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This study is concerned with the numerical modelling of thixotropic and non-thixotropic materials in
contraction–expansion flows at high Weissenberg number (We). Thixotropy is represented via a new
micellar time-dependent constitutive model for worm-like micellar systems and contrasted against net-
work-based time-independent PTT forms. The work focuses on steady-state solutions in axisymmetric
rounded-corner 4:1:4 contraction–expansion flows for the benchmark solvent-fraction of b = 1/9 and
moderate hardening characteristics (e = 0.25). In practice, this work has relevance to industrial and
healthcare applications, such as enhanced oil-reservoir recovery and microfluidics. Simulations have
been performed via a hybrid finite element/finite volume algorithm, based around an incremental pres-
sure-correction time-stepping structure. To obtain high-We solutions, both micellar and PTT constitutive
equation f-functionals have been amended by (i) adopting their absolute values appealing to physical
arguments (ABS-correction); (ii) through a change of stress variable, P = sp + (gp0/k1)I, that aims to pre-
vent the loss of evolution in the underlying initial value problem; and finally, (iii) through an improved
realisation of velocity gradient boundary conditions imposed at the centreline (VGR-correction). On the
centreline, the eigenvalues of P are identified with its P-stress-components, and discontinuities in
P-components are located and associated with the f-functional-poles in simple uniaxial extension.
Quality of solution is described through srz, N1 and N2 (signature of vortex dynamics) stress fields, and
P-eigenvalues. With {micellar, EPTT} fluids, the critical Weissenberg number is shifted from critical
states of Wecrit = {4.9,220} without correction, to Wecrit = {O(102),O(103)} with ABS–VGR-correction.
Furthermore, such constitutive equation correction has been found to have general applicability.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

This study addresses the topic of high Weissenberg (We) number
solutions for worm-like micellar systems using the class of Bautista–
Manero models [1–4]. The work concentrates on the rounded 4:1:4
contraction/expansion benchmark flow problem, and various alter-
native procedural and constitutive approaches are introduced.
Herein, high-elasticity levels are accessible through two routes: (i)
a correction to the constitutive model based on physical arguments,
in which absolute values of the dissipation–function components
are considered in complex flow and (ii) the imposition of consistent
boundary conditions at the axisymmetric geometry centre flow-line.
There, in complex flow, the deformation is purely extensional (inho-
mogeneous) and shear-free flow prevails.
Worm-like micelle solution systems are a versatile family of
fluids constituted by mixtures of surfactants – typically cetyltrim-
ethylamonium bromide (CTAB) or cetylpyridinium chloride
(CPyCl) – and salts – sodium salicylate (NaSal) in water [4,5]. These
components interact physically, depending on the concentration,
temperature and pressure, to form elongated micelles that entan-
gle and provoke interactions of viscosity, elasticity, and breakdown
and formation of internal structure [4]. This complex constitution
spurns highly complex rheological phenomena, and manifests
features associated with thixotropy [1], pseudo plasticity [1–4],
shear banding [4] and yield stress [5]. These features render them
as ideal candidates for varied processing and present-day applica-
tions, such as in use as drilling fluids in enhanced oil-reservoir
recovery (EOR) [4], additives in house-hold-products, paints,
cosmetics, health-care products, drag reducing agents [4,6].
Micellar constitutive models – Many approaches have been pursued
to model wormlike micelle flow behaviour. The original
Bautista–Manero–Puig (BMP) model [1,2,6] consisted of the
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upper-convected Maxwell constitutive equation to describe the
stress evolution, coupled to a kinetic equation to account for struc-
tural flow-induced changes and, based on the rate of energy dissi-
pation. Subsequently, Boek et al. [3] corrected the BMP model for
its unbounded extensional viscosity in simple uniaxial extension
– thus producing the base-form MBM model employed in the pres-
ent analysis. This model has been tested in complex flow scenarios
such as the benchmark 4:1 contraction flow [7] and 4:1:4 contrac-
tion–expansion flow [4], for which it has been proven inconsistent
in excess pressure drop (EPD) predictions at the Stokesian limit.
This anomaly has been dealt with recently [4] through a model that
includes the viscoelasticity into the structure construction/
destruction mechanism. Two variants for this model were consid-
ered with energy dissipation given by: (i) the polymer contribution
exclusively (NM_sp model), and (ii) polymer and solvent contribu-
tions (NM_T model). These considerations introduce new physics
into the representation, by coupling explicitly the thixotropic and
elastic nature of these fluids, alongside new key rheological charac-
teristics such as declining first normal stress difference in simple
shear flow [4]. For completeness, one may cite other alternative
model approaches that have appeared in the literature, though
these have largely focused on simple flows and the shear-banding
phenomena. The VCM model, based on a discrete version of the
‘living polymer theory’ of Cates, has been tested in simple flows,
where rheological homogeneity prevails [8], and under conditions
of shear-banding. Another approach consists of using the Johnson–
Segalman model, modified with a diffusion term for the extra/poly-
meric stress (so-called d-JS model) [9]. The Giesekus model has
also been used in the representation of wormlike micelles under
simple shear scenarios, whilst using the non-linear anisotropy cou-
pling parameter to introduce shear-banding conditions [10].
Another approach to shear-banded flows is that based on the
two-fluid model [11]. Here, the interplay of flow-induced separa-
tions and rheology of the material studied has been analysed
[11], which have been contrasted experimentally against point-
wise flow-induced birefringence measurements [12].

One of the principal challenges in the field of computation rhe-
ology has been to address the problem of seeking convergent
numerical solutions to the underlying partial differential equation
system for steady-state complex flows at high levels of Weiss-
enberg number, referred to as the so-called ‘High-Weissenberg
Number Problem’ (HWNM) [13,14]. Strictly speaking this applies
to the differential Maxwell/Oldroyd context, but in practice, often
arises under strong-strain hardening alternatives, with shear-thin-
ning (EPTT, LPTT, FENE-P; where We-definition may vary) or with-
out shear-thinning (FENE-CR). Though many possible resolutions
to this challenge have been proposed (see Walters and Webster
[13], Keunings [14], Baaijens [15]), still for many complex flows
there are often limitations in Weissenberg number solutions met
– due to issues such as sharp stress boundary layers and flow sin-
gularities [16]. Relevant factors influencing the determination of a
particular critical We solution state are: the numerical technique
and discretisation for the independent variables (often stress,
velocity, pressure, in space and time), the complex flow problem
itself and the constitutive equation choice [14]. Here, and largely
motivated by findings with thixotropic constitutive model adjust-
ments, this issue is revisited and further light is cast upon the
problem.

Variable transformation and positivity

Dupret et al. [17] and Dupret and Marchal [18] state that, for
theoretical flows (i.e. simple flows, from which we extract material
functions), a well-posed initial-value problem in the context of a
Maxwell fluid is one in which: (a) the tensor P = sp + (gp0/k1I)
remains positive definite; (b) there are no solutions of a transient
three-dimensional flow of a Maxwell fluid if the tensor P does
not remain positive-definite; (c) in a steady-state scenario with
well-defined boundary conditions (i.e. with P positive definite at
the boundary that crosses the streamlines), a solution cannot exist
when P is non positive-definite; and (d) the change of mixed-type
of the underlying differential equation system, from {elliptic to
hyperbolic, steady} or {hyperbolic–parabolic to hyperbolic–hyper-
bolic, unsteady}, which influences the stability of the numerical
scheme in terms of loss of evolutionary character, and by implica-
tion, the requirements (completeness – necessity and sufficiency)
on boundary conditions themselves.

Application of positive definiteness principles to viscoelastic complex
flows

Dupret et al. [17] applied the principles specified by Dupret and
Marchal [18] to the finite element solution of Maxwell and Old-
royd-B fluids, dealing with 2D complex flows such as 4:1 contrac-
tion flow with sharp borders in planar and axisymmetric
geometries, and flow past a cylinder. These authors found that Old-
royd-B solutions proved more stable in comparison with those
with the Maxwell model, due to the solvent presence inherent in
the former choice, which provides its contribution through solvent
diffusion to the momentum transport. The stability of their numer-
ical scheme was evaluated through an S-parameter, defined in
terms of the eigenvalues of P as S = 2/(s1/s2 � s2/s1). This parameter
characterises three possible outcomes: (i) S > 0, when both s1,
s2 > 0; (ii) S = 0, when either s1 or s2 = 0 (not simultaneously); and
(iii) S < 0, when s1, s2 have opposite signs. This last instance was
denoted as a precursor and sign of numerical convergence prob-
lems (numerical breakdown in stable steady-state extraction, sub-
ject to an imposed and consistent detection criterion). Later,
Dupret and Marchal [18] extended their studies on viscoelastic flu-
ids for Johnson-Segalman and White Metzner equations, where
‘evolutionary flows’ are those for which the ‘solutions at a present
time t is a valid initial condition for determining the flow fields at sub-
sequent moments’, otherwise ‘non-evolutionary flows’ are obtained.
This classification was based on (a) the positive definiteness of
the appropriate extra-stress tensor; and (b) the existence of an
extremum in the determinant of the same tensor.

Classification of differential models and conformation-tensor form

Van der Zanden and Hulsen [19] and Hulsen [20] proposed a
classification of differential models to analyse computationally
inclusion of a Newtonian solvent contribution. In their work, they
studied the Leonov and Giesekus models, finding that the inclusion
of such a solvent contribution resulted in a more well-posed
scheme for numerical computation (as argued above). With this
in mind, Hulsen [21] generalised the work to define an alternative
stress-like variable (as proposed similarly under Dupret and Mar-
chal [18]), termed the configuration tensor, with its corresponding
constitutive model statement, and with the objective of positive-
definiteness retention under numerical solution. Here, the posi-
tive-definiteness of a differential constitutive equation system
relies upon the property that the non-evolutionary terms therein
remain positive and finite. Based upon such specification, corre-
sponding expressions for equations of state were derived equiva-
lent to commonly used models such as Giesekus and PTT.

The contraction–expansion flow problem offered in the current
study is now a standard benchmark in experimental and computa-
tional rheology [13]. Some of the most outstanding features of this
problem relate to its vortex dynamics (re-entrant/salient), stress
fields, flow kinematics and pressure drop measurement [4].
Here, diverse manifestations of the nature of the fluid can be
outlined, relating to vortex-size and evolution (extensional viscosity,



1 Note, observations on trace(sp) > 0 of Hulsen [21], to maintain positive stored
lastic energy with viscoelastic PTT models.
2 Alternatively, apply the absolute operation to the total dissipative sum.
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N2-effects), structure formation and numerical tractability (sharp/
rounded corners) [22,23]. One notes that the pressure drop, which
reflects the energy expended in the flow, is often studied through
an EPD measure [24,25], and itself offers a significant challenge
to computational prediction [24].

2. Governing equations, constitutive modelling and theoretical
framework

2.1. ABS and P tensor approaches

Under transient, incompressible and isothermal flow condi-
tions, the relevant mass conservation and momentum transport
equations for viscoelastic flow, may be expressed in non-dimen-
sional terms as (see definitions below; where here for conciseness
the ⁄notation on dimensionless variables is omitted)

r � u ¼ 0; ð1Þ

Re
@u
@t
¼ r � T � Re u � ru�rp; ð2Þ

where t represents time; the gradient and divergence operators
apply over the spatial domain; field variables u, p and T represent
fluid velocity, hydrodynamic pressure and stress contributions,
respectively. Here, stress is split into a solvent part ss (viscous-
inelastic) and a polymeric contribution sp, T = ss + sp = 2gsD + sp;
D = (ru +ru�)/2 is the rate of deformation tensor, where the
superscript � denotes tensor transpose. The dimensionless variables
utilised are defined as follows:

x� ¼ x
L
; u� ¼ u

U
; t� ¼ U

L
t; D� ¼ L

U
D; s�p ¼

sp

ðgp0 þ gsÞ U
L

;

p� ¼ p
ðgp0 þ gsÞ U

L

; P� ¼ P
gp0
k1

The non-dimensional group of the Reynolds number may be defined
as Re = qUL/(gp0 + gs), with characteristic scales of U on fluid veloc-
ity (mean velocity, based on volume flow rate) and L on spatial
dimension (based on minimum contraction-gap dimension). Mate-
rial density is q and reference viscosity is taken as the zero shear-
rate viscosity (gp0 + gs), so that gp0

gp0þgs
þ gs

gp0þgs
¼ 1:0. Here, gp0 is the

zero-rate polymeric-viscosity and gs is the solvent-viscosity, from
which the solvent fraction can be defined as b = gs/(gp0 + gs).

A general statement of the differential constitutive model may
be expressed in dimensionless form as:

We s
r

p ¼ 2ð1� bÞD� f ssp; ð3Þ

where the upper-convected derivative of the extra-stress tensor is
s
r

p ¼ @sp

@t þ u � rsp �ruT � sp � sp � ru. Here, a second dimensionless
group number is introduced governing elasticity, via a Weissenberg
number (We ¼ k1U=L), which is a function of the characteristic
material relaxation time, k1, and a characteristic rate – extracted
from the characteristic velocity and length scales. Working within
this general framework, and hence by specifying the functional fs,
the networked nature of the fluid may be imposed, along with its
theoretical properties.

With reference to the modelling of wormlike micellar systems,
a new constitutive equation has recently been proposed [4] and
adopted, with the novel inclusion of viscoelasticity within the
destruction mechanics of the fluid network structure. Commencing
from the Bautista–Manero–Puig (BMP) model [1,2], and its Modi-
fied Bautista–Manero (MBM) model counterpart [3], a non-linear
dimensional differential structure equation for the fluidity
(/p ¼ g�1

p ) emerges, from which the polymeric viscosity function
gp may be extracted. Then, the evolving space–time fluidity itself
provides the distribution and dictates the construction–destruc-
tion dynamics of the fluid network-structure. Typically, this may
begin from a fully structured-state to be converted to one of com-
plete unstructured-state, using the energy dissipated by the poly-
mer under flow. The present paper appeals to a version of this
class of models, which combines the viscoelasticity into the thixo-
tropic dependency, that of NM_sp, itself consisting of a stress-split
form and polymeric contribution sp as given by Eq. (3). Herein,
dependency on fluidity (/p ¼ g�1

p ) arises through the dimension-
less functional fs, which is given by the generalised differential
structure equation, with f-variable used for stress [4]:

@f s

@t
¼ 1

x
ð1� f sÞ þ nG0

We f : D; ð4Þ

where the dimensionless functional fs is defined as fs = (gp0/gp),
using gp0 as a viscous scaling factor on fluidity. Two versions of
Eq. (4) arise and are reported elsewhere [4], dependent on the
choice of f-variable: one, considering the energy dissipated by the
polymer constituent to break the structure of the fluid (f = sp, NM_sp

model); and the other, involving the polymer plus the solvent contri-
butions (f = T, NM_T model). The dimensionless parameters of this
micellar model, which account for structural construction
(x ¼ ksU=L) and destruction [nG0

¼ ðk=g1ÞG0ðgp0 þ gsÞ], appear in
the corresponding terms for these mechanisms. When the dynamic
differential Eq. (4) is recast into its steady-state form, then its equiv-
alent algebraic form is recovered,

f s ¼ 1þxnG0
We f : D: ð5Þ

Importantly, the dissipation function is the driving influence in
model departure from Oldroyd behaviour (fs = 1), which is modu-
lated by the product of the construction and destruction parame-
ters (thixotropy) with the Weissenberg number. Here, this
expression for the fs-functional links directly with the viscosity,
which is a positive physical quantity that should remain finite
and above unity in scaled form (f : D P 0),1 during flow evolution
(time) and throughout the spatial domain (in shear, extensional
and mixed flow deformation). As such, negative values (and less than
unity) of this fs-functional are inadmissible. As evidenced in our pre-
vious work [4], there are instances in complex 4:1:4 contraction/
expansion flow, near numerical We-solution breakdown, in which
the dissipation function becomes negative, thus predicting negative
values of the fs-functional and unphysical thixotropic viscosities. To
avoid this possibility arising, and consistent with the underlying
ideal shear and extensional flow derivation theory, the following
ABS-correction is proposed:

@f s

@t
¼ 1

x
ð1� f sÞ þ nG0

Wejf : Dj: ð6Þ

In Eq. (6), the absolute value sign is applied to each component of
the scalar dissipation function.2 This ABS-correction becomes redun-
dant in simple shear and extensional flows, since the domain of the
variables in such viscometric flows is positive. As such, this correc-
tion provides correct physical and thermodynamical interpretation
to this family of micellar models, in their departure from ideal flow.

Under network theory, the well-known Phan–Thien Tanner
models are considered which are frequently applied to represent
the response of polymer melts (exponential, EPTT) and solutions
(linear, LPTT), [26]. The constant, non-dimensional PTT parameter
e P 0 largely dictates severity in strain-hardening, with smaller
values limiting to zero, offering the greater extremes in extensional
viscosity (larger Trouton ratios). The same reasoning as with thixo-
tropic models can be applied to PTT models, and the analysis
returns towards classical Oldroyd-B behaviour in the limit of
e
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vanishing trsp.3 Consistently with the above fs-functional modifica-
tions expressed for thixotropic micellar models, the corresponding
modification to the PTT models becomes:

f s ¼ 1þ e
1� b

We trjspj for LPTT; and

f s ¼ exp
e

1� b
We trjspj

� �
for EPTT: ð7Þ

Note, in Eq. (7), it is implied that the absolute value sign applies to
every constituent component of the scalar trsp. With PTT models,
the trace of the extra-stress is the function responsible for depar-
ture from Oldroyd-B form, as opposed to dissipation, f:D, under
the thixotropic models.

Material functions for the models considered, along with the
Oldroyd-B (f = 1) reference, are reported elsewhere [4]. The solvent
fraction level considered in this work is the benchmark b = 1/9. The
EPTT model e parameters are chosen to take values at benchmark
settings e = 0.25 characterising polymer melts [4]. The resulting
micellar extensional viscosity is matched with those of correspond-
ing EPTT form at the {e,b} combination. The micellar construction
and destruction parameters, matching EPTT extensional viscosity,
are x = 4.0 and nG0 = 0.1125, respectively [4]. In this work, all the
corrections targeted for modeling of micellar fluids have no effect
on the viscometric material functions described in [4].

2.2. Change of variable (translations sp �P)

Following the developments on positive definiteness and loss of
evolution by Dupret and Marchal [18] and Hulsen [21], a dimen-
sional tensor P = sp + (gp0/k1)I is adopted in this study, which is a
translation identity between P and sp tensors. As such, the eigen-
values of the P tensor may be taken as a form of guidance as to
solution quality and indeed, as an indicator towards violation in
attaining converged steady-state numerical solutions at increasing
We-increments (numerical divergence/breakdown). The dimen-
sionless form of this tensor according to the non-dimensional vari-
ables above is P⁄ = [We/(1 � b)]sp

⁄ + I.
Application of the P-tensor definition leads to the following

dimensionless constitutive equation statement (omitting
⁄notation):

We P
r
¼ �f PðP� IÞ: ð8Þ

For the time-dependent thixotropic micellar models, the func-
tional fP is governed by the differential expression:

@f P

@t
¼ 1

x
ð1� f PÞ þ nG0

ð1� bÞjfP : Dj; ð9Þ

which reduces under steady-state conditions to the following
expression:

f P ¼ 1þxnG0
ð1� bÞjfP : Dj: ð10Þ

For this family of fluids, it is noteworthy that the We-scaling on the
non-dimensionalised dissipation function is omitted in the sp-to-P
translation. fP represents the conformation-tensor form of f.

Then, the corresponding fP-functional for the time-independent
network-based PTT models (see Hulsen [21]) are given by:

f P ¼ 1þ etrjP� 3j for LPTT; and f P

¼ expðetrjP� 3jÞ for EPTT: ð11Þ

One notes that Eqs. (9)–(11) already include the ABS-correction,
yet this assumption may be relaxed to consider natural-signed
options.
3 Provided the model parameter set {e, b, We}>0, as is necessary by definition.
2.3. P-eigenvalues in the field

The eigenvalues of any tensor can be calculated via the solution
of the characteristic equation obtained as follows (applied to P)

detðP� sIÞ ¼ 0; ð12Þ

where s denotes the vector of eigenvalues (si) of the tensor P. If we
apply this principle to the symmetric P tensor relevant to axisym-
metric {z,r,h}-flow, as pertinent to this study with vanishing shear
components – Prh = Pzh = 0, given by:

det
Pzz � s Prz 0

Prz Prr � s 0
0 0 Phh � s

0B@
1CA ¼ 0; ð13Þ

and thus producing the cubic characteristic equation:

½ðPzz � sÞðPrr � sÞ �P2
rz�ðPhh � sÞ ¼ 0: ð14Þ

In this form, firstly note the decoupling of the hh-component from
the remainder of the system, which provides the independence of
the subsystem in r–z components (replicating that of planar flow).
This is reflected in eigenvalue s3 = Phh, which is termed the third
eigenvalue and identified unambiguously with Phh over the whole
field. Then, the remaining two eigenvalues can be determined from
the quadratic equation for the r–z subsystem:

ðPzz � sÞðPrr � sÞ �P2
rz ¼ 0; ð15Þ

which can be recasted as:

s2 � ðPzz þPrrÞsþ ðPzzPrr �P2
rzÞ ¼ 0 ð16Þ

or more simply,

s2 � trPsubsþ det Psub ¼ 0 ð17Þ

where use is made of trace and determinant operations, in trPsub =
Pzz + Prr and det Psub = Pzz ⁄Prr � Prz

2.
Thus, the two solutions of Eq. (17) provide the first (s1) and sec-

ond (s2) eigenvalues, respectively:

s1 ¼
trPsub þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrPsubÞ2 � 4 det Psub

q
2

; ð18Þ

s2 ¼
trPsub �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrPsubÞ2 � 4 det P

q sub

2
ð19Þ

Notably, the discriminant of the square-root represents a balance
on sub-system components between the (tr Psub)2 and det Psub,
and to conform to real eigenvalues should comply with the restric-
tion that [(tr Psub)2-4det Psub] P 0.4

Corresponding and detailed analysis for the P-eigenvalues at
the centreline (in shear-free flow) is given in Appendix A, along
with their relationship to the poles of the f-functional in simple
uniaxial extension. This detail is called upon in the results sections
below.

2.4. Centreline shear-free boundary condition imposition – VGR-
correction

Consistent boundary conditions are required for any differential
problem to be well-posed. In the contraction–expansion flow prob-
lem, the symmetry flow-line is the unique region in the flow-
domain where uniaxial (inhomogeneous) extension exclusively
occurs, as opposed to the contraction-wall where (inhomogeneous)
shear flow prevails. Conventionally, the so-called stick-boundary
4 In practice, this condition has always been met for computable and stable steady-
state We-solutions.
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condition is assumed along the contraction-wall, by which the
fluid is treated as at rest on the wall (u = 0). At the shear-free centr-
eline, flow symmetry boundary conditions apply. In this work,
under VGR-correction and on the centreline, we propose imposing
specific analytical restrictions on the deformation gradients (see
section below). Here, the deformation gradients themselves are
determined throughout the flow domain by a superconvergent
local recovery technique and imposed on the stress equation (akin
to well-known DEVSS-G methodology, but applied locally in qua-
dratic form [27]). This enforces: (i) shear-free flow, to ensure 1D-
extensional deformation (Eq. (20a)); (ii) a pure uniaxial extension
relationship between the normal deformation-gradients (Eq.
(20b)); and (iii) nodal-pointwise continuity imposed exactly, in
discrete form (Eq. (20c)). With computed knowledge of the normal
deformation-gradients, the third of these conditions may be uti-
lised throughout the domain, irrespective of 1D-centreline argu-
ments. Assuming specific notation for the extensional rate on the
centreline in the axial direction, as _̂e ¼ @uz

@z ,5 then the following iden-
tities may be established and imposed on the numerical solution
under VGR-correction:

@uz

@r
¼ @ur

@z
¼ 0; ð20aÞ

@ur

@r
¼ �1

2
@uz

@z
¼ �1

2
_̂e; ð20bÞ

ur

r
¼ � @uz

@z
þ @ur

@r

� �
¼ �1

2
_̂e: ð20cÞ

Corresponding solutions results are discussed below, when this
methodology is considered. As such, the VGR-correction is
intended to eliminate noise proliferation, originating at the centr-
eline, which may provoke numerically polluted solutions and ear-
lier numerical solution breakdown.

3. Problem specification and numerical schemes

The schematic representation of the 4:1:4 axisymmetric,
rounded-corner contraction/expansion flow problem with its cor-
responding mesh data are reported elsewhere [4,25]. See Aguayo
et al. [25] for further detail on this problem, which provides a full
mesh refinement analysis for some typical case studies.

3.1. Hybrid finite element/finite volume scheme

The hybrid finite element/volume scheme is a semi-implicit,
time-splitting, fractional three-staged formulation, which draws
upon finite element discretisation for velocity–pressure approxi-
mation and finite volume for stress [27–29]. In brief, Galerkin fe-
discretisation is applied to the embedded Navier–Stokes system
components; the momentum equation at stage-1, the pressure-
correction equation at stage-2 and the incompressibility satisfac-
tion constraint at stage-3 (to ensure higher order precision). The
fv-tessellation is constructed from the fe-grid by connecting the
mid-side nodes. Stress variables are located at the vertices of fv-
sub-cells (cell-vertex method, equivalent to linear interpolation).
In contrast, quadratic velocity interpolation is enforced on the par-
ent fe-cell, alongside linear pressure interpolation. A direct solution
method is employed at the fe pressure-correction stage-2, whilst a
space-efficient element-by-element Jacobi iteration is preferred
over the remaining stages one and three, under the fe-components.

3.2. Stress-finite volume cell vertex scheme

Cell-vertex fv-scheme applied to extra-stress are based upon an
upwinding technique (fluctuation distribution), which distributes
5 As a function of z-spatial variable, in uniaxial extension along the flow centreline.
control volume residuals to provide nodal solution updates. Con-
cisely, by rewriting the extra-stress equation in non-conservative
form, with flux (R = u � rs) and absorbing remaining terms under
the source (Q), one may obtain:

@s
@t
þ R ¼ Q : ð21Þ

We consider each scalar stress component, s, acting on an arbitrary
volume X =

P
lXl, whose variation is controlled through corre-

sponding components of fluctuation of the flux vector (R) and the
source term (Q),

@

@t

Z
Xl

sdX ¼
Z

Xl

RdXþ
Z

Xl

QdX: ð22Þ

The objective is to evaluate the flux and source variations over each
finite volume triangle (Xl), with their distribution to its three verti-
ces according to the preferred strategy. The resulting nodal update
for a particular node (l) is obtained by accumulating the contribu-
tions from its control volume Xl, composed of all fv-triangles sur-
rounding node (l). The flux and source residuals may be evaluated
over different control volumes associated with a given node (l)
within the fv-cell T; namely, the contribution governed over the
fv-triangle T, (RT,QT), and that subtended over the median-dual-cell
zone, (Rmdc,Qmdc) [30]. This procedure demands appropriate area-
weighting to maintain consistency, which for temporal accuracy
has been extended to time-terms likewise. With the candidate
stress equation considered as split into time derivative, flux and
source, and integrated over associated control volumes, the concise
generalized fv-nodal update equation may be expressed per stress
component as,X
8Tl

dTaT
l XTþ

X
8MDCl

ð1�dTÞbXT
l

" #
Dsnþ1

l

Dt
¼
X
8Tl

dTaT
l bTþ

X
8MDCl

ð1�dTÞbMDC
l ;

ð23Þ

where bT = (�RT + QT), bMDC
l ¼ ð�RMDC þ QMDCÞl. Here, XT is the area

of the fv-triangle T, whilst bXT
l is that of its median-dual-cell

(MDC). Parameter dT directs the balance taken between the contri-
butions from the median-dual-cell and the fv-triangle T, with
0 6 dT 6 1 [29]. This expression recognizes segregated fluctuation
distribution and median dual cell contributions, area weighting
and upwinding factors (aT

l -scheme dependent).

3.3. Velocity-gradient approximation (VGR-correction)

In Webster and co-workers [27,31], both local (direct-recovery)
and global (Galerkin) schemes for the treatment of velocity-gradi-
ents (VGR) were analysed and compared. There, a direct and nodal
method was advocated, based on averaging velocity-gradient ele-
mental-contributions to a triangular mesh-node. It is particularly
significant that for midside nodes, this is the only scheme that
enjoys superconvergent properties. In contrast, the global Galerkin
approach fits an appropriate set of nodal gradient values that sat-
isfy an associated weighted-residual formulation. Hawken et al.
[31] observed that the local recovery method offered improved
performance, for solution gradients in complex flow problems,
such as flow past a cylinder. Likewise, Matallah et al. [27] con-
ducted similar analysis on a 4:1 contraction problem and flow
around a cylinder, observing that the local recovery technique
was more stable than a local Galerkin equivalent; see summary
in Walters and Webster [13]. Furthermore, in Belblidia et al. [28]
the above analysis was revisited under velocity-stress, parent/
subcell approximation, as used here. This covered the various
function-spaces and combination-options available for velocity-
gradient representation (parent/subcell control-volume, qua-
dratic/linear order), with special reference to stress-subcell
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approximation. In [28], the localised-quadratic velocity-gradient
(parent-cell) treatment was shown to achieve both stability and
accuracy, applying robustly for both linear (subcell) and quadratic
(parent) stress interpolations.

Entry flow kinematics are determined computationally for the
equivalent entry-channel problem. These may be imposed through
the time-stepping procedure, either as steady-state, or via a
smooth transient build-up. Then, fully-developed outflow condi-
tions are established ensuring no change in streamwise and van-
ishing cross-stream kinematics. Once fully-developed entry-flow
kinematic are known, stress may be determined through the
derived and corresponding initial-value-problem ODE system
(consistent with internal domain solution discretisation).

4. Solutions with Micellar NM_sp model – natural-signed form
4.1. Negative f-values in complex flow

In Fig. 1, zones of small and negative fs-value, appear at the
centreline from low We-solution levels onwards (i.e. We = 0.1, dark
blue6 regions). These regions grow towards the contraction wall and
are convected downstream as elasticity level increases, for all three
micellar models (i.e. MBM, NM_sp, NM_T) [4], which vary in dissipa-
tion function. Regarding the colour-scale, the darkest blue in the
scale represents the value of unity for the fs-functional. Consistently,
as fs = 1 is the smallest value in the colour-scale, values of fs < 1 are
represented with the darkest blue regions. This style of colour-scale
has been adopted to precisely detect/highlight the presence and size
of regions with fs < 1.

The structure equation given in terms of the f-functional for the
micellar models is represented in [1 + g(f:D)] form. The only way
this expression can generate negative f-values in complex flow is
if g(f:D) 1. This occurrence is unphysical with respect to the sec-
6 For interpretation of colour in Figs. 1, 2, 6, 8, B1 and B2, the reader is referred to
the web version of this article.
ond law of thermodynamics, since any viscous flow is dissipative;
thus increasing the entropy of the system [32]. Moreover, the
f-functional for these thixotropic micellar models is explicitly
related to viscosity-inverse (see Eq. (4)). Thus, negative f-values
represent negative viscosities in the field (again unphysical); and
moreover, when g(f:D) = �1, f = 0, an infinite viscosity would be
predicted. As reported elsewhere [4], numerical breakdown for
each micellar variant, characterised by the critical-We (denoted
Wecrit) solution, is observed when the small and negative f-function
region reaches the contraction wall (see Fig. 1 and Table 1). In this
study, for the sake of conciseness only, the NM_sp micellar version
is studied in detail; nevertheless, all observations are quite general.

4.2. s2-field trends and numerical breakdown

In Fig. 2, the evolution of NM_sp s2-fields through increasing
elasticity to Wecrit is depicted. This graduated change in solution
state with elasticity level is evidence to the regional loss of posi-
tive-definiteness and the consequence this has on evolution in
We-solution, which provokes numerical breakdown [18]. Firstly,
at low elasticity levels (We = 0.5) (Fig. 2a), s2 remains positive
throughout the field, with variations about the centreline given
by the mixed nature of shear–extensional flow. The s2-minimum
value (s2min = 0.53; see Table 2) is located on the centreline, down-
stream with respect to the contraction. This first low s2 peak (blue
spot on centreline; see 2D field) is connected to the contraction
wall by another light-blue positive contour level, originating at
the centreline and reaching out across the flow to the contraction
wall. The s2-maximum value (red spot s2max = 1.03) is located off
the centreline, but close to it; this is surrounded by a green con-
tour-banded region of relatively low-s2 levels, that connects loca-
tions on the centreline to those on the wall, both upstream and
downstream of the contraction.

Interestingly, when elasticity level is increased further to We = 2
(Fig. 2b), negative-blue s2 values begin to penetrate into the field.
The location of the minimum-negative value is observed through
the first-peak at the centreline (s2min = �0.23), which appears to



Table 1
fs, fP extrema versus We; micellar models.

We fs fP

Natural ABS VGR P

0.1 Max. 2.06 2.06 2.06 2.69
Min. 0.998 1.00 1.00 1.00

0.5 Max. 4.11 4.18 4.18 5.82
Min. 0.87 1.00 1.00 1.00

1 Max. 5.62 6.59 6.59 7.87
Min. 0.59 1.00 1.00 1.00

2 Max. 7.4 10.94 10.94 12.14
Min. �0.34 1.00 1.00 1.00

3 Max. 8.72 13.35 13.35 15.07
Min. �1.82 1.00 1.00 1.00

4 Max. 9.98 15.39 15.39 17.58
Min. �3.44 1.00 1.00 1.00

5 Max. 11.04a 17.35 17.35 19.92
Min. �4.91 1.00 1.00 1.00

10 Max. 25.48 25.48 30.40
Min. 1.00 1.00 1.00

15 Max. 32.20 32.20 41.72
Min. 1.00 1.00 1.00

20 Max. 36.85 36.85 42.65
Min. 1.00 1.00 1.00

30 Max. 41.29 41.29 53.19
Min. 1.00 1.00 1.00

40 Max. 74.51b 85.54 115.87
Min. 1.00 1.00 1.00

75 Max. 195.49 256.53
Min. 1.00 1.00

100 Max. 279.89 321.52
Min. 1.00 1.00

140 Max. 427.52 450.44
Min. 1.00 1.00

175 Max. 534.31 562.73
Min. 1.00 1.00

200 Max. 606.83
Min. 1.00

250 Max. 748.47
Min. 1.00

370 Max. 1037.10
Min. 1.00

a Wecrit = 4.9.
b Wecrit = 39.
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be convected downstream. This negative region remains connected
to that on the contraction wall by a similar green-positive fringe to
that identified when We = 0.5. In addition, this green fringe (dis-
connected downstream) partially surrounds the second-red posi-
tive-peak. This second-red peak appears to have grown in size
and strength (s2max = 1.24), and is convected downstream in con-
trast to the We = 0.5 solution. Moreover, a new feature has now
arisen at this We-level: a third peak on the downstream contrac-
tion wall (see 3D field-plot). The value for this peak (s2 = 0.27 units)
remains positive. The fully-developed flow region upstream and
downstream of the contraction is characterised by levels of
0.8 6 s2 6 1 units.

Fig. 2c provides corresponding results at We = 3. Here, strong
features in s2 are established which become more intense with rise
in We. The first and second-peaks, are identified by s2min = �0.29
and s2max = 1.35, respectively; these have been convected even
more and become relatively more intense, with reference to lower
We-level solutions. At We = 3, the positive surrounding-level con-
necting the first-peak between the centreline and contraction wall,
appears larger and fully-connected upstream. The third-peak at the
downstream wall has become sharper and its local minimum value
has just wandered into negativity (s2 = �0.05).

Finally and most conspicuously for We = 4.9, the stage is
reached beyond which steady-state numerical breakdown is
observed (Fig. 2d, Wecrit = 4.9, breakdown at We = 5). Note, the
important switch in location of the global s2min = �2.05 in the
NM_sp case at Wecrit = 4.9, from previous We-levels on centreline,
to presently on the wall (backface-tip of contraction). In addition
here, a fourth-red positive-peak also becomes apparent on the
downstream wall, next to the third-peak, as fresh evidence to the
appearance of solution overshoot–undershoot. Moreover, the first
two peaks appear completely attached to the centreline and con-
vected downstream. The first-peak has become less intense at this
We-level (s2 = �0.15), whilst the second-peak has grown in size
and intensity (s2max = 1.39). The first-peak at the centreline still
remains connected to the wall by a slim-positive s2-band (light-
blue).

4.3. s1–s2 versus Pzz-Prr @ centreline

In Fig. 3, a plot for NM_sp data at Wecrit = 4.9 illustrates the the-
ory of Section 2.4 for the swapping-over character of the eigen-
values at centreline. As predicted by the theory, s1 = Pzz and
s2 = Prr when N1 remains positive, whilst s1 = Prr and s2 = Pzz when
N1 becomes negative. The switch-over point in N1 lies at z = 1.6
units (at Wecrit = 4.9). Interestingly, the switch-over point in N1-
sign is independent of counterpart conditions in rate of deforma-
tion. Along this flow-line, uniaxial extension is apparent upstream
and uniaxial compression downstream. Moreover, given that a
constant flow rate is maintained in these k1-increasing simulations,
the localised inhomogeneous rate of deformation is barely changed
throughout the We-continuation procedure.

4.4. Pzz–Prr versus fP-functional poles @ centreline

As discussed in Appendix A and applicable on the centreline, a
correlation may be extracted between numerical P-components
and their corresponding simple uniaxial extensional predic-
tions from viscometric/linear viscoelastic regime theory. Fig. 4
gathers this comparison together at low elasticity levels We =
{0.001,0.01,0.1}. As We tends to zero, the continuous reference line
is that of unity. As elasticity is elevated, the inhomogeneous non-
linear solution is contrasted against its linearised inhomogeneous
counterpart. To be precise, the latter is extracted functionally from
viscometric theory along the centreline, yet by imposing the
derived inhomogeneous state of stress and deformation from the
numerical solution. The numerical data curves at We = 0.001, for
Pzz (symbols) and its theoretical linear estimation (f-pole1 related
to 2 _eWe – dashed lines) are practically superimposed over the ref-
erence line. For We = 0.01, departure from viscometric data is now
evident, yet not relatively significant, ranging around 2% for the
largest departure. In contrast for We = 0.1, this departure appears
significantly large, with the largest difference ranging around
25% over the unity reference line. Comparison of Prr with its
theoretical linear estimation (fP-functional-pole2 related to _eWe –
dashed lines; see inset Fig. 4) provides similar trends as pole1

analysis, with two main differences: (i) at We = 0.1, the maximum
departure of the linear estimation from unity reference line, is
smaller (14%) than occurs with fP-functional-pole1, and (ii) now,
the maximum departure appears downstream. Note, the shape of
Prr is the reflected-scaled image of Pzz in the reference line; also,
all curves intersect at z = 0.

Fig. 5 provides additional information at more elevated elastic-
ity levels, including Wecrit = 4.9. At We = 0.5, a singularity in Pzz lin-
ear viscometric estimation is observed at z � �0.9. The reason for
their appearance is illustrated in the plot below, in which a
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comparison between the Pzz viscometric estimation (top-row) and
the components of the pole1 (bottom-row) are plotted as We rises
and complex flow becomes more dominant. These singularities
correspond in location to the centreline-zone at which the compo-
nents of pole1 (i.e. fP and 2 _eWe) balance one another (bottom-row).
A similar situation arises with fP-functional-pole2 (i.e. fP and
� _eWe), for which singularities are observed first at larger We = 2
relative to fP-functional-pole1.
5. The ABS correction – Micellar NM_sp_ABS model and larger
Wecrit

5.1. Correction on negative f-values and consequence on positive
definiteness

To correct for the inconsistency in the fs-functional, and there-
fore in viscosity predictions described in Section 4, these thixotro-
pic models have been amended – adopting absolute components
values in the dissipation function (see Section 2.1). Considering
such ABS-correction provides the global fs_min = 1 (extrema,
Table 1), applicable spatially and through all We-levels for NM_sp_
ABS. In contrast, NM_sp provides negative values (fs_min = �4.92) at
Wecrit = 4.9. Moreover, global fs_max is observed to increase. For
example, this extremum for We = {2,3,4,4.9} goes from fs_max =
{7.40,8.72,9.98,11.04} for NM_sp, to fs_max = {10.94,13.35,15.39,17.34}
with We = {2,3,4,5} and NM_sp_ABS. Fig. 6 compares fs and s2 in
2D and 3D-fields at We = 4.9 (Wecrit for NM_sp). Consistently, the
blue-region containing negative NM_sp fs-functional values is lost
in NM_sp_ABS 2D-fields, and replaced by a continuous red-region
about the contraction. The 3D-fs-fields reveal further detailed
features, with NM_sp providing (i) a pronounced negative-dip just
downstream of the contraction and filling the gap across the flow;
and (ii) a sharp negative-peak to this fs-dip at the downstream con-
traction-wall (fs = �3.37); which now coincides in location with
the negative-peak observed in the second eigenvalue data (s2min =
�2.05). In contrast, NM_sp_ABS 3D-fs-field data provides a less-
erratic field about the contraction, with two local maxima
fs = {4.51,3.86}, and a minimum fs = 1.35 at the centreline. Note
under NM_sp_ABS, values of fs slightly larger than unity are located
over the fully-developed regions, upstream and downstream of the
contraction, where shear flow prevails. fsvalues grow with increas-
ing We and along the radial direction at any fixed z-coordinate in
these locations; from fsmin = 1 at the centreline (since srz = 0, hence
sp : D ¼ srz

@uz
@r þ

@ur
@z

� �
¼ 0), to fs values larger than unity at the wall

(where sp : D–0). For instance, the NM_sp_ABS solution at
Wecrit = 39, provides fs-values that range between fsmin = 1 at the
centreline, and fs = 1.06 at the wall.
5.2. 2D and 3D field s2 and N1-data

Furthermore, the s2-data counterpart to fs-data in Fig. 6 (see
more in Fig. B1), clearly exhibits the strong influence of the ABS-
correction: the sharp negative-peak on the wall observed in NM_sp

results is practically lost under NM_sp_ABS. With NM_sp_ABS, this
key contraction-wall feature appears positive (s2 = 0.24) and rela-
tively less prominent; whilst it is negative (s2min = �2.05; Table 2)
and sharp in the natural-signed NM_sp results. Moreover, over-
shoot–undershoot in s2 is absent at this location for NM_sp_ABS,
whilst this is evident in the NM_sp 3D-field data, through a prom-
inent positive red-peak (s2 = 1.25) next to the negative blue-peak
(s2min = �2.05). One notes, the severity of solution gradients at this
location and degradation in the quality of their capture, which all



Table 2
s2 extrema versus We; micellar models.

We s2

Natural ABS VGR P

0.1 Max. 1.00 1.00 1.00 1.00
Min. 0.74 0.74 0.74 0.74

0.5 Max. 1.03 1.03 1.03 1.01
Min. 0.53 0.55 0.55 0.48

1 Max. 1.13 1.09 1.09 1.06
Min. 0.10 0.17 0.17 0.24

2 Max. 1.24 1.22 1.22 1.22
Min. �0.23 �0.11 �0.11 0.03

3 Max. 1.35 1.31 1.31 1.31
Min. �0.29 �0.18 �0.18 �0.04

4 Max. 1.52 1.4 1.4 1.41
Min. �0.80 �0.19 �0.2 �0.05

5 Max. 2.31a 1.47 1.47 1.49
Min. �2.05 �0.22 �0.22 �0.08

10 Max. 1.75 1.74 1.83
Min. �0.28 �0.3 �0.13

15 Max. 1.98 1.97 2.11
Min. �0.96 �0.96 �0.69

20 Max. 2.17 2.17 2.3
Min. �2.00 �2.00 �95.75

30 Max. 2.57 2.57 2.91
Min. �109.98 �109.97 �105.67

40 Max. 2.82b 2.75 3.15
Min. �143.55 �154.13 �258.04

75 Max. 7.82 3.89
Min. �354.61 �490.08

100 Max. 10.73 3.88
Min. �474.41 �665.58

140 Max. 6.77 5.04
Min. �663.73 �932.55

175 Max. 9.33 6.05
Min. �791.01 �1166.40

200 Max. 10.34
Min. �902.81

250 Max. 11.81
Min. �1124.60

370 Max. 17.30
Min. �1641.20

a Wecrit = 4.9.
b Wecrit = 39.

Fig. 3. Pzz, Prr, s1, s2 at centreline; Wecrit = 4.9; NM_sp.

7 Weinc-NM_sp: unity to We = 4, in 0.1 to Wecrit = 4.9; NM_sp_ABS: unity to We = 10,
5 to We = 30, unity to Wecrit = 39.
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hints at pending numerical solution breakdown. The global s2min is
smaller and on centreline (cl) for NM_sp_ABS compared with
NM_sp, noting the final We = 4.9 s2min value switches location from
�0.19cl to �2.05wall. At fixed We = 4.9, contrasting local s2min on
centreline between NM_sp_ABS and NM_sp solutions and (Fig. 6),
reveals an even more intense peak for NM_sp_ABS (global s2min =
�0.19) relative to NM_sp (local s2min = �0.15). See Appendix B for
additional data on stress fields. Corresponding N1-field data reveal
analogue features compared to s2-fields. Particularly the location of
the local extrema values in both natural-signed and ABS fields. For
NM_sp, s2min = �2.05 and N1min = �3.53 lie on the back-face wall of
the contraction, in the form of a sharp peaks. In contrast, NM_sp_
ABS display s2-positive values and a relatively reduced global
N1min = �1.93 at the back-face wall of the contraction. At the centr-
eline, NM_sp data displays a local s2-minimum (=�0.15), found
downstream in the same region as a local N1-minimum (=�0.58);
whilst for NM_sp_ABS these values appear at {s2,N1} = {�0.19,
�0.64}. Finally, at the front-face of the contraction, a sharp nega-
tive N1-peak is apparent for both {NM_sp, NM_sp_ABS}-fields,
with values of N1 = {�1.29,�0.92}, respectively. Consistently,
N1max-values decrease as the correction is implemented, with
N1max = {4.11wall,3.73} for {NM_sp, NM_sp_ABS}. This reduction in
N1 peak values seems to be directly related with the extension in
numerical instability, observed as the ABS-correction is imple-
mented. Moreover, the location of this maxima change from the
wall for NM_sp to the inner-field zone for NM_sp_ABS. This feature
could be related to the change of shape of the red-positive zone in
the 2D N1-field across models: for NM_sp, a single region of posi-
tive values is apparent, whilst for NM_sp_ABS, two positive regions
are observed; the largest attached to the centreline and reaching
the tip of the contraction, and the second bulbous region detached
from the back-face of the contraction.

5.3. Wecrit levels

Table 3 lists critical Weissenberg number (over models and
methods) according to the final stable solution-state (Wecrit), and
that at which solution breakdown (failure) is first detected (Wefail).
For these micellar models, the inclusion of the ABS-correction gen-
erates an increase of some eight times in Wecrit, from {Wecrit = 5,
NM_sp} to {Wecrit = 39, NM_sp_ABS} representation. Generally,
increasing fs-magnitude elevates the levels of computable Wecrit-
solutions [4] (down-scaling elasticity prominence). This is clearly
the case when selecting the ABS-correction, and moreover, is exag-
gerated by selecting the absolute value of each individual compo-
nent of the dissipation function (as opposed to the absolute value
of the total dissipation function).

5.4. s2 versus We history plot

Fig. 7 provides the detailed graphical data across models on
s2min as a function of We,7 following Table 2. From the zoomed fig-
ure-inset in 0.1 6We 6 0.5 range, the NM_sp and NM_sp_ABS curves
drop from s2min = 0.74 at low elasticity levels (We = 0.1) and closely
match, upholding the same declining trend up to We = 0.5. Subse-
quently for We > 0.5, the curves begin to depart from each other,
with the NM_sp curve adopting the strongest negative declining
slope. This is reflected in the precise We at which each data-curve
crosses the zero-reference line. The NM_sp curve provides an inter-
cept at We � 1.4, whilst the intercept for NM_sp_ABS curve is slightly
retarded in this respect to We � 1.6. From this situation and from
in
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We P 2 onwards, NM_sp and NM_sp_ABS s2min-curves differ in solu-
tion gradient response, and markedly so for We P 3. The NM_sp

curve gradually declines in slope in the interval 2 6We 6 5, locating
drops with increasing magnitude at points We = 3, 4. Thereafter, for
We > 4, the NM_sp curve declines most sharply, continuously and up
to its Wecrit = 4.9 state, with s2min = �2.05 now on the contraction-
wall. In contrast and relative to NM_sp, the NM_sp_ABS s2min-curve
adopts a continuous and shallow decline in slope which appears to
reach a plateau in 3 6We < 20 range (see full-scale plot). Around
and after this We = 20 state, the NM_sp_ABS curve locates variation
points at We = {20,25,30}, first declining less rapidly at We = 20,
then more rapidly at We = 25, returning to less rapidly at We = 30,
and continuing onwards towards Wecrit = 39. At this critical solution
stage, the negativity in s2 has reached levels of s2min = �143.55. It is
noteworthy that negativity in s2 would appear to provide an over-
strong indicator of primary solution quality, and indeed convergence
to steady-state, as some degree of negativity in this factor is toler-
ated (under We-continuation, as opposed to IVP time-evolution,
where the theory more strictly applies), whilst this does not hinder
computation of smooth unpolluted solutions in all primary solution
variables.

6. Highly elastic solutions

6.1. The VGR-correction – Micellar NM_sp_ABS_VGR model

6.1.1. Wecrit levels
In addition to the ABS-correction and with the imposition of the

enhanced centreline boundary conditions (NM_sp_ABS_VGR) as
described in Section 2.4, converged steady-state solutions now
become attainable at considerably higher Weissenberg numbers.8

With reference to Table 3, an increase in Wecrit level of some ten
times is observed under NM_sp_ABS_VGR, relative to NM_sp_ABS
capability. Specifically, NM_sp_ABS numerical solution breakdown
is observed at Wecrit = 39, whilst NM_sp_ABS_VGR attains the exag-
gerated response of Wecrit = 370. This position is interrogated further
below, through exposure to solution perturbation on the centreline
via the deformation-gradients themselves, and hence the consis-
tency of the problem. One notes, there is practically no change in
fs-functional extrema between NM_sp_ABS and NM_sp_ABS_VGR;
and hence, elevation in Wecrit with NM_sp_ABS_VGR is attributed
solely to the VGR-correction.
8 Weinc – NM_sp_ABS_VGR: unity to We = 10, in 5 to We = 200, in 10 to Wecrit = 370.
6.1.2. s2 versus We history plot
Fig. 7 provides for comparison between NM_sp_ABS and NM_

sp_ABS_VGR s2min-solution response, and emphasizes the more
gradual/smoother changes gathered in the NM_sp_ABS_VGR
s2min-curve up to and around Wecrit = 39 for NM_sp_ABS. This
theme is continued up to Wecrit = 370, with essentially the same
declining gradient trend after {NM_sp_ABS,Wecrit = 39}; the refined
deformation-gradient centreline conditions clearly provide for the
advance in high We-number attenuation. One notes with look
ahead, that the data on NM_P_ABS, is of similar form to that
under NM_sp_ABS_VGR, displaying only slightly greater rate in
s2min-decline beyond We � 30.

6.1.3. Deformation rates @ centreline
See Appendix B for detail on corresponding field data (Fig. B2).

Fig. 8 graphs contrast NM_sp_ABS versus NM_sp_ABS_VGR data, for
rising We and on the centreline, in shear duz/dr and the extensional
duz/dz deformation gradient components. In Fig. 8a, there is con-
spicuous noise present in the shear gradient duz/dr (NM_sp_ABS);
absent under NM_sp_ABS_VGR, where the shear gradient vanishes.
Upstream of the contraction, these NM_sp_ABS non-zero duz/dr val-
ues tend to increase as We is elevated. Notably, at the axis z = 0, a
minimum is observed for every We-data-curve; yet, the magnitude
of this minimum is rising for 0.1 6We 6 5, whilst decreasing for
We P 10. Downstream of the contraction, duz/dr-data-curves reflect
rather oscillatory behaviour, adopting a damped pattern with We
rise, somewhat resembling the convected patches in N1 and
s2-fields (Fig. 8a and b). In contrast, data-curves under NM_sp_
ABS_VGR (Fig. 8b) display null duz/dr at the centreline. In terms
of normal gradient component representation, extensional rate
duz/dz data is imposed on the other two normal components, dis-
cretely conveyed through dur/dr approximation (Fig. 8c and d).
VGR-correction at We = {2,5} is evident, through localised differ-
ences and their subsequent downstream convection; this may be
gathered in the comparison between data-curves in NM_sp_ABS
and NM_sp_ABS_VGR solutions downstream of the contraction.
Relatively smoother trends in dur/dr curves are observed under
the (pink) NM_sp_ABS_VGR data-curve. Conspicuously, adjust-
ments in the shear duz/dr component prove to be an order of mag-
nitude larger than those in the extensional dur/dr component.

6.1.4. Stress fields – solution quality
Fig. B1(ii) gathers VGR-correction data in N1, s2, srz and N2 2D-

fields, with rising We and sampled at incremental stages. Between



Fig. 5. Pzz, linear-pole1 estimation and pole1-components at centreline. We = {0.1,0.5,2,4.9}; NM_sp.
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Fig. 6. fs-functional, s2 and N1 2D, 3D-fields at We = 4.9; NM_sp and NM_sp_ABS.

Table 3
{Critical, first-failure} Weissenberg numbers {Wecrit, Wefail} across models.

Model fs Wecrit (Wefail)

Natural Sign ABS VGR P

NM_sp 1þxnG0
Wesp : D 4.9 (5) 39 (40) 370 (380) 175 (180)

LPTT 1þ eWe
1�b trsp 11 (12) 210 (220) – –

EPTT exp eWe
1�b trsp

� �
210 (220) 4000 (4250) 4250 (4500) 1000 (1250)
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NM_sp_ABS (Fig. B1(i)) and NM_sp_ABS_VGR Fig. B1(ii) solutions
up to We � 40, there are no noticeable solution differences in
fs-fields or other variables. Of the N1-field in the 75 < We < 370
range (Fig. B1(ii)a), the most significant feature lies in the red-
positive downstream-zone that originated from the second
bulbous-zone in Fig. B1(i)a and split off downstream around
We � 20; this has now further elongated downstream and parallel
to the channel-wall, passing incrementally in steps through
We = {40,75,175,370}, with signs of splitting about its centre
around We � 175. This has certainly occurred at the advanced
stage of Wecrit = 370. Similarly in the same We-range and on srz-
field data, the downstream obstruction-backface detached-satel-
lite red-positive zone (from We � 20, Fig. B1(ii)c) is continuously
convected with rising We along the obstruction face towards the
salient vortex region and becoming more intense. The N2-field
data continues to convey the signature of vortex activity in the



Fig. 7. s2min versus We; NM_sp, NM_sp_ABS, NM_sp_ABS_VGR and NM_P_ABS.
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upstream salient corner of Fig. B1(i)d [4], increasing upstream in
Fig. B1(ii)d up to We � 175; strain-softening eventually provides
some slight shrinkage of this structure, apparent at
175 < We < 370. One notes ahead that the equivalent stress-data
on micellar NM_P_ABS (Fig. B1(iii)), largely replicates that of
NM_sp_ABS_VGR; only noting clearer downstream splitting of the
N1 red-zone earlier around We � 75, and less intense structures
on the downstream obstruction-backface.
6.2. Conformation-tensor solutions – Micellar NM_P_ABS model

6.2.1. Wecrit levels
In addition to the ABS-correction, this second strategy to attain

high-We solutions focuses on solving the problem when cast in pri-
mary variable conformation tensor form (see Eqs. (8)–(10)). The
critical elasticity level attainable with NM_P_ABS is Wecrit = 175
(Table 3),9 which stands at some 4.5 times that achieved with
NM_sp_ABS. Hence, as proposed in theory, the posing of the problem
through its corresponding differential constitutive equation (with its
data dependency) and its boundary conditions, does discretely have
an impact on tractability of numerical solutions. Moreover, the con-
stitutive equation solved for each case plays an important role, since
the P-based equation is reinforced relative to the sp-based equation,
maintaining positive definiteness via (i) fP acting as a RHS-equation
scaling-factor, and (ii) the explicit absence of the rate-of-deforma-
tion tensor D. Consistently, fP-functional values originating from
NM_P_ABS are larger compared with the remaining sp-versions
(Table 1) [4]. In contrast to the further achievements with P-VGR-
correction, one can state that this position is not substantially
altered under combination with the conformation tensor implemen-
tation (as in NM_P_ABS_VGR). It is conspicuous that NM_sp_
ABS_VGR capability in this regard outperforms the {NM_P_ABS,
Wecrit = 175} implementation, with the exaggerated response of
{NM_sp_ABS_VGR, Wecrit = 370}.
9 Weinc–NM_P_ABS: analogous to NM_sp_ABS_VGR with earlier Wecrit = 175.
Hence, though the conformation tensor approach is certainly a
reasonable candidate to consider for generating high-We steady-
state solutions, one concludes thus far and in practical terms, that
the superior method of implementation is VGR-correction imposed
on NM_sp_ABS.
7. General applicability – PTT(e = 0.25, b = 1/9) solutions: EPTT
and LPTT results

7.1. Wecrit levels

In an effort to assess more widely the generality and applicabil-
ity of current findings to cover alternative constitutive models, one
may appeal to the class of Phan–Thien–Tanner models, being non-
thixotropic and phenomenological viscoelastic models derived
from a network-basis. Table 3 lists counterpart high Wecrit findings
for such model solutions, under application of ABS, VGR and P-cor-
rections, as above. These are now impressively large, unrealised
elsewhere, and offer wide scope for new application accordingly
(large deformation scenarios, as in microfluidics). Conspicuously,
the ABS-correction yields an order-of-magnitude increase in Wecrit,
from O(102) under the natural-signed version [4], to O(103) under
EPTT_ABS results. Specifically, Wecrit = 210 for the natural signed
EPTT model [4], has now been further increased to Wecrit =
{4000,4250,1000} for {EPTT_ABS,EPTT_ABS_VGR,EPTT_ABS_P}.10

Consistently to the thixotropic context above with P-correction,
which also subsumes ABS-correction, there is improvement in Wecrit

of some five-times above the natural-signed EPTT_sp alternative; yet,
this lies some four times lower than that achieved under EPTT_ABS
and EPTT_ABS_VGR counterparts. Note, the level of Wecrit = 210 for
the natural-signed EPTT model [4], is already elevated above that
for thixotropic NM_sp, (see also Wecrit = 11 for natural-signed
linear-version LPTT). As previously reported elsewhere [4], such
0 Weinc–EPTT_ABS, EPTT_ABS_VGR and EPTT_ABS_P: analogous to NM_sp_
BS_VGR to We = 400, in 50 to We = 500, in 250 to corresponding Wecrit.
1

A



Fig. 8. At centreline: (a) and (b) duz/dr versus We; dur/dr (c) We = 2 and (d) We = 5. NM_sp_ABS and NM_sp_ABS_VGR.
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high-We solutions attainable with EPTT versions, are in part a conse-
quence of its non-linear exponential explicit fs-We functionality (Eq.
(7)). In contrast, linear fs-We relationships are observed within
steady-state fs for thixotropic NM_sp (Eq. (5)) models or non-thixo-
tropic LPTT version. This is reflected in complex flow via the rela-
tively large EPTT fs-maxima encountered as We is elevated and
when compared to those under NM_sp (or LPTT) solutions (Table 1).
7.2. Considerations at very high-We levels

Fig. 9 gathers a sample of high-We EPTT_ABS solutions, via the
stress discriminant in the expression for the eigenvalues, s1 and s2

(Eqs. (18) AND (19)). Here a fresh phenomenon arises, not promi-
nent at more moderate We-levels. At such large We = O(103) levels,
numerical noise becomes evident in the solution exit-zone
(Fig. 9a), which is first detected around We � 750 cross-stream
and emanating from the centreline. This feature, which grows with
further rise in We, comes from solution anomalies arising between
interior domain and boundary section solution approximation
(applies similarly at inlet-station, 1000 < We < 2000). These theo-
retic-discrete inlet–outlet region considerations are not graphically
evident at relatively low We < 220; they onset earlier at exit than
entry at We � 750; strengthen at exit We � 1000; become strong
and clearly manifested around We � 2000, at inlet and outlet; to
be finally, amplified as We rises up to Wecrit = 4000, when inlet
fluctuations are apparent and penetrating into the field up to the
contraction itself. These inconsistencies are dealt with by a feed-
back–feedforward technique on stress/kinematics, to mimic steady
fully-developed flow state, taking primary information from the
interior-domain discrete solution and translating this to the
domain boundary sections. This is accomplished by averaging
internal stress/velocity-gradient components (velocity remains
unadjusted) and substituting this refreshed information into inlet
and outlet neighbour nodal points, to thus reset the stress compo-
nents. Implementation of such a procedure, removes the source of
solution discrepancy arising at inlet–outlet, to provide the counter-
part and repaired solution forms of Fig. 9b, which have been
extended to even larger We-levels (We = 5000+).
8. Conclusions

Highly elastic thixotropic solutions have been achieved through
three alternative approaches (independent, interchangeable): (i)
absolute fs-functional correction (ABS-correction – related to



Fig. 9. Stress discriminant fields versus We; EPTT and EPTT_ABS.
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positive energy dissipation [32] and accurate viscosity prediction);
(ii) centreline velocity gradient correction (VGR-correction – fs-val-
ues as with ABS-correction); (iii) P conformation tensor correction
(P-correction – change of variable). The first two alternatives
have provided an increase of some ten times in Wecrit on their pre-
ceding versions. ABS-correction adjusts {Wecrit = 4.9, NM_sp} to
{Wecrit = 39, NM_sp_ABS}; whilst VGR-correction renders {NM_sp_
ABS_VGR, Wecrit = 370} layered on top of ABS-correction. The third
alternative {NM_P_ABS, Wecrit = 175} has also increased Wecrit by
some five times with respect to NM_sp_ABS solutions.

The s2-eigenvalue has been identified as a suitable marker for
numerical stability retention. Localised minima first arise on the
centreline, just downstream of the contraction, which are found
responsible for linking-up and stimulating contraction-wall min-
ima, that ultimately dominate overall as We rises. Then, localised
undershoot–overshoot phenomena (reflected in N1 and f-func-
tional data) are observed on the backface of the contraction-wall,
with subsequent solution penetration into the field. The ABS-cor-
rection retards the appearance of such s2 undershoot–overshoot
phenomena, although ultimately their presence does not affect
the quality of solutions in primary variables. This is noted through
smooth and tractable trends in {srz,N1,N2}-fields and We-
incrementation. N2 provides insight on trends in upstream
vortex-dynamics with We elevation [4]: reflecting initial vortex-
enhancement, then, vortex-suppression {NM_sp_ABS_VGR, 175 <
We < 370}.

Theoretical observations are derived on P-component response
under centreline deformation conditions. This is detailed through
We rise via: (i) {s1,s2} eigenvalue-pair dual-nature in correspon-
dence with {Pzz,Prr}; (ii) location of discontinuities in the linear-
ised inhomogeneous P-component estimation, interpreted
against the components of its poles; and (iii) numerical {Pzz,Prr}
departure from their linearised inhomogeneous estimation. In the
first aspect this relies upon {s1,s2} eigenvalue-pair dual-nature
being dictated by the sign-switch in N1. The third aspect dictates
the degree and capture of departure from the linear viscoelastic
regime.

In addition, generalisation of current findings for thixotropic
theory has been explored under classical non-thixotropic models
too. This has led to incrementation in Wecrit well over an order of
magnitude for network-based time-independent PTT models
(ABS-correction relates to positive stored elastic energy in this case
[21]); in contrast to two orders of magnitude achieved for thixotro-
pic models. Stable solutions have been extended for the exponen-
tial-PTT version, from the natural-signed {EPTT, Wecrit = 230} to
{EPTT_ABS, Wecrit = 4000}; and {EPTT_ABS_VGR, Wecrit = 4250}. In
its conformation-tensor form, incrementation is observed with
{EPTT_ABS_P, Wecrit = 1000}. In terms of the linear-PTT version,
the natural-signed {LPTT, Wecrit = 11} is now adjusted to
{LPTT_ABS, Wecrit = 210}. The relatively larger Wecrit under EPTT
are due to its larger fs-values, coming from its exponential fs–We
relationship, as opposed to those under the linear relationship
given with LPTT and NM_sp models [4]. At very high We = O(103)
and for EPTT, it has been shown how to ensure satisfaction of
fully-developed inlet–outlet region conditions (theory to practice,
avoiding inlet–outlet inconsistencies), to ultimately gather smooth
solutions at even larger elasticity levels (We = 5000+).
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Appendix A

A.1 P-eigenvalues at the centreline (shear-free flow)

The eigenvalues of the P-tensor at the centreline reveal some
interesting properties, worthy of further inspection. Shear-free
flow applies along this flow-line (Prz = 0), and hence, Eqs. (15)
and (16) reduce to:

ðPzz � sÞðPrr � sÞ ¼ 0; ðA:IÞ
s2 � ðPzz þPrrÞsþ ðPzzPrrÞ ¼ 0: ðA:IIÞ

The discriminant associated with the solution of Eq. (A.II) is:

ðPzz þPrrÞ2 � 4PzzPrr ¼ ðP2
zz þ 2PzzPrr þP2

rrÞ � 4PzzPrr

¼ P2
zz � 2PzzPrr þP2

rr;

viz,

ðPzz þPrrÞ2 � 4PzzPrr ¼ ðPzz �PrrÞ2 ¼ N2
1

From which the eigenvalues are then given by:

fs1; s2g ¼
Pzz þPrr � jN1j

2
ðA:IIIÞ

With dependence on the sign-switch of N1 on the centreline, three
instances can be identified from Eq. (A.III):

(a) when N1 > 0 ? N1 = Pzz �Prr, s1 = Pzz, s2 = Prr;
(b) N1 = 0 ? Pzz = Prr, s1 = Pzz = s2 = Prr = trPsub/2;
(c) when N1 < 0 ? N1 = Prr �Pzz, s1 = Prr, s2 = Pzz.

Hence, theoretically on the centreline, a duality exists in the
nature of the component identities between the {s1,s2} eigenvalue
pairs, and is dictated by the sign-switch in the first normal stress
difference at this shear-free flow-line. What is clear is that each
eigenvalue here picks up the identity of the local Pii component,
and that this tensor component switches over its roll of eigenvalue
dependency as the sign-switch in N1 is traversed. Hence, both
eigenvalues have an intimate roll to play in the analysis. Universal
findings, to be discussed subsequently below, reveal that the corre-
sponding centreline pattern of behaviour taken up by {s1,s2} is such
that s1 remains positive "z, whilst s2 has the potential to decline
into minor negativity, subject to a number of constraints. Hence,
it is s2-response that is particularly instructive to focus attention
on below.

A.2. P-eigenvalue relationship with f-functional poles in simple
uniaxial extension

Consideration of simple uniaxial extension (or compression)
within Eq. (8) under deformation rate _e, applicable to the linear vis-
coelastic regime, realises:

P
r
¼ �2

_ePzz 0 0
0 � _e

2

� �
Prr 0

0 0 � _e
2

� �
Phh

264
375; ðA:IVÞ

from which one extracts solutions of the form:

P ¼
f P=ðf P � 2We _eÞ 0 0

0 f P=ðf P þWe _eÞ 0
0 0 f P=ðf P þWe _eÞ

264
375: ðA:VÞ

Hence and from the above analysis, the first and second eigen-
values on the centreline, in non-homogeneous uniaxial extension,
may be approximated by s1 ¼ Pzz ¼ f P=ðf P � 2We _eÞ and
s2 ¼ Prr ¼ f P=ðf P þWe _eÞ. This equivalence holds exactly in the lin-
ear viscoelastic regime and for homogeneous extension conditions.



Fig. B1. N1, s2, srz, N2 2D-fields versus We; (i) NM_sp_ABS, (ii) NM_sp_ABS_VGR and (iii) NM_P_ABS.

206 J.E. López-Aguilar et al. / Journal of Non-Newtonian Fluid Mechanics 222 (2015) 190–208



Fig. B2. duzdr 2D, 3D-fields versus We; NM_sp_ABS and NM_sp_ABS_VGR.
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Hence, one may identify departure in numerical solutions gener-
ated under inhomogeneous extensional conditions, and indeed
the various windows of influence of departure from fully-devel-
oped flow.
Appendix B

B.1. Stress fields – solution quality

Fig. B1(i) gathers together comparatively a sample of stress data
for the NM_sp_ABS model, via first (and second) normal stress-differ-
ence N1 (and N2), shear stress srz and second eigenvalue s2-data
(2D-fields) at selected We = {0.5,2,5,39}. Notably, these N1 and
srz 2D-fields display continuous change through We incrementa-
tion, without evidence of numerical pollution (see Section 5.4 for
identification of eigenvalues, positive-definiteness). More sporadic
field patterns become apparent in s2-data and We > 40, useful to
hold comparatively against the stress data. Particularly on N1

(Fig. B1(i)a) at We = 0.5, regions with positive (red) and negative
(blue) values can be identified, with extrema indicated of
{N1max = 4.48, N1min = �2.49}. At We = 2 and under greater influ-
ence of shear-thinning/extension-softening, these extrema have
diminished in magnitude to {N1max = 4.20, N1min = �1.47}. At
We = 5 stage (NM_sp Wecrit = 4.9), N1-extrema continue to decre-
ment, with {N1max = 3.73, N1min = �1.92}. Importantly at
Wecrit = 39, there is evidence of overshoots–undershoots in N1

attached to the obstruction downstream backface-wall, as a new
and third positive-region has emerged, located alongside the third
blue-region (now larger and more conspicuous than before). Nota-
bly, this local behaviour correlates to s2min negative-extremum.
N1-extrema at this critical stage are smallest reported, with
{N1max = 3.67, N1min = �1.76}. N2-data with rising We is also
included, to indicate trends in vortex region activity (see NM_sp



208 J.E. López-Aguilar et al. / Journal of Non-Newtonian Fluid Mechanics 222 (2015) 190–208
in [4] up to Wecrit = 4.9), where upstream growth is apparent
(deep-blue zone) and sustained through increasing We; whilst only
vortex decay is displayed downstream (absent by We = 2). In
Fig. B1(i)c, comparable srz-field response is less dramatic than in
N1. In the srz-field at We = 0.5, srz-extrema are largest reported at
{srzmax = 1.54, srzmin = �1.77}; diminishing by We = 2 to
{srzmax = 1.28, srzmin = �1.10}, due to greater shear-thinning. Fur-
thermore at We = 5, even greater shear-thinning effects render
reduced extrema of {srzmax = 0.91, srzmin = �0.94}. Proceeding to
Wecrit = 39; the most prominent feature to report is the splitting
of the second-downstream red-positive region (already apparent
at We = 20), leaving a zone located above the obstruction back-
face-tip and a satellite zone that has drifted off downstream,
periphery to the downstream-vortex region; srz-extrema are now
least in magnitude, being {srzmax = 0.66, srzmin = �0.84}.

B.2. Shear deformation rate fields

In Fig. B2 duz/dr 3D and 2D-fields are contrasted for NM_sp_ABS
versus NM_sp_ABS_VGR at rising We. Elimination of noise prolifer-
ation under VGR-correction is clearly observed in the undulating
centreline patterns in the duz/dr 3D-NM_sp_ABS solutions at every
elasticity instance (shown for We = 2). These centreline undula-
tions (in duz/dr – 0) are convected downstream of the contraction
as We is elevated, although there is evidence here for the continued
persistence of these undulations in the contraction-gap itself on
the centreline (permanent deformation) and via upstream
field-penetration. In contrast, for NM_sp_ABS_VGR solutions, this
flow-line remains unperturbed throughout the We-continuation
process. Moreover for We P 2, signals of pollution in NM_sp_ABS
solutions are evident off the centreline, upstream and downstream
of the contraction; whilst NM_sp_ABS_VGR fields remain unpol-
luted up to We = 8. Some solution gradient activity is becoming
apparent on the backface obstruction-wall at We = 5 (more prom-
inent at We = 9), for both NM_sp_ABS and NM_sp_ABS_VGR. This is
manifest through three locations: one located at the centre of the
obstruction-wall and the other two near its extremities, in the sali-
ent and corner-tip neighbourhoods. Through We-rise, the most
influential of these three is that near the tip of the obstruction. This
feature continues to grow downstream penetrating the field, and
subsequently links up in a stalagmite–stalactite fashion to its
counterpart downstream, just-off-centreline, positive growth-
point, uniting at We = 19. The growth pattern of this positive-point
is: first appears at {We = 5, NM_sp_ABS} and {We = 9, NM_sp_
ABS_VGR}; with a distinct gap to centreline under NM_sp_ABS.
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