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Abstract We present the complete phase diagram implied
by the generalized Bose-Einstein condensation (GBEC) for-
malism that in essence is a ternary boson-fermion (BF)
model with three constituents: two bosonic [two-electron
Cooper pairs (2e-CPs) and two-hole Cooper pairs (2h-CPs)]
along with unpaired electrons whose number naturally van-
ishes in the limit of infinite e-e coupling. There arise
three coupled transcendental equations to be solved self-
consistently: two gap-like equations (one for each kind of
CPs) and a third which guarantees charge conservation via
the number equation for the total electron number density
of the system. The unknown variables are the chemical
potential as well as the number density of zero-momentum
2e-CPs and 2h-CPs, each depending on coupling as well
as absolute temperature. The GBEC subsumes as special
cases all statistical theories of superconductors including
BCS and BEC. It also subsumes the BCS-Bose “crossover”
theory which in turn relates BCS with BEC. The GBEC for-
malism yields a substantial increase in critical temperature
compared with BCS theory even with only electron-phonon
dynamics.
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Mexico
e-mail: israelito@ciencias.unam.mx

M. Grether
Facultad de Ciencias, Universidad Nacional Autónoma de México,
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1 Introduction

It is well-known that high Tc superconductivity remains
unexplained by BCS [1] theory. Nevertheless, with a
new formalism that generalizes Bose-Einstein condensa-
tion (GBEC) [2–6] with its explicit inclusion of two-hole
(2h) Cooper pairs (CPs) sizably increases Tc with respect
to BCS. This new formalism is essentially a statistical
ternary boson-fermion (BF) model—contrasting with the
more familiar pioneering binary models of, e.g., Eagles [7],
Ranninger et al. [8], Friedberg et al. [9], and others. The
ternary-BF-gas [6–11] GBEC formalism subsumes ordinary
BEC [12, 13] and was proposed to describe superconductors
in general. In the new formalism, the fermions are unpaired
electrons (e) and, without loss of generality, also holes (h);
the bosons are CPs of both the e and h oppositely charged
fermions. The GBEC formalism yields three condensed
chemically and thermodynamically stable phases [14]: two
pure BEC phases, one for 2e-CPs, and other one for 2h-CPs,
along with a mixed phase in arbitrary proportions of each of
the two pure phases.

Besides including as special cases all known statistical
models of superconductors [2–6], also subsumed by the
GBEC is the BCS-Bose “crossover” [4] theory which in turn
includes BCS as a special case when coupling is so weak
that the chemical potential μ can safely be replaced by the
Fermi energy EF as was originally assumed by BCS [1].

Moreover, GBEC predicts Tcs as high as room temper-
ature without abandoning electron-phonon dynamics [15],
as illustrated in the full phase diagram presented here for
the first time. Also discussed for the first time is the
physical interpretation of the unpaired fermions and their
contribution to the associated critical temperature in each
phase.
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2 GBEC Formalism

The GBEC [2–6] total Hamiltonian H consists of two parts,
H = H0 + Hint . An unperturbed Hamiltonian

H0 =
∑

k1,s1

εk1a
†
k1,s1

ak1,s1
+

∑

K

E+(K)b
†
KbK

−
∑

K

E−(K)c
†
KcK (1)

describing a ternary BF ideal gas in 3D where K ≡ k1 + k2

is the total or center-of-mass momentum (CMM) wave-
vector and εk1 ≡ �

2k2
1/2m the energy of each electron of

effective mass m [15] while E±(K) ≡ E±(0) ± �
2K2/4m

are phenomenological energies of 2e-/2h-CPs each of mass
2m. Here, a

†
k1,s1

(ak1,s1) are the creation (annihilation) oper-

ators for fermions and similarly b
†
K(bK), c†

K(cK) for bosonic
2e- and 2h-CPs, respectively. The first term in (1) accounts
for unpaired electrons while the second and the third corre-
spond to bosonic 2e-CPs and 2h-CPs, respectively.

To our knowledge, no one has yet constructed, from
Fermi operators, such b and c operators obeying Bose com-
mutation rules. However, it is clear [16] that operators
depending only on K—and not also on relative k as BCS-
pair operators do—lead to states obeying Bose statistics.

Though the postulated Hamiltonian (1) has defied all
efforts to be deduced from the ab initio one of effectively
attractive electrons alone, it is apparently vindicated when
seen to explicitly reproduce as special cases the BCS-Bose
crossover [4] theory which in turn includes BCS when cou-
pling is weak, as well as ordinary BEC theory when it is
so strong that no unpaired electrons remain in the original
ternary BF mixture.

The second part Hint of the full Hamiltonian describes
interactions via four distinct BF interaction vertices each
with two unpaired fermions and one boson operator of
creation (annihilation) that represent how unpaired elec-
trons (subindex +) or holes (subindex -) are involved in the
formation and disintegration of the 2e-/2h-CPs. Specifically,

Hint = L−3/2
∑

k,K

f+(k)

×
(

a
†
k+ 1

2 K,↑a
†
−k+ 1

2 K,↓bK + a−k+ 1
2 K,↓ak+ 1

2 K,↑b
†
K

)

+ L−3/2
∑

k,K

f−(k)

×
(

a
†
k+ 1

2 K,↑a
†
−k+ 1

2 K,↓c
†
K + a−k+ 1

2 K,↓ak+ 1
2 K,↑cK

)
(2)

where f±(k) are BF coupling terms of electrons and holes,
respectively. One can simplify Hint by ignoring K �= 0
terms in the interaction but not in the unperturbed Hamilto-
nian as done in BCS theory. Ignoring interactions between

unpaired electrons and excited K �= 0 bosons the simplified
total dynamical operator becomes

Ĥ − μN̂ �
∑

k1,s1

[ε(k1) − μ] a
†
k1, s1

ak1, s1

+ [E+(0) − 2μ]N0 +
∑

K�=0

[
E+(K) − 2μ

]
b

†
KbK

+ [2μ − E−(0)]M0 +
∑

K�=0

[
2μ − E−(K)

]
c

†
KcK

+
∑

k

[√
n0f+(k) + √

m0f−(k)
]

×
(
a

†
k↑a

†
−k↓ + ak↓a−k↑

)
(3)

where E±(0) is the phenomenological energy of the bosonic
2e-/2h-CPs with K = 0, N̂ is the operator of the total
number of fermions including the unpaired fermions. Here,
one applies the Bogoliubov recipe [18], valid below Tc, of
replacing each creation (annihilation) operator for bosons
b

†
0, b0 by the number

√
N0 where N0 is the number of

composite-boson 2e-CPs with K = 0 and similarly for
c

†
0, c0 by the number

√
M0 where M0 is the number of

composite-bosons 2h-CPs with K = 0. The full simplified
Hamiltonian can then be diagonalized [5]. This simplifica-
tion can be lifted (see [19] where excited bosons with K �= 0
are not excluded in the interaction Hamiltonian of (3)).

The dynamical operator (3) can now be exactly diago-
nalized via a Bogoliubov-Valatin transformation [18, 20].
Thus, the well-known grand canonical ensemble relation

�(T, L3, μ, N0, M0) = −kBT ln
[
Tr e−β(Ĥ−μN̂)

]
(4)

can be evaluated explicitly, where Tr stands for “trace.”
Here, T is the absolute temperature and β ≡ 1/kBT ,
kB the Boltzmann constant, and μ are the chemical
potential of the many-electron subsystem. From (4), one
can find all the thermodynamic properties of the sys-
tem such as pressure P(T , n) = −�/L3, entropy
S(T , n)/L3 = −kB∂(�/L3)/∂T and the Helmholtz free
energy F(T , L3, N, M) ≡ � + μN . Taking the partial
derivative of (4) with respect to chemical potential and min-
imizing F(T , L3, N, M) ≡ � + μN over N0, M0 gives

∂�

∂μ
= −N

∂F

∂N0
= 0

∂F

∂M0
= 0. (5)

The first relation is the well-known result of statistical
mechanics and here ensures the net charge conservation of
the GBEC formalism, i.e., gauge invariance, in contrast
with BCS theory which lacks it. After some algebra, one
arrives at the three transcendental coupled equations that
determine the GBEC formalism, a “number equation”

n = 2n0(T )+2nB+(T )−2m0(T )−2mB+(T )+nf (T ) (6)
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where nB+(T ) and mB+(T ) are the non-condensed-boson
number densities for 2e- and 2h-CPs, respectively, with n ≡
N/L3 where L is the length of the “box” of volume L3, and
nf (T ) refers to the unpaired electrons of the system at any
T and turns out to be

nf (T ) =
∫ ∞

0
dεN(ε)

[
1 − ε − μ

E(ε)
tanh

1

2
βE(ε)

]
. (7)

The last two requirements of (5) lead to two “gap-
like equations” for 2e-CPs and for 2h-CPs [2, 4], with
E(ε) ≡ √

(ε − μ)2 + �2(ε) where the T -dependent gap
�(ε) ≡ √

n0(T )f+(ε) + √
m0(T )f−(ε), and N(ε) ≡

m3/2√ε/21/2π2
�

3 the electron density of states. Here, n0 ≡
N0/L

3 and m0 ≡ M0/L
3 are the number densities of

condensed 2e-/2h-CPs respectively. The strength functions
f+(ε) and f−(ε) can be constructed as in [2, 3].

3 GBEC Phases

One has from (6) the single number equation which guaran-
tees charge conservation, here n0(T ) is the number density
of condensed 2e-CPs and nB+(T ) is the number density of
uncondensed 2e-CPs can be expressed as

nB+(T ) ≡
∫ ∞

0+
dεM(ε)

[
exp β{E+(0) + ε − 2μ} − 1

]−1

(8)

a typical Bose-Einstein forms are clearly recovered, as
expected, and mB+(T ) as

mB+(T ) ≡
∫ ∞

0+
dεM(ε)

[
exp β{2μ − E−(0) + ε} − 1

]−1

(9)

is the number density of uncondensed 2h-CPs. Here,
E±(0) = 2Ef ±δε (see [3] p. 551) where Ef is the interac-
tion energy width of bosons and δε is a shell energy about
Ef , this energy being the so-called pseudo-Fermi energy.
Again, N(ε) and M(ε) are the electronic and bosonic
density of states, respectively.

For the two pure phases, one can generalize from the
single-band model used so far to a two-band model by
allowing the particle (e) masses to differ from hole (h)
masses; this can be done by introducing two Ee

f and Eh
f

differing precisely by the two masses.
In Fig. 1, we plot the total dimensionless Tc/TF vs

dimensionless number density n/nf for the pure 2e-CP
phase with no 2h-CPs in the ground state, as well as the
pure 2h-CP phase with no 2e-CPs in the ground state, where
TF is the actual Fermi-energy-related temperature. These
two curves are compared with BEC and BCS. Also plot-
ted is the dotted thin curve for perfect symmetry between
the number of 2h-CPs and 2e-CPs (50-50 mixture), namely

Fig. 1 Dimensionless Tc/TF versus n/nf for pure GBEC phases
2h-/2e-CPs and the ordinary BEC (black dashed curve) in 3D, extrap-
olating for nf → 0 to the familiar limit 0.218. Inset shows the inter-
section between the pure phase 2e-CP and the pure phase 2h-CP when
n/nf = 1 which implies Tc/TF = 7.64 × 10−6 given by the BCS Tc

weak-coupling formula kBTc � 1.134�ωD exp(1/λ) using λ = 1/5
and �ωD/EF = 0.001, where �ωD is the Debye energy of the lattice.
The red dot marks the critical BCS temperature. The blue dotted thin
curve (online) corresponds to perfect symmetry between 2e-/2h-CPs,
i.e., n0(T ) = m0(T ) and nB+(T ) = mB+(T ). For n/nf < 1, the
pure phases curves are marked as dotted, but are thus far with no phys-
ical meaning. Symbols diamond, square, and triangle are the limit of
the two pure-phase GBEC and single BEC curves, respectively, when
n/nf → ∞, i.e., when nf (T → 0) ≡ nf (see §4). Uemura’s exotic
data are taken from [21]

n0(T ) = m0(T ) and nB+(T ) = mB+(T ) implying [6]
that μ = Ef . Furthermore, in the inset of Fig. 1, the BCS
value of Tc/TF = 7.64 × 10−6 is indicated by the red
dot with a number density n/nf = 1; it follows from
the standard BCS theory weak-coupling formula kBTc �
1.134�ωD exp(1/λ) for λ = 1/5 and �ωD = 10−3EF .
The light blue shaded area between the two pure 2h-/2e-CP
curves corresponds to the mixed phase of GBEC with arbi-
trary proportions between 2h-/2e-CPs , as well as below the
BCS point (inset in Fig. 1). Clearly, GBEC can enhance Tc

values compared with BCS as high as room temperature and
higher employing the BCS model interaction mimicking the
electron-phonon attraction overwhelming the Coulomb e-e
repulsions.

The total dimensionless number density of the pure phase
2e-GBEC of 2e-CPs and 2h-GBEC of 2h-CPs has a def-
inite limit when n/nf → ∞ in which limit all there
are no unpaired electrons whatsoever leading to an ideal
BF gas mixture without mutual interactions. The number
of unpaired fermions nf (T ) at precisely T = 0 leads to
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nf ≡ nf (T = 0) = (2mEf )3/2/21/2π2
�

3, the first
equality to be derived in next section.

4 Unpaired Electrons and Meaning of nf as nf (T = 0)

The total number of unpaired electrons (7) at any T can be
decomposed as

nf (T ) =
∫ Ef −δε

0
dεN(ε)

[
1 − ε − μ

|ε − μ| tanh

(
ε − μ

2kBT

)]

+
∫ ∞

Ef +δε

dεN(ε)

[
1 − ε − μ

|ε − μ| tanh

(
ε − μ

2kBT

)]

+
∫ Ef +δε

Ef −δε

dεN(ε)

[
1 − ε − μ

√
(ε − μ)2 + �2

× tanh

⎛

⎜⎝

√
(ε − μ)2 + �2

2kBT

⎞

⎟⎠

⎤

⎥⎦

=
T →0

(
2mEf

)3/2
/21/2π2

�
3 ≡ nf (10)

Consider the dimensionless number density of unpaired
electrons nf (T )/nf at T = Tc where the energy gap is
� = 0. If one takes the limit T → 0, then μ � Ef since
E+(0) = E−(0) so that nf (T → 0) becomes in the rhs
of (10) simply nf , meaning that nf is just the number den-
sity of unpaired electrons at T = 0. This result is illustrated
in Fig. 2. The highest Tc/TF occurs in each case precisely
when the number of unpaired electrons at T = 0 vanishes

Fig. 2 Here, we plot of (10) the dimensionless number density of the
unpaired electrons nf (T )/nf vs T /Tf . As T → 0 one clearly gets
that nf (T )/nf = 1—or that nf is precisely the number density of
unpaired electrons at T = 0. On the other hand, as T → ∞ one
must have nf (T )/nf → ∞ since the number of unpaired electrons
increases without limit as temperature increases

nf → 0 , meaning that n/nf → ∞, as in this limit,
all electrons are strongly coupled yielding a purely bosonic
system.

5 Conclusions

The GBEC formalism describes a superconductor via a
ternary BF gas with unpaired electrons as well as bosonic
2e-CPs and 2h-CPs. In GBEC, one finds two pure BEC
phases and a mixed phase with arbitrary proportions of 2e-
/2h-CPs. Within this mixed phase is the phase-boundary
curve with perfect symmetry (50-50 mixture). In GBEC, the
BCS theory is subsumed when one has this perfect sym-
metry; also subsumed is the BCS-Bose “crossover” theory
reduces to BCS where μ = EF . The results presented in
the phase diagram enable one to find a much higher Tc than
predicted by standard BCS theory. Furthermore, consider-
ing a pure phase, e.g., 2h-GBEC, Tc increases dramatically
with respect to BCS without abandoning electron-phonon
dynamics. We found that a minor change in the num-
ber density of the system can substantially enhance Tc.
The physical interpretation of the unpaired electrons in
the limit of very strong coupling leads one to a purely
bosonic system. The uncondensed pairs of either electrons
or holes play an important, albeit elusive, role to describe
high-Tc superconductivity. The precise role of 2h-CPs in
this formalism may shed light on high-Tc superconductiv-
ity.
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