude of the negative RV has
to be extremely large to have a complete stabilizing effect. It is dif-
ficult to tell after which thickness of the unstable regions the flow is
already stable. Nevertheless, it is reasonable to assume that the flow
is stable when the unstable regions completely disappear from the
temperature profile. This condition is attained when the extrema of
the temperature profile are located just at the walls (at
zmax;min ¼ �1=2), that is, when the magnitude of the negative RV

with respect to RH is a root of the radicand of Eq. (16). That is

RV ¼ �
R2

H

720
: ð17Þ

This is in contrast with the results of RV > 0 [24,25] where the tem-
perature profile loses the stable region and transforms into a mono-
tonically decreasing function of z when RV increases for a fixed RH .

The strong increase of the stable region with RV < 0 in the tem-
perature profile produces, as a consequence, the change of the
three-cell even convection mode LS1 into the two-cell odd convec-
tion mode LS2 in a wide range of the Prandtl number.
4. Conclusions

In this paper the stability of a liquid layer subjected to an
inclined temperature gradient is investigated under the action of
a negative RV . The goal is to present results which cover the full
range of magnitudes of the Prandtl number investigated in the
two previous papers [24,25]. Seven sample Prandtl numbers are
used, Pr = 0.14, 0.16, 0.2, 0.45, 1,10 and 100.

It is interesting to note that two codimension-two points
between TS and LO1 start to appear around Pr = 0.14, one for posi-
tive RV [24] and another new one for negative RV . This Prandtl
number is nearly the critical one after which these new phenom-
ena occur. Calculations are done too for Pr = 0.16 in order to deter-
mine how large is the change of the negative RV to reach a
codimension-two point with an small increase of Pr. It is found that
a very large magnitude of RV < 0 is still able to change the stability
of the fluid layer by means of a codimension-two point.

For a small increase of the Prandtl number up to Pr = 0.2, a new
codimension-two point is found between the even longitudinal
oscillatory mode LO1 and the even longitudinal stationary mode
LS1 for RV < 0. The magnitude of the negative vertical Rayleigh
number of the codimension-two point decreases with a further
increase of the Prandtl number. This point persists up to the first
Prandtl number where the oblique oscillatory mode appears.

The interest focused next on the behavior of the oblique oscilla-
tory mode ObO. The numerical results show that for RV < 0 it is pos-
sible to find a codimension-two point between ObO and LS1 for
smaller Prandtl numbers than Pr = 0.4886, which was thought to
be the first one to show this point (see Fig. 4(b) in [24]). An exam-
ple for Pr = 0.45 is presented where the curves ObO and LS1 intersect
in a codimension-two point with RVC ¼ �5655:69. This
codimension-two point disappears decreasing the Prandtl number
to a magnitude where ObO vanishes.

As can be understood from [24,25], only two modes qualify to
give interesting results for Pr P 0.2 and RV < 0. They are LS1 (even
mode, symmetric with three cells) and LS2 (odd mode, antisymmet-
ric with two cells) (see [25]). For simplicity, first use is made of the
analytical formulas of Appendix A in Ref. [25] valid for Pr P10.
Numerical calculations show that modes LS1 and LS2 intersect again
for RV < 0. This is verified with a higher order Galerkin numerical
analysis for Pr = 1, 10 and 100. The magnitude of the negative RV of
the intersection point is large but decreases with Pr. After the inter-
section the mode LS2 is able to be the first unstable one for a second
time. Accordingly, the analytical formulas [25] predict that this new
intersection between LS1 and LS2 appears for all Pr P 10 and RV < 0.

These results were a motivation to find out if these two curves
also intersect for smaller Prandtl numbers. It is found that when
RV < 0, these two curves are relevant and also intersect at
Pr = 0.2. Numerical calculations show that, in comparison with
large Prandtl numbers, for this small Pr the magnitude of RV < 0
at the crossing point increases and that of RH decreases. Finally,
it is concluded that for negative RV the curves LS1 and LS2 always
intersect for Pr P 0.2. After that intersection point, invariably the
mode LS2 becomes the first unstable one.

The results presented above give a more complete picture of the
linear natural convection of an infinitely large fluid layer under an
inclined temperature gradient. It is concluded that, even in the case
of RV < 0, flow instabilities are still present and that it is always
possible to find interesting flow patterns.
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