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Frequency-dependent electrical conductivity is studied by means of the Kubo-
Greenwood formula and a real-space renormalization plus convolution
method. An analytical solution of the alternating current (AC) conductivity is
found for periodic chains. In this article, we report enhancements to this
ballistic AC conductivity when periodically or quasiperiodically placed Fano-
Anderson impurities are introduced to an otherwise periodic chain, which is
connected to two semi-infinite periodic leads at its ends. Moreover, the tem-
perature effects on these resonant AC conducting states are remarkably differ-
ent in periodic and in quasiperiodic systems. Finally, such enhancement is
further analysed in branched nanowires with a small cross section.

Keywords: electronic transport; Kubo-Greenwood formula; AC conductivity;
branched nanowires

1. Introduction

The wave behaviour of quantum particles is exhibited in crystalline solids by the forma-
tion of diffraction patterns, which are also observed in quasicrystals despite their lack
of translational symmetry [1]. The electronic transport in solids with a large number of
impurities is still an unclear issue, where the interference between the electronic wave-
function and aperiodic potentials has multiple consequences. Recently, branched nano-
wires with tunable three-dimensional (3D) morphology have been obtained, and they
have wide applications in energy conversion and storage devices [2]. Nonlinear electri-
cal properties of branched nanowires have also been reported [3]. In this article, we
report an impurity-induced enhancement of the alternating current (AC) conductivity,
which could be even larger than the ballistic one present in periodic systems.

The electronic behaviour in crystalline solids is traditionally studied using the reci-
procal lattice method [4], and it becomes inadequate or useless when the system loses
the translational symmetry. In consequence, most of the studies of non-periodic systems
have been carried out in finite clusters with or without the periodic boundary condition.
The former frequently introduces undesirable contributions derived from the artificial
periodic boundary condition and the latter overemphasizes the molecular character of
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discrete energy spectra. In this work, we use a fully real-space renormalization plus
convolution method to study the electronic transport in a non-periodic macroscopic
system under an oscillating electric field. This method has the advantage of being
numerically accurate and computationally efficient, that is able to address 1024 non-
periodically located atoms without introducing additional approximations during the
calculation through Kubo-Greenwood formula [5].

2. Fano-Anderson impurities

In this section, the electronic transport in periodic chains with periodic and quasiperiod-
ically placed Fano-Anderson impurities [6] will be addressed. In order to isolate the
impurity effects on the electronic transport, let us consider a single-band tight-binding
Hamiltonian with null self-energies and a constant hopping integral t given by

H ¼ t
X
hi;ji

f ij i jh j þ jj i ih jg þ t
X
j2H

f jj i sh j þ sj i jh jg; (1)

where nearest neighbour atoms i and j, indicated by 〈i, j〉, belong to the main system
which could be a periodic chain or a periodic nanowire, s denotes the Fano-Anderson
impurity atoms (violet balls in Figure 1) with null self-energy and Θ is a subset of the
main system where the impurity atoms are connected. Despite that the system has a
unique hopping integral t, the Fano-Anderson impurities modify the local coordination
number of several atoms. For example, the coordination number is two for the unper-
turbed sites and three at impurity-connected sites for one-dimensional (1D) systems, as
shown in Figure 1(a).

To model the AC conductivity within the linear response theory, we use the
Kubo-Greenwood formula given by Kramer and MacKinnon [7]

Figure 1. (colour online) Schematic representation of (a) a periodic atomic chain and (b) a
multi-channel branched nanowire. Both systems, formed by null self-energy atoms (orange balls)
and bonds described by hopping integrals t (blue lines), possess periodically or quasiperiodically
placed Fano-Anderson impurities (violet balls) with three perturbed hopping integrals timp (green
lines) around each impurity.
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rðl;x; TÞ ¼ 2e2�h

X p m2

Z 1

�1
dE

f ðEÞ � f ðE þ �h xÞ
�h x

Tr½pImGþðE þ �h xÞp ImGþðEÞ�; (2)

where p ¼ ði m=�hÞ½H ; x� ¼ t
P

j f jj i jþ 1h j � jj i j� 1h jg is the projection of the
momentum operator along the applied electrical field, Ω is the system volume,
GþðEÞ ¼ GðE þ i gÞ is the retarded one-particle Green’s function and
f ðEÞ ¼ f1þ exp ½ðE � lÞ=kBT �g�1 is the Fermi–Dirac distribution with the chemical
potential l and temperature T.

For a periodic chain of N atoms connected to two semi-infinite periodic leads with
the same t, the AC conductivity at T = 0 K has an analytical solution of Sanchez and
Wang [5]

rðl;x; 0Þ ¼ 8 e2t2a

p ðN � 1Þ �h3x2
1� l

2t

� �2
� �

1� cos
ðN � 1Þ �h x

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l=2tð Þ2

q
2
64

3
75

8><
>:

9>=
>;Nð2jtj � jljÞ;

(3)

where Ξ(x) is the Heaviside step function. The direct current (DC) conductivity with
x ¼ 0 is as follows [8]:

rP � rðl; 0; 0Þ ¼ e2a

p�h
ðN � 1Þ: (4)

Along this periodic chain, multiple single-atom Fano-Anderson impurities with null
self-energy can be connected to the chain through a hopping integral t, as schematically
shown in Figure 1(a). These impurities may be placed periodically when m = n or
quasiperiodically when the impurity separations ma and na are ordered following the
Fibonacci sequence of generation k defined by F(k) = F(k − 1) + F(k − 2) with initial
conditions of F(1) = na and F(2) = ma, for example, F(5) = (ma)(na)(ma)(ma)(na).
Numerical calculations of the AC conductivity in both systems were carried out using a
previously developed renormalization method [5], in which renormalized self-energies
of t2/E are added to those atoms connected to the Fano-Anderson impurities [9]. For
the periodic case, we take m ¼ n ¼ 256, which leads to 524,288 symmetrically placed
impurities in a chain of 227 ¼ 134; 217; 728 atoms and the impurity location subset is
H ¼ f128; 384; 640; � � � ; 134; 217; 600g. For the quasiperiodic case, the impurities
are introduced every m = 233 or n = 144 atoms following the Fibonacci sequence,
yielding to 514,230 impurities in a Fibonacci chain with k = 40 of 165,580,142 atoms,
that is H ¼ f90; 323; 467; 700; � � � ; 165; 579; 998g. Both chains are connected to two
semi-infinite periodic leads with null self-energies and hopping integral t.

In Figure 2, the AC conductivities (σ) at zero (blue solid circles) and finite (red
open circles) temperatures are plotted vs. the applied electric field oscillating frequency
(ω) for the mentioned linear chains with (a) periodically and (b) quasiperiodically
placed Fano-Anderson impurities, in comparison with the AC conductivity of Equation
(3) for a pure periodic chain (green lines). In their insets, (a′ and b′) the DC conductiv-
ity spectra and (a″, a′′′, b″ and b′′′) their magnifications are shown, where the chemical
potentials l0 ¼ 0:0237999975917jtj for the periodic and l0 ¼ 0:381036836269jtj for
the quasiperiodic cases are indicated by orange lines. An imaginary part of energy of
η = 10−15|t| and an interval of ½l0 � �hx� 2kBT ; l0 þ 2kBT � for numerical integrations
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were taken, since no significant changes were found beyond these values, as discussed
in Ref. [5] for η. Observe the resonant peaks in Figure 2(a), whose maximum reaches
to a value of 737rP and its frequency can be predicted by calculating the energy differ-
ence of DC-conductivity peaks, as indicated by the arrows in inset (a′′′).

For finite temperatures, the AC conductivity spectrum of Figure 2(a) only softens,
in contrast to the appearance of new resonant peaks in Figure 2(b). To search the origin
of this difference, the trace Tr½pImGþðE þ �hxÞpImGþðEÞ� is plotted using the colour
scale in Figures 3(a) for periodic and 3(b) for quasiperiodic cases. First, observe the
DC conductivity spectra at x ¼ 0 and each maximum in these spectra bifurcates when
x[ 0 because the trace has two poles: one from G+(E) and the other from
GþðE þ �hxÞ. Furthermore, for x[ 0, the trace gets maximums only by crossing two
peaks that in DC conductivity spectra are first neighbours, third neighbours and so on,
due to their wavefunction parity. Now, at zero temperature, one gets an AC conductivity
resonant peak when a maximum of the trace is found in the integration interval of
½l0 � �hx; l0�. For finite temperatures, this integration interval becomes larger, capturing
maximums at new frequencies for quasiperiodic case, in contrast to the periodic
impurity case.

Figure 2. (colour online) Electric conductivity (σ) as a function of applied electric field oscillating
frequency (ω) for a periodic chain with (a) periodically and (b) quasiperiodically placed single-atom
Fano-Anderson impurities for zero (blue solid circles) and finite (red open circles) temperatures, in
comparison with the ballistic AC conductivity (green solid lines). Inset: DC conductivity spectra
and their magnifications of a periodic chain with (a′, a″ and a′′′) periodically and (b′, b″ and b′′′)
quasiperiodically placed impurities, where chemical potential μ0 is indicated by orange solid lines
and transitions between first-, third- and fifth-neighbouring peaks are marked by arrows.
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3. Branched nanowires

The real-space renormalization method can be combined with the convolution theorem
to study multidimensional systems when the Hamiltonian is separable, that is
H = H|| ⊗ I⊥ + I|| ⊗ H⊥, being H|| (I||) and H⊥ (I⊥), respectively, the Hamiltonian (the
identity matrix) of the parallel and perpendicular subsystem with respect to the applied
electric field. Actually, the tight-binding Hamiltonian (1) is separable, and then, the
electrical conductivity can be expressed as [5]

rðl;x; TÞ ¼ 1

X?

X
b

rjjðl� Eb;x; TÞ; (5)

where σ∥ is the electrical conductivity of the parallel subsystem; Ω⊥ and Eβ are, respec-
tively, the volume and the eigenenergies of the perpendicular subsystem, that is
H? bj i ¼ Eb bj i.

In particular, this renormalization plus convolution method can be used for studying
the electronic transport in kinked or zigzag nanowires [10] and nanowire heterostruc-
tures [11], as well as branched nanowires [12]. Let us consider two four-channel
branched nanowires, first with periodically and second with quasiperiodically placed
single-atom Fano-Anderson impurities, as schematically shown in Figure 1(b), where
three perturbed hopping integrals (timp) due to lattice relaxation are introduced around
each impurity. The perpendicular subsystem of these nanowires consists of four atoms
with zero self-energy interconnected between nearest neighbours by the same hopping
integral t, which leads to eigenenergies of Eb ¼ �2t; 0; 0; 2t. The impurity location
and lengths of these nanowires are the same as the single chains discussed in the last
section. The ends of these nanowires are connected to two semi-infinite periodic
nanowires with the same cross section.

Figure 3. (colour online) Trace {Tr½pImGþðE þ �h xÞpImGþðEÞ�} in colour scale plotted as a
function of the energy (E) and frequency (ω) for a periodic chain with (a) periodically and (b)
quasiperiodically placed single-atom Fano-Anderson impurities.
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The zero-temperature AC conductance is defined as g ðl;x; 0Þ � rðl;x; 0ÞX?=Xk,
where Ω∥ is the system length and g0 � 2e2=h is the electrical conductance quantum. In
Figure 4, g ðl;x; 0Þ of branched nanowires with (a) periodically and (b) quasiperiodi-
cally placed impurities is plotted vs. timp for fixed electronic densities of (a)
q ¼ 0:45233569415 and (b) q ¼ 0:45273411969, where q ¼ 1

N

R l
�1 DOSðEÞdE is the

electronic density per atom, DOSðEÞ ¼ �ImfTr ½GþðEÞ�g=p is the density of
states (DOS), and N is the total number of atoms in the system. In fact, in order to
maintain the total number of electrons in the system, µ should vary (a)
from − 0.171594623933365|t| to − 0.171594623900110|t| and (b) from
− 0.174869809624280|t| to − 0.174869047139636|t|, when timp increases from 0.7t to
1.3t. Imaginary parts of energy of η = 10−15|t| and η = 10−5|t| were taken for the numeri-
cal calculations of g ðl;x; 0Þ and DOSðEÞ, respectively. Observe in Figure 4 the truly
large values of resonant g ðl;x; 0Þ and their small variation of (a) 0.05% for the peri-
odic case and (b) 3.7% for the quasiperiodic case, when timp has a variation of ±30%.
Note also that the larger variation of g ðl;x; 0Þ in Figure 4(b) could be related to its
Dl � 7:6� 10�7jtj, instead of Dl � 3:3� 10�11jtj for the periodic case, since DOS of
the quasiperiodic case is more sensitive to the lattice relaxation around Fano-Anderson
impurities. It is important to mention that for all analysed electronic densities, we

Figure 4. (colour online) Zero-temperature AC electrical conductance [g(μ,ω,0)] vs. the perturbed
hopping integral (timp) for fixed electronic densities of (a) q ¼ 0:45233569415 and (b)
q ¼ 0:45273411969 in branched four-channel nanowires with (a) periodically and (b) quasiperi-
odically placed single-atom Fano-Anderson impurities. Insets: g(μ,ω,0) as functions of frequency
(ω) and chemical potential (μ).
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observe a small variation of g ðl;x; 0Þ, but its behaviour as a function of timp could be
different.

The AC conductance spectra g ðl;x; 0Þ of the same branched nanowires of
Figure 4(a) and (b) with timp = t as a function of μ and ω are shown in insets 4(a′) for
the periodic case and in 4(b′) for the quasiperiodic case. As in 1D systems, there are
many resonant conducting states, whose AC conductance can be much larger than the
ballistic one. For nanowires with periodically placed Fano-Anderson impurities, we
observe in Figure 4(a) an almost uniformly increase of the resonant frequency
associated with a gradual augment of the width in μ space, in contrast to a non-uniform
distribution of resonant modes in the frequency space for branched nanowires with
quasiperiodically placed impurities, as shown in Figure 4(b).

In Figure 5, the temperature dependence of g ðl;x; TÞ is plotted for the same
branched nanowire of Figure 4(a) and four values of µ, whose locations in the DOS
and in the zero-temperature DC conductance [g ðl; 0; 0Þ] spectra are shown in the
insets. The resonant frequencies for each µ are specified in the figure. An imaginary
part of energy of η = 10−15|t| and intervals of ½lj � �hxj � 2kBT ; lj þ 2kBT � for numeri-
cal integrations with j ¼ 1; 2; 3; and 4 were taken. Observe the general decay behav-
iour of g ðlj;xj; TÞ with the temperature, where their room temperature values are at
least two orders of magnitude larger than the zero-temperature ballistic AC conductance
of the four-channel periodic nanowire given by

gðl;x; 0Þ ¼ 8 e2t2

pðN � 1Þ2�h3x2

X4
b¼1

1� ðl� EbÞ2
4t2

" #
1� cos

ðN � 1Þ �hx
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ðl� EbÞ=2t�2

q
8><
>:

9>=
>;

N ð2jtj � jl� EbjÞ
(6)

where Eb ¼ �2t; 0; 0; 2t.

Figure 5. (colour online) AC electrical conductance [g(μ,ω,T)] as a function of the temperature
(T) for the same nanowire of Figure 4(a) and four chemical potentials (µj). Insets: positions of µj
in the density of states (DOS) and zero-temperature DC conductance [g(μ,0,0)] spectra.
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4. Conclusions

The impurity-induced resonant conduction analysed in this article could achieve truly
large values of AC conductivity with respect to the ballistic one. In fact, these values
are at least one order of magnitude larger than the results of the same phenomenon
occurred in segmented nanowires [13]. This remarkable enhancement reveals the impor-
tance to explore the AC-conducting resonances in slightly perturbed ballistic systems,
instead of starting from critically localized electronic states in quasiperiodically seg-
mented nanowires.

The temperature variation analysis suggests the possibility to observe these resonant
AC conducting peaks for specific electronic filling and applied electric field oscillating
frequency even at room temperature. Experimentally, the chemical potential position in
the band structure of a nanowire can be modified by an applied gate voltage [14].

It is also important to mention that the resonant AC conductivity observed in this
work obeys the Fermi’s golden rule, from which the Kubo-Greenwood formula can be
deduced [15]. This rule establishes the transition probability of an electron from an
eigenstate to another caused by an oscillating external field. This transition at zero tem-
perature requires the occupation of the lower energy state and the non-occupation of the
higher one; that is, the Fermi energy should be found between these two states, regard-
less of its specific location, as exhibited in Figures 2 and 4.

Finally, beyond the specific renormalization method used in this investigation, we
would like to emphasize the possibility of performing macroscopic system studies by
means of a fully real-space procedure, which allows the presence of defects, impurities
and interfaces that could be very important in the design of new electronic devices.
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