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ABSTRACT: The phase equilibrium conditions and entropy balance equations for multicomponent fluid mixtures are expressed
with a density-based formalism (“isochoric thermodynamics”), and isentropes in the one- and two-phase region are computed
from equations of state; here the Peng−Robinson equation is used as an example. Griffiths’ theoremone- and two-phase
isentropes meet at a maxcondenbar point (pressure maximum of an isopleth) with equal slopescould be confirmed. For
chemically similar compounds at subcritical conditions, the resulting isentrope patterns are similar to those of pure fluids. If one
of the components is supercritical, it is possible that, along a part of a two-phase isentrope, the liquid phase has a higher molar
entropy than the vapor phase (“entropic inversion”). The phenomenon not only poses a numerical problem, but is also relevant
for the question whether a two-phase isentrope can run into the llg three-phase curve.

1. INTRODUCTION

Modern power technology strives to increase the efficiency of
power plants, industrial installations, but also vehicle motors, by
utilizing their waste heats. Some new power plant types, e.g.,
combustion power plants using biogenic fuels or solarthermal
plants, have to use heat at unusually low temperature levels.
Under these conditions, the obtainable efficiency depends very
much on working fluids used, and consequently the number of
publications dealing with “organic Rankine cycles” (ORC) and
similar concepts is rapidly increasing.
Another challenge that modern power technology is facing is

the need for flexibility, that is, the need to achieve a good
efficiency under partial load. This is particularly important for
refrigeration and air conditioning applications, which consume
a large amount of energy, and that at steadily increasing costs.
Improving process efficiencies is therefore mandatory, and this
means, among other things, the optimization of the working
fluids. For fine-tuning the working fluids as well as for achieving
optimal performance under varying operating conditions, the
use of mixed fluids is seriously considered. This means, of
course, that the processes typical of power plants, for example,
adiabatic compressions and expansions, have to be studied for
mixtures.
An example of a highly efficient power cycle using a mixed

working fluid is the Kalina cycle.1

Another application for the adiabatic expansion of mixtures is
the processing of natural gas and oil, where again the

energetical efficiency, but also the condensation behavior is
really important. Here, too, the Kalina cycle is considered
because of its good performance.2,3

We will therefore consider some aspects of the adiabatic
compression or expansion of binary fluid mixtures, with
particular emphasis on high-pressure regions where retrograde
phenomena can be found.
In the preceding article4 a differential equation and an

algebraic scheme for the computation of isentropes of pure
f luids in the vapor−liquid region were given. The usual
distinction between “wet” and “dry” working fluids was
discussed with TS (temperature−entropy), SV (entropy−
volume) as well as qT (quality−temperature) diagrams, and
then related to molecular properties.
For the calculation of two-phase isentropes in mixtures

Cowperthwaite and Ahrens5 presented a mathematical solution
to the problem already in 1967. This solution, however, is a set
of ordinary differential equations which not only describes the
adiabatic process itself, but also the phase equilibrium by a
generalization of the Gibbs−Konowalow equations; it is so
complicated that one is tempted to doubt whether it has ever
been practically applied. Rowlinson et al.6 used a more
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straightforward method which, however, is limited to binary
mixtures and cannot be easily adapted for machine calculation.
Instead, we will concentrate here on easily applicable

numerical solutions of the problem.

2. THEORY
2.1. Calculation of Isentropes. Following our previous

work4 about two-phase adiabatic processes in pure fluids, we
shall assume that the two phases are always in equilibrium, i.e.,
that temperatures, pressures, and the chemical potentials of all
components match at all times.
While an adiabatic process in the vapor−liquid two-phase

region evidently has to follow the vapor pressure curve (as far
as its pT projection is concerned), this is no longer true for
mixtures. Still, the computation method proposed in the
previous article can be used after minor modification. We
assume that there are two fluid phases, denoted by ϕ = ′, ″, with
mole fractions xi

ϕ, i = 1, ... N and overall molar densities ρϕ.
Alternatively we can characterize the phases by their density
vectors,

ρ ρ ρ ρ ρ ρ= =ϕ ϕ ϕ ϕ ϕ ϕ ϕx( , , ... ) withN i i1 2 (1)

The total molar entropy of the two-phase system is then

ρ ρ= − ′ + ″S q S T qS T(1 ) ( , ) ( , )m m m (2)

where q denotes the “quality” of the system, that is, the fraction
of the ″ phase in the system: q = n″/(n′ + n″). At the beginning
of the adiabatic process, eq 2 can be written as

ρ ρ= − ′ + ″S q S T q S T(1 ) ( , ) ( , )m,0 0 m 0 0 0 m 0 0 (3)

Then the quality at any point of a two-phase adiabatic process
can be obtained as

ρ
ρ ρ

=
− ′
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The phase density vectors are linked by a material balance
equation:

− ′ + ″ = − ′ + ″x x x xq q q q(1 ) (1 )0 0 0 0 (5)

or, written with densities,

ρ ρ ρ ρ
ρ ρ ρ ρ
−
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′ +
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0
0
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Of course, ρϕ/ρϕ is equal to the mole fraction vector xϕ of
phase ϕ.
In a density-based system of variables, the phase equilibrium

criterion of each component having equal chemical potentials
in both phases can be written as7,8

∇Ψ′ = ∇Ψ″ (7)

where Ψϕ = Am
ϕρϕ denotes the Helmholtz energy density of

the phase ϕ and ∇ the gradient operator; the gradients have to
be computed with respect to all component densities, that is, ∇
= (∂/∂ρ1, ∂/∂ρ2, ... ∂/∂ρN). The equal-pressure criterion then
becomes

ρ ρ∇Ψ· ″ − ′ = Ψ″ − Ψ′( ) (8)

For a given temperature T, the system is characterized by 2N +
1 variables (ρ′, ρ″, and q) and four eqs 4, 6−8, of which eq 6 is
a vector equation with N − 1, and eq 7 is one with N
independent components. The computation of mixture

isentropes is therefore a well-defined task. The system of
nonlinear equations outlined in this section can be solved
numerically, for example with a Marquardt−Levenberg
method;9 an algorithm has been implemented in the ThermoC
computation package.10 Convergence was found to be
unproblematic if the densities and mole fractions of the initial
phase pair were known. The density-based formulation of the
phase equilibrium conditions has the advantage that con-
vergence is not affected by azeotropic or critical states.
The computation can, in principle, yield a q value below 0 or

above 1. Such a result indicates that the computed two-phase
state is not realistic, and that a single-phase isentrope should be
calculated instead.

2.2. Thermodynamic Functions. We write the total
Helmholtz energy of a fluid mixture with the density vector ρ
and the temperature T as a sum of an ideal-gas part and a
residual part,7

∫
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where Gm, i
⊖ (T) denotes the Gibbs energy of pure component i

at the reference density ρ⊖. For ρ⊖ a very small value is
assumed, at which the substance can be regarded as an ideal
gas. The actual value is irrelevant, as it cancels out in the
subsequent calculations. Z(ρ,T) = p(ρ,T) Vm/(RT) is the
compression factor of the mixture. Then the Helmholtz energy
density is given by

∫
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Throughout this work, the Peng−Robinson equation of
state11,12 is used to compute residual properties:

α ω
=

− *
−

+ * + * − *
p

RT
V v

a T
V V v v V v

( , )
( ) ( )m

c

m m m (11)

Here v* and ac ≡ 8 RT*v* are substance-specific parameters,
which can be readily computed from the critical pressure and
temperature; α(T, ω) describes the temperature dependence of
the attraction part. We use here the Soave-style α(T) function
proposed by Peng and Robinson in 1978,12 which contains
another substance-dependent parameter, namely the acentric
factor ω. The critical data and parameters used in this work are
listed in Table 1.
Switching to reduced variables ρ̃ = v*/Vm and T̃ = T/T*, the

compression factor and the residual Helmholtz energy can then
be expressed as

ρ
ρ

ρ ρ
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according to Appendix C.4 of the textbook of Deiters and
Kraska.7

These equations can be generalized to mixtures with the
following combining rules:

∑ ∑

∑

α α ω α ω= − ̃ ̃

* = *

= =

=

a x x k a T a T

v x v

(1 ) ( , ) ( , )
i

N

j

N

i j ij i i i j j j

i

N

i i

c
1 1

c, c,

1
(13)

The binary interaction parameters kij were either fitted to
experimental data or obtained with the PPR78 (predictive
Peng−Robinson equation) group contribution method of
Jaubert, Qian et al.13,14

The Peng−Robinson equation is known to give reasonably
good results for mixtures of nonpolar and weakly polar
compounds. While certainly more sophisticated equations of
state can be found in the literature, these will not predict
qualitatively different thermodynamic properties.
Differentiation of eq 10 with respect to the temperature

yields the entropy,
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The ThermoC software obtains the residual entropy from Ψr by
numerical differentiation.
The reference entropies in eq 14 are calculated from the

ideal-gas isobaric heat capacities of the compounds,

∫= +⊖ ⊖ ⊖
⊖

S T S T
C T

T
T( ) ( )

( )
di i

T

T V i
m, m,

m,
id

(15)

The ideal-gas heat capacities can be conveniently expressed as
(smoothing) spline functions over appropriate data tables;15,16

then the integration can be carried out analytically. Sm,i
⊖ (T⊖) is

the value of the ideal-gas entropy at the reference temperature
T⊖. The value should be chosen in such a way that eq 14, when

applied to a pure compound at thermodynamic standard
conditions, reproduces its standard (Third Law) entropy. For
the calculations reported in his article, however, the value of
Sm, i

o̵(To̵) is not relevant.

3. APPLICATION
3.1. (Methane + Propane). Methane and propane are

chemically similar, but their critical temperatures differ by a
factor of almost 2. Still the system (methane + propane)
belongs to the most simple phase diagram class, namely Class I
according to the classification of Scott and van Konynen-
burg,17,18 or 1P according to the rational nomenclature of Bolz
et al.19

Figure 1 shows the adiabatic expansion of a (methane +
propane) mixture with a methane overall mole fraction x1 = 0.9

for three different initial states, A1−A3. These states lie in the
single-phase region; consequently, the expansion follows single-
phase isentropes, until these intersect the x1 = 0.9 phase
envelope (states B1−B3). Here the expansion process switches
to the two-phase isentropes. As methane as well as propane are
“wet” fluids (i.e., their adiabatic expansion does not take them
out of the vapor−liquid two-phase region anymore), it is not
surprising that the two-phase isentropes of their mixture stay
inside the phase envelope.
It should be noted that, for the initial state A3, the two-phase

isentrope runs below the metastable part of the single-phase
isentrope and has a larger slope at the intersection with the
phase envelope. For the initial state A1, the slope of the two-
phase isentrope is smaller. Only for an expansion that passes
through the pressure maximum of the phase envelope, the so-
called maxcondenbar point B2, the two slopes are the same. A
formal proof of this phenomenon (and an analogous one
concerning the behavior of isochors at the maxcondentherm
point) was given by Griffiths6,20 (also published in Appendix
B.2 of the textbook of Deiters and Kraska7).
Figure 2 shows two-phase isentropes of (methane +

propane) originating at an equilibrium state at 250 K and

Table 1. Parameters of the Peng−Robinson Equation of
Statea

pc/MPa Tc/K ω

methane 4.60848 190.778 0.0110
ethane 4.88000 305.400 0.0990
propane 4.24800 369.825 0.1531
butane 3.63480 423.675 0.1929
pentane 3.37000 469.700 0.2510
nitrogen 3.32598 126.303 0.0370

k12

methane−propane +0.042546
butane−pentane PPR78
nitrogen−ethane +0.026302
nitrogen−pentane PPR78

aFor pure fluids the critical pressure, critical temperature, and acentric
factor; for mixtures k12. “PPR78” indicates that the (temperature-
dependent) group contribution method of Jaubert, Qian et al.13,14 was
used.

Figure 1. Pressure−temperature diagram of (methane + propane) for
x1 = 0.9, for three different initial states, computed with the Peng−
Robinson equation of state. (black line) single-phase isentropes
(stable); (dashed line) single-phase isentropes (metastable); (bold
line) two-phase isentropes, (gray line) phase envelope x1 = 0.9; (•)
binary critical point; (◇) maxcondenbar point.
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9 MPa, with the equilibrium mole fractions 0.705 and 0.870, on
a background of isothermal phase diagrams. Methane is
supercritical in the temperature range considered (200−250
K), and the isothermal phase diagrams are therefore looplike.
As the temperature decreases during the adiabatic expansion,
the two-phase isentropes move along the sequence of the
isothermal phase diagrams.
The expansion processes were calculated for a range of initial

qualities from q0 = 0 (all liquid) to 1 (all vapor); the
corresponding overall mole fractions varied from 0.705 to
0.870. It should be noted that a given two-phase equilibrium
state (p, T, x1′, x1″) can be reached via more than one single-
phase isentrope; isentropes belonging to different overall mole
fractions result in different q values for the two-phase state.
For this system and for these initial conditions, the calculated

isentropes do not coincide: the course of the expansion
depends on the initial quality. The qT diagram in Figure 3
shows the expected pattern: the isentropes run to lower
temperatures and remain at q values between 0 and 1; that is,
the expansion stays in the two-phase region.
The corresponding TS diagram, Figure 4, shows a rather

surprising pattern: The entropy curves of the coexisting phases
intersect. If this happens, eq 4 is no longer applicable, and the
computation may encounter convergence problems.
The intersection means that, in some portion of the phase

diagram, the vapor phase has a lower molar entropy than the
liquid phase. Figure 5 panels a and b demonstrate that this
phenomenon can also be found along two-phase isotherms. In
analogy to the “barotropic inversion”, at which the specific
gravity of the vapor becomes higher than that of the liquid, we
propose the name “entropic inversion” for the switching of
molar entropies.
At a first glance, it may seem paradox that the molar entropy

of the vapor can be lower than that of the liquid. But there are
two reasons for this:
(i) The entropy difference between vapor and liquid is to a

large extent due to their density ratio, −R ln(ρg/ρl). In low-

pressure vapor−liquid equilibria, the vapor density is much
smaller than that of the liquid, and hence this term is large. At
high pressures, however, the vapor densities tend to be of a
similar order of magnitude as the liquid densities. For
“asymmetric mixtures”, that is, mixtures of compounds with
very different molecular sizes, it is even possible that the vapor
phase (more precisely, the phase with the higher fraction of the
light component) can have the larger molar density.21

(ii) For mixtures, coexisting liquid and vapor phases usually
have different compositions. It turns out that propane, which is
enhanced in the liquid phase, has a much higher ideal-gas
entropy than methane (64.46 over 34.27 J mol−1 K−1 at 250 K)
because of its larger number of thermally excitable vibrations.

Figure 2. Adiabatic expansion of a (methane + propane) mixture
starting at a two-phase state at 250 K, 9 MPa: pTx1 representation.
(Gray curves) isothermal phase diagrams 200−250 K; (□···□) initial
states (connode); (color lines) isentropes. The color indicates the
initial quality q0 (“rainbow encoding”: red = 0.0, magenta = 1.0).

Figure 3. Adiabatic expansion of a (methane + propane) mixture
starting at a two-phase state at 250 K, 9 MPa: qT representation.
(□···□) Initial state; (color lines) isentropes. The color indicates the
initial quality q0 (rainbow encoding: red = 0.0, magenta = 1.0). The
arrows indicate the direction of the expansion.

Figure 4. Adiabatic expansion of a (methane + propane) mixture
starting at a two-phase state at 250 K, 9 MPa for various quality values:
entropies of the coexisting phases along the isentropes. (□··· □) Initial
state; (color lines) isentropes. The color indicates the initial quality q0
(rainbow encoding: red = 0.0, magenta = 1.0).
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Consequently, whenever compounds of very different
complexity (more accurately, with very different ideal-gas heat
capacities) or very different molecular sizes are mixed and
studied at high, near-critical pressures, an entropic inversion is
likely.
Figure 6 gives a clearer picture of the adiabatic expansion of a

mixture exhibiting entropic inversion: For the isentrope 3 in
Figure 1, the initial state of the two-phase part is an all-vapor
state (q0 = 1.0) at 250 K and 7.7 MPa. This corresponds to the
left initial state in Figure 6, B3. The adiabatic expansion, which
is characterized by Sm = Sm,0, is represented by a vertical arrow
in the diagram. Usually the coexisting vapor and liquid have
different molar entropies, and then q adjusts in such a way that
eq 2 yields the constant overall entropy. But at the entropic
inversion Sm′ (ρ,T) = Sm″(ρ,T) holds, and then the isentropic
condition can only be fulfilled if Sm′ (ρ,T) = Sm″(ρ,T) = Sm,0; q
becomes irrelevant. In other words: at the entropic inversion,
the entropies of the coexisting phases must both equal that of
the initial state. Therefore, the arrow in Figure 6 must pass
exactly through the entropic inversion state.

The consequence for the computation of isentropes is that
the system of eqs 4, and 6−8 is no longer well-defined and
hence cannot be solved at the entropic inversion; this may lead
to convergence problems in numeric calculations. But
immediately above and below the entropic inversion the
system of equations has physically reasonable solutions, so that
an analytic continuation of the isentropes exists.
Figure 7 shows an adiabatic two-phase expansion starting at

250 K, just as in Figure 2, but at a lower pressurebelow the
maxcondentherm pressure, but above the entropic inversion;
the latter is revealed by the TS diagram, Figure 8. In contrast to
the expansion from the high-pressure equilibrium state, but also

Figure 5. Isothermal phase equilibria of (methane + propane) at 250
K, computed with the Peng−Robinson equation of state: (●) binary
critical point.

Figure 6. Temperature−entropy curves for two-phase isentropes from
Figure 1: (□···□) initial states (connodes); () two-phase isentropes
belonging to an initial quality of 1.0 (all-vapor state); (arrow) total
entropy during expansion.

Figure 7. Adiabatic expansion of a (methane + propane) mixture
starting at a two-phase state at 250 K, 1.5 MPa: pTx1 representation.
Gray curves: isothermal phase diagrams 200−250 K, (□···□) initial
state (connode). Color lines: isentropes. The color indicates the initial
quality q0 (rainbow encoding: red = 0.0, magenta = 1.0).
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to the (butane + pentane) system, the vapor branches of the
isentropes are very sensitive to the initial q.
3.2. (Butane + Pentane). Both compounds are alkanes,

and their molecular sizes are similar. It is therefore not
surprising that their mixtures exhibit nearly ideal behavior. The
(butane + pentane) system belongs to the phase diagram class I
according to Scott and van Konynenburg,17,18 or 1P according
to the rational nomenclature of Bolz et al.,19 which means that
it exhibits a continuous critical curve connecting the critical
points of butane and pentane, and that no liquid−liquid
immiscibility exists.
Figure 9 shows the two-phase isentropes (liquid and vapor

branches) of the (butane + pentane) system originating at an
equilibrium state at 450 K and 3 MPa on a background of
isothermal phase diagrams. The two-phase isentropes neces-
sarily have common points with the phase diagrams. As the
temperature drops during the expansion, the isothermal phase
diagrams change their shapesfrom a looplike shape at 450 K
(where butane is supercritical) to a spindle shape at 350 K
(where butane is subcritical). All curves were computed with
PPR78 interaction parameters.13,14

The expansion process was calculated for various initial
qualities, ranging from q0 = 0.0 (= all liquid) to q0 = 1.0 (= all
vapor). But the mole fractions of the initial coexisting phases
are rather similar, and therefore the variation of q corresponds
to a variation of the overall mole fraction from merely 0.220 to
0.261. It is therefore not surprising that the resulting
isentropesvapor as well as liquid branchesalmost coincide.
Only the color gamut along the isentropes shows that the initial
quality has some influence: The isentropes with high q0 values
end sooner than those with low q0 values, that is, they run to q
= 1, and then the expansion process continues along single-
phase isentropes.
The situation can be explained with temperature−entropy

diagrams. Figure 10a shows TS curves for the expansion process
considered here. One can see that the isentrope with the initial
quality of 1.0 reaches the boundary of the two-phase region
already at 430 K, whereas the isentropes starting at 0.5 or 0.0
reach it at 360 K or below 300 K, respectively. Figure 10b

compares the mixture TS curve with those of the pure
components. Both butane and pentane are “dry” fluids in the
temperature range of the diagrams, that is, the vapor branches
have regions with positive slopes, so that an isentropic
expansion can run to a single-phase vapor state. Evidently the
mixture shows a similar, intermediate behavior. It is thus
possible to tune the TS slopes by mixing suitable components.
The quality versus temperature diagram Figure 11 reveals

that the isentrope that starts from an all-liquid state (q0 = 0) in
the direction of the arrow (expansion) remains in the two-
phase region. The other isentropes (q0 ≥ 0.1) run to single-
phase vapor states, which is typical for “dry” systems. A closer
inspection of the computation results shows that these
isentropes are of the reentrant type,4 that is, they do not end
here, but continue virtually and become real again at lower
temperatures. A real mixture would, of course, follow its two-
phase isentrope to complete evaporation (q = 1), then switch to
a single-phase isentrope, and then back to the two-phase
isentrope. The expansion curve for q0 = 1.0, that is, for an all-
vapor initial state, exhibits a transient condensation: an
expansion experiment would show first condensation and
then evaporation, a single-phase vapor state below about 440 K,
and finally condensation again below about 190 K.
These considerations are for an expansion from an

equilibrium state at 450 K and 3 MPa. Figure 11 also shows
that a compression of this initial two-phase state would cause
complete condensation for initial qualities less than 0.7, and
complete evaporation for q0 > 0.7. The isentrope belonging to
q0 ≈ 0.7 terminates in a critical point.

3.3. (Nitrogen + Ethane). The binary interaction
parameters for this systems were fitted to experimental data
of Stryek et al.22 (see Table 1).
This system belongs to the phase diagram class III according

to the classification of Scott and van Konynenburg,17,18 or 1C1Z

according to the rational nomenclature of Bolz et al.19 It

Figure 8. Adiabatic expansion of a (methane + propane) mixture
starting at a two-phase state at 250 K, 1.5 MPa (□···□): entropies of
the coexisting phases. (Color lines) isentropes. the color indicates the
initial quality q0 (rainbow encoding: red = 0.0, magenta = 1.0).

Figure 9. Adiabatic expansion of a (butane + pentane) mixture starting
at a two-phase state at 450 K, 3 MPa: pTx1 representation. (Gray
curves) isothermal phase diagrams 350−450 K; (dashed line) vapor
pressure curves of the pure fluids; (○) pure-component critical point;
(□···□) initial states (connode); (color lines) isentropes. The color
indicates the initial quality q0 (rainbow encoding: red = 0.0, magenta =
1.0).
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contains two critical curves, one of which runs from the critical
point of ethane to high pressures (“1C”), whereas the other one
originates at the critical point of nitrogen an ends at an upper
critical end point (“1Z”), where it meets an llg three-phase
curve. A pT phase diagram is shown in Figure 12.
The complication that the (nitrogen + ethane) system offers

is, evidently, the existence of a liquid−liquid phase split at low
temperatures. The figure illustrates what happens when a
mixture with a nitrogen mole fraction of 0.9 is adiabatically
expanded from the indicated initial state A: The system follows
the single-phase isentrope until it reaches the isopleth at the
point B, then follows the lg two-phase isentrope until it reaches
the llg three-phase curve at point C; from then on it follows the
three-phase isentrope (which coincides with the llg three-phase
curve in this projection). Below point C, the two-phase
isentrope is metastable.
The metastable portion of the two-phase isentrope shows a

“wriggle”, which is analogous to the behavior of single-phase
isentropes of pure fluids.4 In both cases, the phenomenon is

related to the existence of a stability boundary (spinodal curve)
in the vicinity.
For the (nitrogen + ethane) system, the metastable two-

phase isentrope lies always above the llg three-phase curve,
which means that the system cannot return to a two-phase or
single-phase expansion anymore.
Figure 13 shows the corresponding TS diagram. It should be

noted that the curves are projections onto the TS plane: The
two-phase isentrope has a lower pressure that the three-phase
curve above state C, and a higher pressure below this state.
When the two-phase expansion reaches C, a new liquid phase is
formed, which is very rich in nitrogen. The amounts of the
three phases can be calculated from the mass and entropy
balances by extending eqs 2 and 6 to three-phase systems.
At sufficiently low temperatures and pressures, the vapor

phase contains mostly the light component, nitrogen. It is
therefore not surprising that the T(S) relations of the vapor
branches of the two- and three-phase isentropes are very similar
to that of pure nitrogen vapor, with a negative slope. The
(nitrogen + ethane) system can therefore be classified as “wet”:
The single-phase isentrope cannot intersect the vapor branch of
the two-phase isentrope a second time, and therefore the
system cannot reach a single-phase state by adiabatic expansion.
But whether the system will remain in a two-phase or a three-
phase state is more difficult to decide. In this case, however, the
three-phase state persists.
Figure 14 describes the adiabatic expansion of a (nitrogen +

ethane) mixture with x1 = 0.9 at a lower temperature. On
reaching state B, a second phase is formed, which is richer in
ethane. This is similar to the behavior shown in Figure 12, but
now the new phase has a lower molar density than the original
one. Evidently, along the isopleth there is a state at which the
(molar) phase densities change places. Such an isopycnic state
is sometimes regarded as the boundary between vapor−liquid
and liquid−liquid phase equilibria.21 The ethane-rich phase,
however, has always the higher mass density; a (mass)
barotropic inversion does not occur in this system.

Figure 10. Temperature−entropy relation of coexisting liquid and
vapor phases for the adiabatic expansion of a (butane + pentane
mixture) originally in a two-phase equilibrium at 450 K and 3 MPa.
The color indicates the initial quality q0 (rainbow encoding: red = 0.0,
magenta = 1.0).

Figure 11. Adiabatic expansion of a (butane + pentane) mixture
starting at a two-phase state at 450 K, 3 MPa (□···□) qT
representation. The colors indicate the initial quality q0 (rainbow
encoding: red = 0.0, magenta = 1.0). The arrow shows the direction of
the expansion.
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Incidentally, Griffiths’ theorem is also applicable to
isentropes passing through a minimum of an isopleth. In the
pT projection Figure 14, the two-phase isentrope coincides
with the single-phase isentrope between the states B and C.
3.4. (Nitrogen + Pentane). As the system (nitrogen +

ethane) belongs to phase diagram class III (rational name:
1C1Z), one might expect the same to be true for (nitrogen +
pentane). Figure 15 shows, however, that the phase diagram
class might rather be V (rational name: 2P). The distinction is
difficult, for the course of the low-temperature portion of the
critical curve is very sensitive to the choice of the interaction
parameters (here: PPR78 group contribution method13,14) and

the pure-fluid parameters. The point is probably moot, as the
triple point of pentane is at 143 K, so that the low-temperature
portion of the critical curve lies behind the crystallization
surface.
The diagram illustrates the adiabatic expansion of a sample

with the composition x1 = 0.9 from a high-pressure state. As for
the previous examples, the system switches to the two-phase
isentrope at the intersection with the isopleth. The two-phase
isentrope runs to the low-pressure and low-temperature region,
where the three-phase equilibrium curve lies (not visible at the
resolution of the diagram).

Figure 12. Phase diagram of the (nitrogen + ethane) system: pT
projection. (○) Pure-component critical point, (△) critical end point.
Gray curves: (heavy line) critical curve; (dotted line) vapor pressure
curve; (line) phase envelope x1 = 0.9. Black curves: (solid = stable,
broken = metastable): (solid line) single-phase isentrope; (bold solid
line) two-phase isentrope; (dash-dot line) llg three-phase curve.

Figure 13. Temperature−entropy diagram of the system (nitrogen +
ethane). See Figure 12 for an explanation of the symbols. (□···□)
Coexisting phases marking the transition between single-, two-, and
three-phase expansion. The colors merely serve to improve the
visibility of the three-phase curves.

Figure 14. Phase diagram of the (nitrogen + ethane) system: pT
projection; expansion of a mixture with x1 = 0.9 at low temperatures.
(○) Pure-component critical point; (△) critical end point. Gray
curves: (heavy line) critical curve; (dotted line) vapor pressure curve;
(line) phase envelope x1 = 0.9. Black curves (solid = stable, broken =
metastable): (line) single-phase isentrope, (heavy line) two-phase
isentrope; (dash-dot line) llg three-phase curve.
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As for the previous system, the vapor phase of the three-
phase equilibrium is almost pure nitrogen, and so appears as a
curve with a negative slope in the TS diagram Figure 16. The

curve of the pentane-rich liquid crosses the curves of the other
phases because of entropic inversion. But the two-phase
isentrope shows entropic inversion, too. As a consequence,
the two-phase isentrope misses the three-phase separation. In
the pT diagram Figure 15, the two-phase isentrope passes
under the vapor pressure curve of nitrogen and under the three-
phase curve.

4. CONCLUSION
A method for the calculation of the isentropes of mixtures in
the vapor−liquid two-phase region was proposed, and
isentropes were calculated for some binary fluid mixtures with
the Peng−Robinson equation of state,11,12 using the common
quadratic mixing rules and interaction parameters either fitted
to experimental data or computed with a group contribution
method.13,14

Comparison of single-phase and two-phase isentropes
confirms Griffiths’ prediction that their slopes must be identical
at pressure extrema of isoplethsparticularly the maxconden-
bar point, but also at pressure minimaand different
elsewhere.
Calculations of isentropes starting at a given two-phase

equilibrium state, but with different qualities (vapor/liquid
ratios) show that the isentropes depend little on the initial
quality q0 if the mole fractions of the starting phases were
similar, but can differ considerably otherwise. Adiabatic
expansions of mixtures containing a supercritical component
can exhibit an “entropic inversion”, that is, a situation in which
the vapor has a lower molar entropy than the liquid.
Fluid mixtures exhibiting large nonideality may eventually

have regions of liquid−liquid immiscibility. In such a case, a
two-phase isentrope can possibly intersect the llg three-phase
curve. Beyond this intersection, an adiabatic process would
follow the three-phase curve, while the two-phase isentrope
becomes metastable. But if an entropic inversion takes places
along the two-phase isentrope, this can affect the topology of
the phase diagram in such a way that the isentrope misses the
three-phase curve and therefore remains stable.
Evidently, the patterns of two-phase isentropes of fluid

mixtures can be varied and sometimes rather complicated.
Further research on this subject is certainly indicated.
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■ SYMBOLS
ac = attraction parameter of the Peng−Robinson equation
A = Helmholtz energy
C = heat capacity
G = Gibbs energy
n = amount of substance
N = number of components
p = pressure
q = “quality”, q = n″/(n′+ n″)
R = gas constant
S = entropy
T = temperature
T* = characteristic temperature, parameter of the PR
equation, ac = 8RT*v*

Figure 15. Phase diagram of the (nitrogen + pentane) system: pT
projection; expansion of a mixture with x1 = 0.9 at low temperatures.
(○) pure-component critical point, (●) binary critical point for x1 =
0.9. Gray curves: (heavy line) critical curve; (dotted line) vapor
pressure curve; (line) phase envelope x1 = 0.9. Black curves: (line)
single-phase isentrope, (heavy line) two-phase isentrope.

Figure 16. Temperature−entropy diagram of the system (nitrogen +
pentane). (△) Critical end point. Color curves: (dash dot line) llg
three-phase curves; (solid line) two-phase isentrope. The colors
merely serve to improve the visibility of the three-phase curves (l1,
pentane-rich liquid; l2, nitrogen-rich liquid; g, vapor).
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v* = characteristic volume, parameter of the PR equation
V = volume
x = mole fraction
Z = compression factor, Z = p Vm/(R T)
α(T) = temperature dependence of the attraction term of the
PR equation
ρ = molar density, ρ = 1/Vm
Ψ = Helmholtz energy density, Ψ = A/V
ω = acentric factor, parameter of the PR equation

Subscripts
c = critical point
m = molar
i = belonging to component i
p = derivative at constant pressure
T = derivative at constant temperature
V = derivative at constant volume
0 = initial state, starting point of an isentrope

Superscripts
g = gas, vapor phase
l = liquid
id = ideal gas
r = residual
ϕ = arbitrary phase
o̵ = reference state
X̃ = reduced (dimensionless) property X
∗ = characteristic (substance-specific) parameter
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