
Bogoliubov–de Gennes study of
nanoscale Hubbard superconductors

C�esar G. Galv�an1, Jos�e M. Cabrera-Trujillo1, Luis A. P�erez2, and Chumin Wang*,3

1 Facultad de Ciencias, Universidad Aut�onoma de San Luis Potos�ı, S.L.P., Mexico
2 Instituto de F�ısica, Universidad Nacional Aut�onoma de M�exico, A.P. 20-364, 01000 Mexico City, Mexico
3 Instituto de Investigaciones en Materiales, Universidad Nacional Aut�onoma de M�exico, A.P. 70-360, 04510 Mexico City, Mexico

Received 1 February 2016, revised 1 April 2016, accepted 4 April 2016
Published online 28 April 2016

Keywords Bogoliubov–de Gennes formalism, grains, Hubbard model, superconductivity

* Corresponding author: e-mail chumin@unam.mx, Phone: þ52-55-56224634, Fax: þ52-55-56161251

The effects of quantum confinement on the superconducting
ground state are studied within the Bogoliubov–de Gennes
(BdG) formalism and an attractive Hubbard model. We
consider a periodic arrangement of two-dimensional super-
conducting grains composed by N�N atoms surrounded by
insulating, metallic or superconducting stripes with a thickness
of s atoms, leading to 2(Nþ s)2 coupled self-consistent BdG
equations for a supercell of (Nþ s)� (Nþ s) atoms. These
equations determine the spatial variation of superconducting

gap as functions of temperature, electron–electron interaction,
and hopping integrals analyzing three types of boundary
stripes. The results show a clear enhancement of the
superconducting gap and critical temperature induced by
the electron confinement in the grain, being larger for the
insulating boundary case. Finally, the numerical solutions of
BdG equations are compared with those obtained by applying
the BCS theory to each grain site.
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1 Introduction Quantum confinement can signifi-
cantly modify many physical properties of a material, such
as enhancements of semiconducting band gap [1] and
ferromagnetic moments [2]. In 1959, P. W. Anderson found
that superconductivity persists in single grains if their average
energy-level separation is smaller than the bulk super-
conducting gap [3].Moreover, in an array of superconducting
grains separated by normal material interfaces, there is an
inter-grain coupling due to the proximity effect, where the
superconducting wave function varies smoothly across the
interface causing a suppression of the pair amplitude in the
superconductor and an enhancement of superconductivity in
the normal side. Moreover, if the width of these interfaces is
thin enough, the superconducting phases in neighboring
grains are locked, as occurred in the Josephson junctions [4].

On the theoretical side, the Bogoliubov–de Gennes
formalism [5] provides a real-space description of super-
conducting properties. Furthermore, the attractive Hubbard
model emphasizes local electron–electron interactions and
has been used to investigate high-Tc superconductivity,
where the dynamics of charge carriers can be described
by a single-band square-lattice Hubbard model [6]. More-
over, most of high-Tc ceramic superconductors are

polycrystalline structures composed by superconducting
grains [7]. In this article, we report a detailed study of
quantum confinement and boundary coupling effects on
grain superconductors by solving the Bogoliubov–de
Gennes self-consistent equations. This study was carried
out by using the supercell technique, which leads to 2
(Nþ s)2 coupled equations for a square-lattice supercell of
(Nþ s)� (Nþ s) atoms. The self-consistent solution of
these equations gives the local superconducting gaps that
depend on the grain size and boundary nature, which can be
insulator, metal, or superconductor.

2 The model Let us consider a square lattice super-
cell of (Nþ s)� (Nþ s) atoms consisting of a super-
conducting grain represented by N�N A-type atoms
bordered by (2Nþ s)s B-type ones, described by a single-
band attractive Hubbard Hamiltonian [6, 8] given by

Ĥ ¼
X
l;s

eln̂l;s þ
X
hl;mi;s

tl;mĉ
†
l;s ĉm;s þ

X
l

Uln̂l;"n̂l;#; ð1Þ

where ĉ†l;s (ĉl;s) is the creation (annihilation) operator with
spin s ¼" or # at site l, n̂l;s ¼ ĉ†l;s ĉl;s , and hl;mi denotes
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nearest neighbor sites. In the supercell, A- and B-type
atoms, respectively, have on-site energies eA and eB, and the
hopping integrals between these atoms could be tAA, tAB, or
tBB. Moreover, the on-site electron–electron interactions are
UA and UB, respectively, for A- and B-type atoms.

Hamiltonian (1) in the mean-field approximation can be
rewritten as

ĤMF ¼ e0 þ
X
l;s

�
eln̂l;s þ

X
hl;mi;s

tl;mĉ
†
l;s ĉm;s

þ
X
l

ðL�
l;lĉl;#ĉl;" þ Ll;lĉ

†
l;"ĉ

†
l;#Þ; ð2Þ

where e0 ¼ �PlUlr
2
l =4,

�
el ¼ el þ Ulrl=2, and

Ll;l ¼ Ulhĉl;#ĉl;"i, being rl ¼ hn̂l;"i þ hn̂l;#i the electron
density at atom l and hn̂l;"i ¼ hn̂l;#i for non-spin-polarized
materials.

Applying the unitary transformation [5]

ĉl;" ¼
X
a

ual ĝ a;" � va�l ĝ †
a;#

� �
and

ĉl;# ¼
X
a

ual ĝ a;# þ va�l ĝ †
a;"

� �
;

ð3Þ

to ĤMF � mN̂ with m the chemical potential and
N̂ ¼Pl;s n̂l;s , and using the supercell technique by
rewriting

ual
val

 !
) eik�rl

ual ðkÞ
val ðkÞ

 !
; ð4Þ

the Bogoliubov–de Gennes equations for ual ðkÞ and val ðkÞ
are [5]

X
m

eik�ðrm�rlÞ Hl;m Ll;m

L�
l;m �H�

l;m

 !
uamðkÞ
vamðkÞ

 !
¼ EaðkÞ ual ðkÞ

val ðkÞ

 !
;

ð5Þ

where Hl;m ¼ ð �
el � mÞdl;m þ tl;mQl;m and

Ll;m ¼ �Ul

2
dl;m
X
a;k

ual ðkÞva�m ðkÞe�ik�ðrm�rlÞ

þuamðkÞva�l ðkÞeik�ðrm�rlÞ

" #
tanh

EaðkÞ
2kBT

;

ð6Þ

being

Ql;m ¼ 1; if l andm are nearest neighbors

0; other cases:

(
ð7Þ

Assuming a uniform initial distribution of Ll;m, the
eigenvalue Eq. (5) is solved to determine EaðkÞ, ual ðkÞ, and
val ðkÞ, which are substituted into Eq. (6) to get a new Ll;m.
This procedure is repeated until a relative convergence of
10�4 is achieved, obtaining the superconducting gaps
(Dl ¼ Ll;l) for each site l.

3 Results Starting from a homogeneous gap seed,
Eq. (5) is self-consistently solved for Dl induced by an
attractive on-site electron–electron interaction UA ¼ �0:5t
with hopping integrals tAA ¼ �t < 0. Figure 1(a–c) shows
the spatial variation of superconducting gap Dl for a
superconducting grain composed of A-type atoms with
N ¼ 8, s ¼ 1, rA ¼ rB ¼ 1, eA ¼ 0, eB ¼ ðUA � UBÞ=2
and surrounded by (a) a weaker superconductor with UB ¼
0:5UA and tAB ¼ tBB ¼ tAA; (b) a normal metal with UB ¼
0 and tAB ¼ tBB ¼ tAA; and (c) an insulator with
tAB ¼ tBB ¼ UB ¼ 0. Figure 1(a0–c0) corresponds to sys-
tems with the same parameters as in Fig. 1(a–c), except for
s ¼ 2. Observe that Dl2A in case (a) are larger than those in
(b), where the extreme values of gap for case (a) are Dmax

l2A ¼
0:00248t and Dmin

l2A ¼ 0:00232t, whereas Dmax
l2A ¼ 0:00227t

and Dmin
l2A ¼ 0:00211t for case (b). Furthermore, when the

grain-boundary width increases, Dl2A diminish and the
superconducting-gap variation augments in the grain, as
observed in Fig. 1(a0–c0) in comparison to the corresponding
Fig. 1(a–c). The extreme gap values for case (a0) are Dmax

l2A ¼
0:00248t and Dmin

l2A ¼ 0:00232t, whereas Dmax
l2A ¼ 0:00227t

and Dmin
l2A ¼ 0:00211t for case (b0). These trends are

consistent with the superconducting proximity effect [4].
Figure 1(c and c0), respectively, illustrate the super-

conducting gap (Dl2A) distribution for s ¼ 1 and s ¼ 2,
when the grain is surrounded by an insulator with
tAB ¼ tBB ¼ UB ¼ 0. Note the significant larger values of
Dl2A along the diagonal sites (red bars) forming a cross. This
fact could be related to the inhomogeneity of the single-
electron local density of states (LDOS), which can be
calculated using the convolution theorem [9], since the

Figure 1 Local superconducting gap (Dl) in a square-lattice
supercell with 8� 8 A-type atoms surrounded by (a–c) single and
(a0–c0) double line stripes of B-type atoms, which can be (a,a0) a
weaker superconductor, (b,b0) a normal metal, or (c,c0) an insulator.
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single-electron tight-binding Hamiltonian is separable,
given by

LDOS2Dðx;yÞðEÞ ¼
Z 1

�1
djLDOS1Dx ðE � jÞLDOS1Dy ðjÞ;

ð8Þ

where the one-dimensional LDOS [10] is

LDOS1Dx ðEÞ ¼ � 1
p

lim
h!0þ

Im
XN
n¼1

hxjnihnjxi
E � En þ ih

; ð9Þ

with

hxjni ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
sin

npx
ðN þ 1Þa ð10Þ

and

En ¼ eA þ 2tAAcos
np

N þ 1
ð11Þ

for a linear chain of N atoms with lattice parameter a [11].
For the case of a half-filling band, the chemical potential is
located at a van Hove singularity (m ¼ eA) and from
Eqs. (8–11) we obtain a relationship between the LDOS
of diagonal (jxj ¼ jyj) and non-diagonal (jxj 6¼ jyj) sites
given by

LDOS2Djxj6¼jyjðeAÞ ffi
2
3
LDOS2Djxj¼jyjðeAÞ; ð12Þ

whose specific values depend on the imaginary part of
energy (h) used.

Now, for an attractive Hubbard model (1), the super-
conducting gap (D) at T ¼ 0K is determined by the BCS
equation [6, 12] given by

1 ¼ �U
2NS

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½eðkÞ � m�2 þ D2

q

¼ �U
2

Z4t
�4t

DOSðeÞdeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½e� m�2 þ D2

q ; ð13Þ

where NS, eðkÞ, and DOSðeÞ are, respectively, the total
number of atoms, the dispersion relation, and single-
electron density of states of a homogeneous square lattice
with null self-energy and nearest-neighbor hopping integral
�t. This density of states can be approximated by

DOSðeÞ 	 Dþ FdðeÞ; if jej 
 4t

0; if jej > 4t;

(
ð14Þ

where dðeÞ is the Dirac delta function that mimics the van
Hove singularity. The condition

R 4t
�4t DOSðeÞde ¼ 1 leads to

F ¼ 1� 8tD: ð15Þ

For the case of a half-filling band (m ¼ 0), substituting
Eqs. (14) and (15) into Eq. (13) we obtain

1 ¼ jUjDsinh�1 4t
D

� �
þ jUjF

2D

¼ jUj 1� F
8t

sinh�1 4t
D

� �
þ jUjF

2D
:

ð16Þ

If we assume that Eq. (16) is satisfied for each site in the
studied finite square lattice, the local superconducting gap at
diagonal (Dd) and non-diagonal (Dnd) A-type sites in Fig. 1
(c and c0) are related byDd 	 1:3906Dnd, as Eq. (12) leads to
Fd ffi 3

2Fnd and we apply Eq. (16) to both diagonal and non-
diagonal sites. This relation describes the main features of
Fig. 1(c and c0) with a relative standard deviation of 4% and
3%, respectively, where Dd has been taken as the maximum
local superconducting gap obtained from the Bogoliubov–
de Gennes formalism.

Figure 2 shows the average superconducting gap over
A-type atoms (hDl2Ai) as a function of the hopping integral
at the B-type boundary zone (tB ¼ tAB ¼ tBB) for the same
systems of Fig. 1 with single (s ¼ 1) and double (s ¼ 2) line
boundaries.

Observe a more than 10 times increment of hDl2Aiwhen
tB diminishes from tB ¼ tA to tB ¼ 0, which suggests an
enhancement of electron pairing induced by the single
electron confinement in the grain (A-region) leading to a
strong superconducting state. Furthermore, notice that

Figure 2 Average superconducting gap over A-type atoms
(hDl2Ai) versus the hopping integral in the B-type boundary zone
(tB) for the same systems of Fig. 1 with (a) UB ¼ 0 and (b)
UB ¼ 0:5UA.
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hDl2Ai is larger for the single-line boundary case in
comparison with those corresponding to the double-line
case, as expected from the proximity effect. However, for
tB=0, hDl2Ai has the same value for both single- and double-
line boundary cases, because the grains are disconnected
from each other. In addition, note the asymmetry between
negative and positive values of tB. In particular, when
tB=tA < 0, the superconducting states in A- and B-regions
are, respectively, based on bonding and antibonding single-
electron states, which could induce a confinement due to
dephasing and then a more robust superconducting state is
found at the tB=tA < 0 side.

In Fig. 3, the critical temperature (Tc) is plotted as a
function of the grain side length (N) for systems with a
single line boundary, UA=�0:5t, UB ¼ 0, tA ¼ �t,
tB ¼ 0; 0:1t; 0:2t; and 0:3t. The inset of Fig. 3 illustrates
the variation of hDl2Ai versus temperature (T) for 8� 8 atom
grains of Fig. 1 with s ¼ 1. The critical temperatures were
determined by the condition hDl2Ai ¼ 0. Observe that
hDl2Ai has a BCS-like temperature variation for all analyzed
cases. Moreover, Tc monotonically increases with the
diminution of superconducting grain size when tB ¼ 0, and
for tB 6¼ 0 there is an optimum value of N where TcðNÞ
reaches its maximum value. In fact, the increment of TcðNÞ
with the diminution of grain size has been reported in
aluminum [13], indium [13], and tin [14] granular super-
conductors. In addition, for a given grain size, Tc decreases
when tB grows, as expected from the proximity effect [4].

Finally, it would be worth mentioning that the bulk
coherence length (j0) at T ¼ 0 can be calculated from
Ref. [15]

j0 ¼
2
ffiffiffi
2

p

p
hR2i1=2 ¼ 2

ffiffiffi
2

p

p

P
Rf

�ðRÞR2f ðRÞP
Rf

�ðRÞf ðRÞ
� �1=2

; ð17Þ

where f ðRÞ=hĉR#ĉ0"i=hĉ0#ĉ0"i with

hĉR#ĉ0"i ¼ 1
N

X
k

D

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½eðkÞ � m�2 þ D2

q eik�R: ð18Þ

For U ¼ �0:5t, the bulk superconducting gap is D ’
0:00443t and then Eq. (17) leads to j0 ’ 100:4a. The
supercell size was chosen to be smaller than j0, in order to
emphasize the quantum confinement effects. In fact, observe
in Fig. 3 the almost constant value of Tc for different
boundary conditions when N approaches to j0.

4 Conclusions We have studied the finite grain size
and boundary effects on the superconducting ground state
by solving the Bogoliubov–de Gennes self-consistent
equations for a square-lattice supercell described by an
attractive Hubbard model. Three types of boundaries were
considered, being insulator, normal conductor, and weak
superconductor. The latter possesses smaller local super-
conducting gaps than those of the grain due to a weaker
attractive electron–electron interaction. For all analyzed
boundaries, the averaged superconducting gap over the
grain sites (hDl2Ai) can be larger than that of the
corresponding bulk case for a small enough tB. In particular,
for the insulating boundary we found a significant
enhancement of Dl2A, whose maximum values have a cross
pattern in the square grain with a half-filled single electron
band. This pattern can be reproduced with a less than 5%
error by applying the Hubbard-BCS results to each site of
the grain. On the other hand, the enhancement of both hDl2Ai
and the critical temperature (Tc) could be related to the
confinement of single-electron wave functions in the grain,
which favors the electron pairing and the coherent state
formation. For the normal-conductor boundary case, we
observe an asymmetry in hDl2Ai when such conductor has
an electron- or hole-type transport, being larger when the
grain and its boundary have different types of charge
carriers. Moreover, in this case the increase of Tc with
the diminution of grain size is followed by a decay, which
can be understood by the Anderson argument [3] and its
further generalization for systems with energy-level
degenerations [16]. It is important to emphasize that the
electron pairing through attractive Hubbard model occurs
over all the occupied electron states, in contrast to the thin
energy shell of BCS theory [17]. In summary, the numerical
solution of the Bogoliubov–de Gennes equations for
attractive Hubbard model confirms the experimentally
observed growth of Tc with the decrease of superconducting
grain size and it can be qualitatively reproduced for the
first time, to our knowledge, by applying the BCS
superconducting gap formula to each site, whose pairing
interaction was taken as the negative U of Hubbard model.
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