Is BCS Related with BEC?

I. Chávez • M. Grether • M. de Llano

Received: 12 June 2014 / Accepted: 18 August 2014 / Published online: 3 September 2014
© Springer Science+Business Media New York 2014

Abstract

We present the complete phase diagram implied by the generalized Bose-Einstein condensation (GBEC) formalism that in essence is a ternary boson-fermion (BF) model with three constituents: two bosonic [two-electron Cooper pairs (2e-CPs) and two-hole Cooper pairs (2h-CPs)] along with unpaired electrons whose number naturally vanishes in the limit of infinite e-e coupling. There arise three coupled transcendental equations to be solved selfconsistently: two gap-like equations (one for each kind of CPs) and a third which guarantees charge conservation via the number equation for the total electron number density of the system. The unknown variables are the chemical potential as well as the number density of zero-momentum $2 \mathrm{e}-\mathrm{CPs}$ and $2 \mathrm{~h}-\mathrm{CPs}$, each depending on coupling as well as absolute temperature. The GBEC subsumes as special cases all statistical theories of superconductors including BCS and BEC. It also subsumes the BCS-Bose "crossover" theory which in turn relates BCS with BEC. The GBEC formalism yields a substantial increase in critical temperature compared with BCS theory even with only electron-phonon dynamics.

Keywords Generalized Bose-Einstein Condensation -High- T_{c} superconductors - BCS theory • Cooper pairs

[^0]
1 Introduction

It is well-known that high T_{c} superconductivity remains unexplained by BCS [1] theory. Nevertheless, with a new formalism that generalizes Bose-Einstein condensation (GBEC) [2-6] with its explicit inclusion of two-hole (2h) Cooper pairs (CPs) sizably increases T_{c} with respect to BCS. This new formalism is essentially a statistical ternary boson-fermion (BF) model-contrasting with the more familiar pioneering binary models of, e.g., Eagles [7], Ranninger et al. [8], Friedberg et al. [9], and others. The ternary-BF-gas [6-11] GBEC formalism subsumes ordinary BEC $[12,13]$ and was proposed to describe superconductors in general. In the new formalism, the fermions are unpaired electrons (e) and, without loss of generality, also holes (h); the bosons are CPs of both the e and h oppositely charged fermions. The GBEC formalism yields three condensed chemically and thermodynamically stable phases [14]: two pure BEC phases, one for $2 \mathrm{e}-\mathrm{CPs}$, and other one for $2 \mathrm{~h}-\mathrm{CPs}$, along with a mixed phase in arbitrary proportions of each of the two pure phases.

Besides including as special cases all known statistical models of superconductors [2-6], also subsumed by the GBEC is the BCS-Bose "crossover" [4] theory which in turn includes BCS as a special case when coupling is so weak that the chemical potential μ can safely be replaced by the Fermi energy E_{F} as was originally assumed by BCS [1].

Moreover, GBEC predicts $T_{C} \mathrm{~s}$ as high as room temperature without abandoning electron-phonon dynamics [15], as illustrated in the full phase diagram presented here for the first time. Also discussed for the first time is the physical interpretation of the unpaired fermions and their contribution to the associated critical temperature in each phase.

2 GBEC Formalism

The GBEC [2-6] total Hamiltonian H consists of two parts, $H=H_{0}+H_{\text {int }}$. An unperturbed Hamiltonian

$$
\begin{align*}
H_{0} & =\sum_{\mathbf{k}_{1}, s_{1}} \varepsilon_{\mathbf{k}_{1}} a_{\mathbf{k}_{1}, s_{1}}^{\dagger} a_{\mathbf{k}_{1}, s_{1}}+\sum_{\mathbf{K}} E_{+}(K) b_{\mathbf{K}}^{\dagger} b_{\mathbf{K}} \\
& -\sum_{\mathbf{K}} E_{-}(K) c_{\mathbf{K}}^{\dagger} c_{\mathbf{K}} \tag{1}
\end{align*}
$$

describing a ternary BF ideal gas in 3D where $K \equiv \mathbf{k}_{1}+\mathbf{k}_{2}$ is the total or center-of-mass momentum (CMM) wavevector and $\varepsilon_{k_{1}} \equiv \hbar^{2} k_{1}^{2} / 2 m$ the energy of each electron of effective mass m [15] while $E_{ \pm}(K) \equiv E_{ \pm}(0) \pm \hbar^{2} K^{2} / 4 m$ are phenomenological energies of $2 \mathrm{e}-/ 2 \mathrm{~h}-\mathrm{CPs}$ each of mass $2 m$. Here, $a_{\mathbf{k}_{1}, s_{1}}^{\dagger}\left(a_{\mathbf{k}_{1}, s_{1}}\right)$ are the creation (annihilation) operators for fermions and similarly $b_{\mathbf{K}}^{\dagger}\left(b_{\mathbf{K}}\right), c_{\mathbf{K}}^{\dagger}\left(c_{\mathbf{K}}\right)$ for bosonic $2 \mathrm{e}-$ and $2 \mathrm{~h}-\mathrm{CPs}$, respectively. The first term in (1) accounts for unpaired electrons while the second and the third correspond to bosonic $2 \mathrm{e}-\mathrm{CPs}$ and $2 \mathrm{~h}-\mathrm{CPs}$, respectively.

To our knowledge, no one has yet constructed, from Fermi operators, such b and c operators obeying Bose commutation rules. However, it is clear [16] that operators depending only on \mathbf{K}-and not also on relative \mathbf{k} as BCSpair operators do-lead to states obeying Bose statistics.

Though the postulated Hamiltonian (1) has defied all efforts to be deduced from the ab initio one of effectively attractive electrons alone, it is apparently vindicated when seen to explicitly reproduce as special cases the BCS-Bose crossover [4] theory which in turn includes BCS when coupling is weak, as well as ordinary BEC theory when it is so strong that no unpaired electrons remain in the original ternary BF mixture.

The second part $H_{\text {int }}$ of the full Hamiltonian describes interactions via four distinct BF interaction vertices each with two unpaired fermions and one boson operator of creation (annihilation) that represent how unpaired electrons (subindex +) or holes (subindex -) are involved in the formation and disintegration of the $2 \mathrm{e}-/ 2 \mathrm{~h}-\mathrm{CPs}$. Specifically,

$$
\begin{aligned}
H_{\mathrm{int}} & =L^{-3 / 2} \sum_{\mathbf{k}, \mathbf{K}} f_{+}(k) \\
& \times\left(a_{\mathbf{k}+\frac{1}{2} \mathbf{K}, \uparrow}^{\dagger} a_{-\mathbf{k}+\frac{1}{2} \mathbf{K}, \downarrow}^{\dagger} b_{\mathbf{K}}+a_{-\mathbf{k}+\frac{1}{2} \mathbf{K}, \downarrow} a_{\mathbf{k}+\frac{1}{2} \mathbf{K}, \uparrow} b_{\mathbf{K}}^{\dagger}\right) \\
& +L^{-3 / 2} \sum_{\mathbf{k}, \mathbf{K}} f_{-}(k) \\
& \times\left(a_{\mathbf{k}+\frac{1}{2} \mathbf{K}, \uparrow}^{\dagger} a_{-\mathbf{k}+\frac{1}{2} \mathbf{K}, \downarrow}^{\dagger} c_{\mathbf{K}}^{\dagger}+a_{-\mathbf{k}+\frac{1}{2} \mathbf{K}, \downarrow} a_{\mathbf{k}+\frac{1}{2} \mathbf{K}, \uparrow} c_{\mathbf{K}}\right)(2)
\end{aligned}
$$

where $f_{ \pm}(k)$ are BF coupling terms of electrons and holes, respectively. One can simplify $H_{\text {int }}$ by ignoring $K \neq 0$ terms in the interaction but not in the unperturbed Hamiltonian as done in BCS theory. Ignoring interactions between
unpaired electrons and excited $K \neq 0$ bosons the simplified total dynamical operator becomes

$$
\begin{align*}
\hat{H}-\mu \hat{N} & \simeq \sum_{\mathbf{k}_{1}, s_{1}}\left[\varepsilon\left(k_{1}\right)-\mu\right] a_{\mathbf{k}_{1}, s_{1}}^{\dagger} a_{\mathbf{k}_{1}, s_{1}} \\
& +\left[E_{+}(0)-2 \mu\right] N_{0}+\sum_{\mathbf{K} \neq 0}\left[E_{+}(K)-2 \mu\right] b_{\mathbf{K}}^{\dagger} b_{\mathbf{K}} \\
& +\left[2 \mu-E_{-}(0)\right] M_{0}+\sum_{\mathbf{K} \neq 0}\left[2 \mu-E_{-}(K)\right] c_{\mathbf{K}}^{\dagger} c_{\mathbf{K}} \\
& +\sum_{\mathbf{k}}\left[\sqrt{n_{0}} f_{+}(k)+\sqrt{m_{0}} f_{-}(k)\right] \\
& \times\left(a_{\mathbf{k} \uparrow}^{\dagger} a_{-\mathbf{k} \downarrow}^{\dagger}+a_{\mathbf{k} \downarrow} a_{-\mathbf{k} \uparrow}\right) \tag{3}
\end{align*}
$$

where $E_{ \pm}(0)$ is the phenomenological energy of the bosonic 2e-/2h-CPs with $K=0, \hat{N}$ is the operator of the total number of fermions including the unpaired fermions. Here, one applies the Bogoliubov recipe [18], valid below T_{c}, of replacing each creation (annihilation) operator for bosons b_{0}^{\dagger}, b_{0} by the number $\sqrt{N_{0}}$ where N_{0} is the number of composite-boson $2 \mathrm{e}-\mathrm{CPs}$ with $K=0$ and similarly for c_{0}^{\dagger}, c_{0} by the number $\sqrt{M_{0}}$ where M_{0} is the number of composite-bosons $2 \mathrm{~h}-\mathrm{CPs}$ with $K=0$. The full simplified Hamiltonian can then be diagonalized [5]. This simplification can be lifted (see [19] where excited bosons with $K \neq 0$ are not excluded in the interaction Hamiltonian of (3)).

The dynamical operator (3) can now be exactly diagonalized via a Bogoliubov-Valatin transformation [18, 20]. Thus, the well-known grand canonical ensemble relation
$\Omega\left(T, L^{3}, \mu, N_{0}, M_{0}\right)=-k_{B} T \ln \left[\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}\right]$
can be evaluated explicitly, where Tr stands for "trace." Here, T is the absolute temperature and $\beta \equiv 1 / k_{B} T$, k_{B} the Boltzmann constant, and μ are the chemical potential of the many-electron subsystem. From (4), one can find all the thermodynamic properties of the system such as pressure $P(T, n)=-\Omega / L^{3}$, entropy $S(T, n) / L^{3}=-k_{B} \partial\left(\Omega / L^{3}\right) / \partial T$ and the Helmholtz free energy $F\left(T, L^{3}, N, M\right) \equiv \Omega+\mu N$. Taking the partial derivative of (4) with respect to chemical potential and minimizing $F\left(T, L^{3}, N, M\right) \equiv \Omega+\mu N$ over N_{0}, M_{0} gives
$\frac{\partial \Omega}{\partial \mu}=-N \quad \frac{\partial F}{\partial N_{0}}=0 \quad \frac{\partial F}{\partial M_{0}}=0$.
The first relation is the well-known result of statistical mechanics and here ensures the net charge conservation of the GBEC formalism, i.e., gauge invariance, in contrast with BCS theory which lacks it. After some algebra, one arrives at the three transcendental coupled equations that determine the GBEC formalism, a "number equation"
$n=2 n_{0}(T)+2 n_{B+}(T)-2 m_{0}(T)-2 m_{B+}(T)+n_{f}(T)$
where $n_{B+}(T)$ and $m_{B+}(T)$ are the non-condensed-boson number densities for $2 e$ - and $2 h$-CPs, respectively, with $n \equiv$ N / L^{3} where L is the length of the "box" of volume L^{3}, and $n_{f}(T)$ refers to the unpaired electrons of the system at any T and turns out to be
$n_{f}(T)=\int_{0}^{\infty} d \epsilon N(\epsilon)\left[1-\frac{\epsilon-\mu}{E(\epsilon)} \tanh \frac{1}{2} \beta E(\epsilon)\right]$.
The last two requirements of (5) lead to two "gaplike equations" for $2 \mathrm{e}-\mathrm{CPs}$ and for $2 \mathrm{~h}-\mathrm{CPs}$ [2, 4], with $E(\epsilon) \equiv \sqrt{(\epsilon-\mu)^{2}+\Delta^{2}(\epsilon)}$ where the T-dependent gap $\Delta(\epsilon) \equiv \sqrt{n_{0}(T)} f_{+}(\epsilon)+\sqrt{m_{0}(T)} f_{-}(\epsilon)$, and $N(\boldsymbol{\epsilon}) \equiv$ $m^{3 / 2} \sqrt{\boldsymbol{\epsilon}} / 2^{1 / 2} \pi^{2} \hbar^{3}$ the electron density of states. Here, $n_{0} \equiv$ N_{0} / L^{3} and $m_{0} \equiv M_{0} / L^{3}$ are the number densities of condensed $2 \mathrm{e}-/ 2 \mathrm{~h}-\mathrm{CPs}$ respectively. The strength functions $f_{+}(\boldsymbol{\epsilon})$ and $f_{-}(\boldsymbol{\epsilon})$ can be constructed as in [2,3].

3 GBEC Phases

One has from (6) the single number equation which guarantees charge conservation, here $n_{0}(T)$ is the number density of condensed $2 \mathrm{e}-\mathrm{CPs}$ and $n_{B+}(T)$ is the number density of uncondensed $2 \mathrm{e}-\mathrm{CPs}$ can be expressed as

$$
\begin{equation*}
n_{B+}(T) \equiv \int_{0+}^{\infty} d \boldsymbol{\varepsilon} M(\boldsymbol{\varepsilon})\left[\exp \beta\left\{E_{+}(0)+\boldsymbol{\varepsilon}-2 \mu\right\}-1\right]^{-1} \tag{8}
\end{equation*}
$$

a typical Bose-Einstein forms are clearly recovered, as expected, and $m_{B+}(T)$ as
$m_{B+}(T) \equiv \int_{0+}^{\infty} d \boldsymbol{\varepsilon} M(\boldsymbol{\varepsilon})\left[\exp \beta\left\{2 \mu-E_{-}(0)+\boldsymbol{\varepsilon}\right\}-1\right]^{-1}$
is the number density of uncondensed $2 \mathrm{~h}-\mathrm{CPs}$. Here, $E_{ \pm}(0)=2 E_{f} \pm \delta \boldsymbol{\varepsilon}$ (see [3] p. 551) where E_{f} is the interaction energy width of bosons and $\delta \boldsymbol{\varepsilon}$ is a shell energy about E_{f}, this energy being the so-called pseudo-Fermi energy. Again, $N(\epsilon)$ and $M(\varepsilon)$ are the electronic and bosonic density of states, respectively.

For the two pure phases, one can generalize from the single-band model used so far to a two-band model by allowing the particle (e) masses to differ from hole (h) masses; this can be done by introducing two E_{f}^{e} and E_{f}^{h} differing precisely by the two masses.

In Fig. 1, we plot the total dimensionless T_{c} / T_{F} vs dimensionless number density n / n_{f} for the pure $2 \mathrm{e}-\mathrm{CP}$ phase with no $2 \mathrm{~h}-\mathrm{CPs}$ in the ground state, as well as the pure $2 \mathrm{~h}-\mathrm{CP}$ phase with no $2 \mathrm{e}-\mathrm{CPs}$ in the ground state, where T_{F} is the actual Fermi-energy-related temperature. These two curves are compared with BEC and BCS. Also plotted is the dotted thin curve for perfect symmetry between the number of $2 \mathrm{~h}-\mathrm{CPs}$ and $2 \mathrm{e}-\mathrm{CPs}$ (50-50 mixture), namely

Fig. 1 Dimensionless T_{c} / T_{F} versus n / n_{f} for pure GBEC phases $2 \mathrm{~h}-/ 2 \mathrm{e}-\mathrm{CPs}$ and the ordinary BEC (black dashed curve) in 3D, extrapolating for $n_{f} \rightarrow 0$ to the familiar limit 0.218. Inset shows the intersection between the pure phase $2 \mathrm{e}-\mathrm{CP}$ and the pure phase $2 \mathrm{~h}-\mathrm{CP}$ when $n / n_{f}=1$ which implies $T_{c} / T_{F}=7.64 \times 10^{-6}$ given by the BCS T_{c} weak-coupling formula $k_{B} T_{c} \simeq 1.134 \hbar \omega_{D} \exp (1 / \lambda)$ using $\lambda=1 / 5$ and $\hbar \omega_{D} / E_{F}=0.001$, where $\hbar \omega_{D}$ is the Debye energy of the lattice. The red dot marks the critical BCS temperature. The blue dotted thin curve (online) corresponds to perfect symmetry between $2 \mathrm{e}-/ 2 \mathrm{~h}-\mathrm{CPs}$, i.e., $n_{0}(T)=m_{0}(T)$ and $n_{B+}(T)=m_{B+}(T)$. For $n / n_{f}<1$, the pure phases curves are marked as dotted, but are thus far with no physical meaning. Symbols diamond, square, and triangle are the limit of the two pure-phase GBEC and single BEC curves, respectively, when $n / n_{f} \rightarrow \infty$, i.e., when $n_{f}(T \rightarrow 0) \equiv n_{f}$ (see $\S 4$). Uemura's exotic data are taken from [21]
$n_{0}(T)=m_{0}(T)$ and $n_{B+}(T)=m_{B+}(T)$ implying [6] that $\mu=E_{f}$. Furthermore, in the inset of Fig. 1, the BCS value of $T_{c} / T_{F}=7.64 \times 10^{-6}$ is indicated by the red dot with a number density $n / n_{f}=1$; it follows from the standard BCS theory weak-coupling formula $k_{B} T_{c} \simeq$ $1.134 \hbar \omega_{D} \exp (1 / \lambda)$ for $\lambda=1 / 5$ and $\hbar \omega_{D}=10^{-3} E_{F}$. The light blue shaded area between the two pure $2 \mathrm{~h}-/ 2 \mathrm{e}-\mathrm{CP}$ curves corresponds to the mixed phase of GBEC with arbitrary proportions between $2 h-/ 2 e-C P s$, as well as below the BCS point (inset in Fig. 1). Clearly, GBEC can enhance T_{c} values compared with BCS as high as room temperature and higher employing the BCS model interaction mimicking the electron-phonon attraction overwhelming the Coulomb e-e repulsions.

The total dimensionless number density of the pure phase $2 \mathrm{e}-\mathrm{GBEC}$ of $2 \mathrm{e}-\mathrm{CPs}$ and $2 \mathrm{~h}-\mathrm{GBEC}$ of $2 \mathrm{~h}-\mathrm{CPs}$ has a definite limit when $n / n_{f} \rightarrow \infty$ in which limit all there are no unpaired electrons whatsoever leading to an ideal BF gas mixture without mutual interactions. The number of unpaired fermions $n_{f}(T)$ at precisely $T=0$ leads to
$n_{f} \equiv n_{f}(T=0)=\left(2 m E_{f}\right)^{3 / 2} / 2^{1 / 2} \pi^{2} \hbar^{3}$, the first equality to be derived in next section.

4 Unpaired Electrons and Meaning of \boldsymbol{n}_{f} as $\boldsymbol{n}_{f}(T=0)$

The total number of unpaired electrons (7) at any T can be decomposed as

$$
\begin{align*}
n_{f}(T) & =\int_{0}^{E_{f}-\delta \boldsymbol{\epsilon}} d \boldsymbol{\epsilon} N(\boldsymbol{\epsilon})\left[1-\frac{\boldsymbol{\epsilon}-\mu}{|\boldsymbol{\epsilon}-\mu|} \tanh \left(\frac{\boldsymbol{\epsilon}-\mu}{2 k_{B} T}\right)\right] \\
& +\int_{E_{f}+\delta \boldsymbol{\epsilon}}^{\infty} d \boldsymbol{\epsilon} N(\boldsymbol{\epsilon})\left[1-\frac{\boldsymbol{\epsilon}-\mu}{|\boldsymbol{\epsilon}-\mu|} \tanh \left(\frac{\boldsymbol{\epsilon}-\mu}{2 k_{B} T}\right)\right] \\
& +\int_{E_{f}-\delta \boldsymbol{\epsilon}}^{E_{f}+\delta \boldsymbol{\epsilon}} d \boldsymbol{\epsilon} N(\boldsymbol{\epsilon})\left[1-\frac{\boldsymbol{\epsilon}-\mu}{\sqrt{(\epsilon-\mu)^{2}+\Delta^{2}}}\right. \\
& \left.\times \tanh \left(\frac{\sqrt{(\boldsymbol{\epsilon}-\mu)^{2}+\Delta^{2}}}{2 k_{B} T}\right)\right] \\
& =0 \tag{10}
\end{align*}
$$

Consider the dimensionless number density of unpaired electrons $n_{f}(T) / n_{f}$ at $T=T_{c}$ where the energy gap is $\Delta=0$. If one takes the limit $T \rightarrow 0$, then $\mu \simeq E_{f}$ since $E_{+}(0)=E_{-}(0)$ so that $n_{f}(T \rightarrow 0)$ becomes in the rhs of (10) simply n_{f}, meaning that n_{f} is just the number density of unpaired electrons at $T=0$. This result is illustrated in Fig. 2. The highest T_{c} / T_{F} occurs in each case precisely when the number of unpaired electrons at $T=0$ vanishes

Fig. 2 Here, we plot of (10) the dimensionless number density of the unpaired electrons $n_{f}(T) / n_{f}$ vs T / T_{f}. As $T \rightarrow 0$ one clearly gets that $n_{f}(T) / n_{f}=1$-or that n_{f} is precisely the number density of unpaired electrons at $T=0$. On the other hand, as $T \rightarrow \infty$ one must have $n_{f}(T) / n_{f} \rightarrow \infty$ since the number of unpaired electrons increases without limit as temperature increases
$n_{f} \rightarrow 0$, meaning that $n / n_{f} \rightarrow \infty$, as in this limit, all electrons are strongly coupled yielding a purely bosonic system.

5 Conclusions

The GBEC formalism describes a superconductor via a ternary BF gas with unpaired electrons as well as bosonic $2 \mathrm{e}-\mathrm{CPs}$ and $2 \mathrm{~h}-\mathrm{CPs}$. In GBEC, one finds two pure BEC phases and a mixed phase with arbitrary proportions of $2 \mathrm{e}-$ /2h-CPs. Within this mixed phase is the phase-boundary curve with perfect symmetry (50-50 mixture). In GBEC, the BCS theory is subsumed when one has this perfect symmetry; also subsumed is the BCS-Bose "crossover" theory reduces to BCS where $\mu=E_{F}$. The results presented in the phase diagram enable one to find a much higher T_{c} than predicted by standard BCS theory. Furthermore, considering a pure phase, e.g., $2 \mathrm{~h}-\mathrm{GBEC}, T_{c}$ increases dramatically with respect to BCS without abandoning electron-phonon dynamics. We found that a minor change in the number density of the system can substantially enhance T_{c}. The physical interpretation of the unpaired electrons in the limit of very strong coupling leads one to a purely bosonic system. The uncondensed pairs of either electrons or holes play an important, albeit elusive, role to describe high $-T_{c}$ superconductivity. The precise role of $2 \mathrm{~h}-\mathrm{CPs}$ in this formalism may shed light on high- T_{c} superconductivity.

Acknowledgments IC thanks CONACyT-Mexico for the postgraduate grant 260978 and MG and MdeLl thank PAPIIT-UNAM-Mexico for grants IN116914 and IN100314, respectively.

References

1. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)
2. Tolmachev, V.V.: Phys. Lett. A 266, 400 (2000)
3. de Llano, M., Tolmachev, V.V.: Phys. A 317, 546 (2003)
4. Adhikari, S.K., de Llano, M., Sevilla, F.J., Solís, M.A., Valencia, J.J.: Phys. C 453, 37 (2007)
5. de Llano, M., Tolmachev, V.V.: Ukr. J. Phys. 55, 79 (2010)
6. Grether, M., de Llano, M., Tolmachev, V.V.: Int. J. Quant. Chem. 112, 3018 (2012)
7. Eagles, D.M.: Phys. Rev. 186, 456 (1969)
8. Ranninger, J., Micnas, R., Robaszkiewicz, S.: Ann. Phys. (Paris) 13, 455 (1988)
9. Friedberg, R., Lee, T.D.: Phys. Rev. B 40, 6745 (1989), R. Friedberg, T.D. Lee, and H.C. Ren, Phys. Lett. A 152, 417 \& 423 (1991)
10. Casas, M., Davidson, N.J., de Llano, M., Mamedov, T.A., Puente, A., Quick, R.M., Rigo, A., Solís, M.A.: Phys. A 295, 146 (2001)
11. Casas, M., de Llano, M., Puente, A., Rigo, A., Solís, M.A.: Solid State Comm. 123, 101 (2002)
12. Einstein, A.: Sitzber. Kgl. Preuss. Akad. Wiss 1, 3 (1925)
13. Bose, S.N., für, Z.: Phys. 26, 178 (1924)
14. Grether, M., de Llano, M., Ramírez, S., Rojo, O.: Int. J. Mod. Phys. B 22, 4367 (2008)
15. Kulić, M.L.: Phys. Reports 338, 1-264 (2003); AIP Conf. Proc. 715, 75 (2004); V.Z. Kresin and S.A. Wolf, Revs Mod. Phys. 81, 481, (2009)
16. Sutton, A.P.: Electronic Structure of Materials. Clarendon, Oxford (1993)
17. de Llano, M., Sevilla, F.J., Tapia, S. Int. J. Mod. Phys. B 20, 2931 (2006)
18. Bogoliubov, N.N.: N. Cim. 7, 794 (1958)
19. Mamedov, T.A., De Llano, M. J.: Phys. Soc. Japan 79, 044706 (2010); 80, 074718 (2011); Phil. Mag. 93, 2896 (2013) \& to be published in 2014
20. Valatin, J.: N. Cim. 7, 843 (1958)
21. Uemura, Y.J.: Phys. B 374-375, 1 (2006)

[^0]: I. Chávez (凶) • M. de Llano

 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04360 México, D.F., Mexico
 e-mail: israelito@ciencias.unam.mx
 M. Grether

 Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico

