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H I G H L I G H T S

• A conjugate theoretical model was developed to study the heat propagation in fractal media.
• The model couples electromagnetic and thermal conservation equations in fractal space.
• Solutions of the model are obtained numerically in dimensionless terms.
• A maximum heat transfer rate is observed at an intermediate fractal dimension.
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A B S T R A C T

A theoretical study of the propagation of electromagnetic waves through anisotropic media is pre-
sented. A Euclidean nonlinear model that couples Maxwell’s and heat transfer equations is generalized
considering Stillinger’s formalism in terms of a spatial fractal dimension α. The numerical results reveal
a significant influence of α on current density and temperature distributions along the radial direction
of a cylindrical conductor. When α increases approaching unity, the anisotropy of the medium becomes
increasingly weak; thus the wave penetrates deeper into the medium and the skin effect is weakened.
Interestingly, the steady state temperature at any location along the radial direction reaches a maximum
at α = 1/2. Beyond this maximum, the temperature decreases with increasing α, reaching a finite value
at the Euclidean limit α = 1. The generalized model presented here not only simplifies the analysis of elec-
tromagnetic transmission through complex structures such as porous media but also provides a quantitative
measure of the anisotropy along the radial direction of the conductive medium by a fractional dimension.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is a generalization of ordinary differentia-
tion and integration to arbitrary non-integer order. This concept is
as old as the integer-order calculus originally developed by Newton
and Leibniz in the 17th century [1]. Although fractional calculus has
a long history, in recent decades it has attracted the interest of re-
searchers in diverse areas of engineering and science. The fractional
calculus and in particular the fractional differential equations are
used to describe complex systems with “memory” in time and/or
space domains [2,3]. Usually these memory effects are modeled via
non-local integro-differential operators as those studied by Riemann-
Liouville [4], Caputo [5] and Grünwald-Letnikov [6] for time domain;
and Riesz [6–8] as well as Caputo [3] for space domain. The non-
local property of these operators can be used to construct simple

material models and unified principles [9]. Interesting examples of
diffusion processes can be found in [10,11]; examples of modeling
viscoelastic materials have been reported by [5,12], and applica-
tions in the field of signal processing are discussed in [13]. Various
problems of electromagnetic theory using concepts of fractional cal-
culus have been investigated by some researchers [6,14,15].
Particularly, the study of wave propagation and scattering in fractal
structures is important in practical applications such as commu-
nications, remote sensing and navigation [16], and the micro-
structural characterization of rocks for estimating oil reserves [17].
This paper deals with the application of the concept of fractional
space to theoretically investigate the transmission of electromag-
netic waves through anisotropic media such as some porous
materials. This issue has been addressed recently in a series of ar-
ticles by Zubair et al. [18–21] in which the electromagnetic
transmission is analyzed for different coordinate systems. The novelty
of our approach is that it takes into account two effects during wave
propagation: the Joule heating effect [22] and the well-known skin
effect observed in conductors [23]. The basis for the analysis is a
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recently developed model which couples Maxwell’s equations with
the heat transfer equation in a Euclidean space to simulate elec-
tromagnetic wave propagation through a biphasic medium [24].
Then, these equations are re-derived for fractional space by using
the Stillinger formalism [25]. The physics behind this mathemati-
cal formalism is to replace a real anisotropic solid (confining
structure) with an isotropic system in a D-dimensional fractional
space, where the measure of the anisotropy or confinement of the
solid is given by the value of D [26–28]. Thus, when the value of D
is given, the real system can be tackled numerically by using con-
ventional finite-difference schemes. The paper is organized as follows.
In Section 2 we describe the physical model under study. Further-
more, the thermo-electromagnetic models in Euclidean and fractional
space as well as the numerical scheme for calculations are intro-
duced. In Section 3 numerical results are presented. Finally, some
concluding remarks and discussions are drawn in Section 4.

2. Description of the phenomenon

The physical model under study is shown in Fig. 1. We consider a
cylindrical electrical conductor composed of an anisotropic medium
with constant physical properties. This conductor has a length L and
the conductive phase is bounded at a radius R. A sudden flow of alter-
nating electric current through this conductor is established. Thus, a
rise of temperature is originated as a result of the electric current, causing
the well-known Joule’s effect. For large values of the frequency asso-
ciated with the alternating current, a redistribution of the current density
is inevitable and the skin effect yields a tendency of the electric current
to flow over the surface of the conductor.

2.1. The thermo-electromagnetic model in Euclidean space

A thermo-electromagnetic model in a Euclidean space was devel-
oped by [24] to analyze simultaneously the conjugate heat conductive
mechanism resulting from an alternating electrical current that flows
continuously through a cylindrical bimetallic conductor (two conduct-
ing phases), assuming that the electric resistivity of both phases is
linearly dependent on temperature. This model couples Maxwell’s equa-
tions with the heat conduction equation which includes a heat source
due to Joule’s effect. Please note that for this model the other physical
properties are assumed to remain constant; clearly, this is not the case.
We could, in principle, add other laws of dependence with tempera-
ture without much more difficulty. However, we chose to address this
simplified case to isolate the effect of the electric conductivity because
it is the dominant mechanism in this problem.

The following are the equations for one conducting phase assum-
ing only temperature, T, and density current, Js, variations in the radial
coordinate r (see definition of all variables in the Nomenclature):

d J
dr T T

T
r r

dJ
dr T T

T
r r

s s
2

2

2

2

2
1

1
1

1
+

+ −( )
∂
∂

+⎛
⎝⎜

⎞
⎠⎟

+
+ −( )

∂
∂

+
∂

∞ ∞

φ
φ

φ
φ

TT
r

J
i

Js s∂
⎡
⎣⎢

⎤
⎦⎥

=
2

2δ
(1)

and

k
r r

r
T
r

T T J c
T
t

s
∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟ + + −( )[ ] = ( ) ∂

∂∞ ∞λ φ ρ1 2 (2)

This system is subjected to the boundary conditions:
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JR, the current density at the surface of the conductor, is re-
stricted to satisfy the following condition:
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R
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In the above equations, the subscript “s” denotes the spatial de-
pendence of the current density J r t,( ), which is considered as
J J r es

i t= ( ) ω . Furthermore, we have introduced in Eq. (1) the con-
ductor skin depth parameter [28] given by δ λ ωμ= ( )2 1 2 .

On the other hand, the linear relationship between the electri-
cal resistivity and the temperature is given by λ λ φ= + −( )[ ]∞ ∞1 T T .
This assumption is frequently used in literature; its validity depends
on the type of conductor materials and the temperature range at
which the thermo-electrical transmission occurs [29,30]. Again,
please refer to Nomenclature for the definition of all variables.

2.2. The thermo-electromagnetic model in fractional-dimensional
space

A cylindrical coordinate system of the space-fractional Laplacian
operator is defined as [18]:
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where the α-parameters ( 0 1 0 11 2< ≤ < ≤α α, and 0 < α3 ≤ 1) de-
scribe the distribution of space in each coordinate independently.
The total spatial dimension of the system is D = + +α α α1 2 3 [31].

In this study only the variations of the temperature and current
density in the radial direction are considered. Therefore, the de-
rivatives with respect to Φ and z coordinates are assumed to be zero.
Furthermore, if we set α2 = 1 and α3 = 1, the Laplacian operator (7)
becomes:
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For simplicity, we will use from now on the Laplacian defined
by Eq. (8). In order to reduce the number of physical parameters
of the proposed model, the following dimensionless variables and
parameters are introduced:Fig. 1. The physical model of the considered conductor.
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Substituting Eqs. (8) and (10) into Eqs. (1) and (2), we can obtain
the dimensionless thermo-electromagnetic model in fractional space:
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These equations are solved, subjected to the following bound-
ary conditions:

at finite finiteη ϕ θ= = =0: , (13)

at η ϕ θ
η

θ= =
∂
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= −1 1: , Bi (14)

and to the initial condition,

τ θ= =0 0: . (15)

Note that when substituting α1 = 1 into Eqs. (11) and (12), the
thermo-electromagnetic model in the Euclidean space is recov-
ered. The system of equations defined by the set (11)–(15) is
influenced by three parameters: κ, ε and α1. For the sake of nota-
tional simplicity, the parameter α1 is henceforth replaced just with
α. The dimensionless parameters ε and κ are introduced to quan-
tify the electrical thickness of the current density and the level of
coupling between both electromagnetic (11) and thermal (12)
models, respectively. The parameter α describes the degree of an-
isotropy of the medium in the radial direction [26].

2.3. Numerical scheme

The above dimensionless electromagnetic and heat conduction
equations, together with their boundary and initial conditions, here
represented by the system of Eqs. (11)–(15), were solved by using
an iterative and conventional finite-differences method [32]. The nu-
merical procedure is based on the following steps:

1. Recognizing that Eq. (11) is complex because its right-hand side
includes, as a factor, the imaginary number i, we separate for each
region the electrical current density φ, in a real part, φR, and an
imaginary part φI, through the relationship φ = φR + iφI. After this,
the resulting equation is discretized together with the bound-
ary conditions (13) and (14) by using central differences. In this
form, we can construct a matrix system which can be solved with
the aid of the Gauss elimination method.

2. On the other hand, the corresponding equation for the thermal
model given by Eq. (12) together with the boundary and initial
conditions (13)–(15) requires a different treatment. In this case,
the equations represent a non-stationary problem and there-
fore, the numerical procedure is based on the well-known Crank–
Nicolson method that is a finite-difference method widely used
for numerically solving the heat equation. In this manner, we
obtain a tridiagonal matrix which is solved by using the tridiagonal
matrix algorithm (TDMA), also known as the Thomas algorithm.

3. Finally, we introduce the following iterative scheme: consider-
ing a uniform profile for the temperature, we solve the electrical
current density. In this manner, we can obtain the modulus or
absolute value of this function. Introducing the above result into

Eq. (12), we obtain the first nonuniform temperature profile.
Again, we can obtain a new current density and the foregoing
procedure is repeated until a convergence criterion has been ful-
filled. Normally, this criterion is based on comparing the
temperature and current density profiles. To validate our nu-
merical solution, we compare the results with those of an analytic
solution of the system. For the case when κ = 0, an analytic so-
lution can be obtained, as described in the Appendix.

3. Results

3.1. Effect of α

The value of the fractal dimension α was varied, in the range [0,1],
in order to observe its effect on the current density and the tem-
perature distributions through the porous medium. Even though the
values α = 0 and α = 1 are not fractional, they were included in the
results as mathematical limits corresponding to Euclidean spaces
described by Cartesian and cylindrical coordinates, respectively.

Figs. 2 and 3 show the transient temperatures for different values
of the fractal dimension α. Fig. 2 displays the dimensionless tem-

Fig. 2. Transient dimensionless temperatures at the center of the porous medium
for different values of the fractal dimension. Results computed from the uncoupled
model, κ = 0.

Fig. 3. Transient dimensionless temperatures at the center of the porous medium for
different values of the fractal dimension. Results computed from the coupled model, κ = 1.
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perature at the center of the porous medium from the uncoupled
model (κ = 0); clearly, all solution curves for fractional values of α
lie between the Euclidean limits (α = 0, α = 1). It is also observed
that the transient response is shorter as the fractal dimension in-
creases. This makes sense since the anisotropy of the medium in
the radial direction decreases with increasing the fractal dimen-
sion, thus enhancing the diffusion heat transfer process. Conversely,
as the fractal dimension is reduced the heat transfer is weakened.
Also, it should be noted that the steady state temperatures grow
with the fractal dimension in a non-linear fashion; this is de-
picted in the inset of Fig. 2.

Fig. 3 shows the results from the coupled model (κ = 1). As in the
previous case, the duration of the transient response of tempera-
ture decreases with increasing the fractal dimension. However, unlike
the uncoupled model, the steady state temperature, θs, reaches a
maximum value at α = 0.5, see inset in Fig. 3. In all cases the steady
temperature reached in the coupled case is higher due to the in-

crement of the resistivity with temperature and therefore the
increase of the heat generated by Joule’s effect.

Fig. 4 shows the dimensionless temperature profiles at steady
state for different values of α. For κ = 0 the temperature profiles lie
in between the limiting curves for the Euclidean cases α = 0 and α = 1.
Clearly, the fractal dimension affects the temperature distribu-
tion; the profiles are progressively and uniformly displaced upwards
as α approaches unity. Consequently, the top curve of tempera-
ture corresponds with α = 1. Nevertheless, an unexpected behavior
is observed in the results from the coupled model. In this case, the
temperature profiles are displaced upwards as α is increased from
0 to values close to 0.5, then, the profiles are displaced down-
wards as α increases up to one.

Fig. 5 depicts the relationship between the distribution of di-
mensionless current density and the fractal dimension at steady state.
For both the coupled and uncoupled models, the electromagnetic
wave penetrates more deeply into the medium as α increases; the
skin effect is accentuated for α values tending to zero since the an-
isotropy of the medium in the radial direction increases with

Fig. 4. Dimensionless temperature profiles for different values of the fractal dimen-
sion: (a) uncoupled model, κ = 0; (b) coupled model, κ = 1.

Fig. 5. Dimensionless current density distribution for different values of the fractal
dimension: (a) uncoupled model, κ = 0; (b) coupled model, κ = 1.
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decreasing α. The influence of the κ parameter is to re-distribute
the current density in the conductive medium. Higher current den-
sities are predicted from the coupled model (κ = 1) that takes into
account the changes of resistivity of the porous medium with
temperature.

3.2. Effect of κ

In order to isolate the effect of the coupling parameter (κ), nu-
merical results were obtained from the coupled (κ = 1) and uncoupled
models (κ = 0) keeping the value of the fractal dimension, α = 0.5,
constant.

Fig. 6 illustrates the coupling parameter effect on the duration
of the transient state and on the maximum temperature at the steady
state. In the case κ = 1, the resistivity of the medium varies lin-
early with temperature; thus, when resistivity increases the
generated heat increases as well and the steady state temperature
predicted by the coupled model is higher than that for κ = 0. On the
other hand, for the uncoupled model, the duration of the tran-
sient state is shorter than that from κ = 1. This is because the heat
generation term for κ = 0 remains constant and smaller compared
with the coupled model.

Figs. 7 and 8 show the effect of the coupling parameter κ on the
shape and location of the current density profiles and tempera-
ture during transients. As expected, for the uncoupled model, the
dimensionless temperature reaches lower values than those pre-
dicted from the coupled model, and the current density distribution
remains invariant as shown in Fig. 7a. In contrast, when the pa-
rameter κ = 1, the medium is heated up and a redistribution in
current density is predicted due to local changes in resistivity with
temperature, see Fig. 7b. The influence of the κ parameter on the
temperature profiles is clearly shown in Fig. 8; for both cases κ = 0
and κ = 1, the profiles are progressively and uniformly displaced
upwards as time approaches the steady-state.

The heat transfer from the porous medium to the environment
can be expressed as follows:

�q h T T= −( )∞ (16)

or in dimensionless form

�q
h TcΔ

=θ . (17)

This expression tells us that the rate of heat transfer is, in fact,
the dimensionless temperature at the surface. Fig. 9 shows the re-
lationship between the surface temperature at steady state and the
fractal dimension. For the uncoupled model, the highest rate of heat
transfer occurs for the Euclidean limit α = 1 for which, as men-
tioned above, there is no anisotropy in the radial direction. It is
worthy to note that the nonlinear trend of the surface tempera-
ture versus α is similar to that shown in the inset of Fig. 2. For the
coupled case κ = 1, the dependence of the surface temperature as
a function of α reveals a parabolic-like trend with a maximum for
α = 0.5, see Fig. 10. According to Fig. 4b, this parabolic behavior would
be similar at any position along the η coordinate. This is con-
firmed, for instance, by the plot in the inset of Fig. 3. This non-
monotonic behavior is intriguing and unexpected. Clearly, in order

Fig. 6. Effect of κ parameter on transient dimensionless temperatures at the center
of the porous medium.

Fig. 7. Evolution in time of the dimensionless current density distribution: (a) un-
coupled model, κ = 0; (b) coupled model, κ = 1.

533F.A. Godínez et al./Applied Thermal Engineering 93 (2016) 529–536



to validate this trend, comparisons of the prediction with experi-
mental data would have to be conducted. To our knowledge, such
data do not exist in the literature. We thus have to defer such val-
idation for the future. In the following section we offer a physical
interpretation of this behavior.

4. Concluding remarks and discussion

A nonlinear space-fractional model that describes the com-
bined effect of heat transfer and transmission of an electromagnetic
wave through an anisotropic medium was studied. The influence
of two key parameters was revealed from numerical simulations.
The fractal dimension, denoted by the parameter α, was varied as
α = (0.0, 0.3, 0.5, 0.7, 1.0); where the values α = 0.0 and α = 1.0 refer
to Euclidean limits in Cartesian and cylindrical coordinates, respec-
tively. The parameter κ was introduced to couple (κ = 1)/uncouple
(κ = 0) the thermal and electromagnetic models. Although all results
were obtained in dimensionless terms, predictions could be ob-
tained for a real material if the values of the physical properties are
known.

The relevant results are summarized as follows:

1. Transient state
• The dimensionless current density distribution remains in-

variant for the uncoupled model. However, for κ = 1 the current
density is redistributed due to local changes in resistivity with
temperature.

• The duration of the transient response of temperature de-
creases progressively with increasing α; this behavior is
observed in both cases κ = 0 and κ = 1. This result is expected
since the anisotropy of the medium in the radial direction de-
creases with increasing α.

2. Steady state
• The current density profiles from coupled and uncouple models

show that the depth penetration of the electromagnetic wave
increases with α.

• When α decreases toward zero, the anisotropy of the medium
becomes increasingly strong and the skin effect in the con-
ductor is accentuated.Fig. 8. Temporal evolution of the temperature profile during transient state at the

center of the conductive medium: (a) uncoupled model, κ = 0; (b) coupled model,
κ = 1.

Fig. 9. Dimensionless heat transfer to the environment as a function of the fractal
dimension from the uncoupled model.

Fig. 10. Dimensionless heat transfer to the environment as a function of the fractal
dimension from the coupled model.
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• When the heat and wave equations are uncoupled, the tem-
perature at steady state increases monotonically with α
reaching a maximum at α = 1; this behavior is consistent along
the radial direction of the conductor.

• Surprisingly, when κ = 1, the temperature at any location along
the radial axis follows a parabolic-like trend with a maximum
at α = 0.5.

Clearly the fractal dimension α plays an important role in the
transmission of electromagnetic waves. According to the used for-
malism, α represents a parameter by which the complexity of an
anisotropic medium can be quantitatively measured and modeled
in a simple way. In other words, the non-local property of the fractal
Laplacian allows to model the dynamics of complex processes such
as heat/electromagnetic-wave transmission through a medium with
long-range interactions. Our simulations reveal that α strongly affects
the distribution and shape of the current density profiles as well
as the heat conduction process related to the current transmis-
sion. In summary, our numerical results can be interpreted from two
perspectives:

(i) Firstly, in physical terms, as α increases from 0 to 1, the degree
of anisotropy of the medium decreases, and consequently the dif-
fusion heat transfer process is enhanced while the skin effect is
accentuated. Alternatively, a physical interpretation can be drawn
by analyzing the form of the fractal Laplacian at the limiting values
of α. This operator appears in both the heat conduction Eq. (12) and
the wave equation deduced from Maxwell’s equations [24],
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Hence, the scheme proposed here models the process of coupling-
uncoupling of Eqs. (12) and (18). For α = 0, the Laplacian reduces
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, which indicates, in accordance with Eq. (12), a purely

diffusive process.
On the other hand, when α = 1, the Laplacian becomes:
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In addition to the first diffusive term in the right hand side of
Eq. (19), the second term can be associated with a convective process.
So, in the range 0 ≤ α ≤ 1, Eq. (12) represents a family of fractional
equations whose solutions have intermediate behaviors in between
a convection-diffusion equation (α = 1) and a purely diffusion equa-
tion (α = 0). Note that, in all cases, a non-linear source of heat due
to Joule’s effect also affects the solutions.

In the same manner, the fractional wave Eq. (18) can be inter-
preted as an intermediate state between a wave equation with a
linear convection term (α = 1) and a classical wave equation (α = 0).
Similar arguments and interpretations have been previously dis-
cussed by others [33,34].

(ii) Secondly, in mathematical terms, the gradual increase of α
from 0 to 1 implies a gradual shift from one Cartesian coordinate
system to a cylindrical one, and in between these two Euclidean
limits there are an infinite number of fractional intermediate cases.
From a purely mathematical point of view, it is not trivial to predict
the behavior of such fractional states. Our numerical results are useful
to gain some insight about the nature of the solution of these fractal
equations.

In our opinion, all above numerical results need to be evalu-
ated experimentally on anisotropic conductors as a prior step to
develop potential applications. As future work, we plan to include
two more fractal dimensions to quantify anisotropies in the angular
(Φ) and longitudinal (z) directions of a cylindrical conductor, which

may result in a more realistic description. Our model could also be
used to study other exotic materials; for instance, the behavior of
a negatively coupled system (κ = −1, resistivity decreases with tem-
perature) could be studied.
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Appendix

Analytical solutions for the uncoupled electric model (κ = 0)

When κ is set to zero, the thermal and electromagnetic effects
are uncoupled. Therefore Eq. (11) can be written as:
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Eq. (A1) is, in fact, a transformed version of the Bessel differen-
tial equation given by Bowman [35]. Thus, after taking into account
the conditions (A2) and (A3), the particular solution of Eq. (A1) in
a Euclidean space, i.e. α = 1, is:
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The curve from Eq. (A4) is shown in Fig. A1. This curve repre-
sents an upper bound of the possible solutions of Eq. (A1). Although
in general α > 0, as defined in [18] and [31], it is useful to find a

Fig. A1. Dimensionless current density distribution φ as a function of the radial co-
ordinate η for three values of the parameter α. Open symbols: numerical simulations.
Solid lines: analytical solutions.
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particular solution of Eq. (A1) for α = 0. The solution can readily be
found:

ϕ η
ε

η
ε

η( ) = +( )⎛
⎝⎜

⎞
⎠⎟

+( )⎛
⎝⎜

⎞
⎠⎟ ≤ ≤cosh

i
sech

i1 1
0 1, (A5)

This solution, also shown in Fig. A1, corresponds to a lower bound
solution of the general case. Thereby, the particular solutions of Eq.
(A1), for fractional α, lying in between the upper and lower bound
solutions, are of the form

ϕ η ε
η

ε

η

α

( ) =
−( )⎛

⎝⎜
⎞
⎠⎟

−( )⎛
⎝⎜

⎞
⎠⎟

< ≤

−
n J

i

J
i

n

n

1
2 2 1

1
0 1, (A6)

where n = −α 1
2

.

Clearly, as shown in Fig. A1, the agreement between the numer-
ical and analytical solutions for κ = 0 is excellent. This comparison
validates, to some extent, our finite difference scheme.

Nomenclature

Variable Name, units

Bi Biot number Bi
hR
kef

=

c Specific heat
J

Kg°
⎡
⎣⎢

⎤
⎦⎥C

D Total fractal dimension

h Convective coefficient
W

m2 °
⎡
⎣⎢

⎤
⎦⎥C

I Electrical current [A]
i Imaginary number −1

Js Current density
A

m2
⎡
⎣⎢

⎤
⎦⎥

J0, Jn Bessel functions

k Thermal conductivity
W

m°
⎡
⎣⎢

⎤
⎦⎥C

q Generated heat
W
m3
⎡
⎣⎢

⎤
⎦⎥

R Conductor radius [m]
r Radial coordinate [m]
T Temperature [ °C ]
ΔTc Characteristic temperature [ °C ]
t Time [s]
z Axial coordinate [m]

Greek symbols
α Fractal dimension in radial direction

γ Electric permittivity
F
m
⎡
⎣⎢

⎤
⎦⎥

δ Skin depth δ λ
ωμ

= [ ]2
m

ε Skin parameter

ϕ Temperature coefficient
1
°
⎡
⎣⎢

⎤
⎦⎥C

φ Dimensionless current density
η Dimensionless radial coordinate
κ Coupling parameter
λ Electric resistivity [Ωm]

μ Magnetic permeability
J

A m2
⎡
⎣⎢

⎤
⎦⎥

θ Dimensionless temperature

ρ Density
Kg
m3
⎡
⎣⎢

⎤
⎦⎥

τ Dimensionless time 20

ω Angular frequency
rad

s
⎡
⎣⎢

⎤
⎦⎥

Subscripts
∞ Environmental conditions
R Evaluated at conductor surface
s At steady state
Tot Total
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