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Electronic transport andwavefunction localization are two closely related phenomena, but their behavior in truly
macroscopic aperiodic lattices is a non-widely addressed issue.We study in this article the electrical conductivity
of generalized Fibonacci (GF) lattices through the Kubo-Greenwood formula, while the localization of electronic
wavefunction is analyzed bymeans of the Lyapunov exponent and participation ratio (PR). For periodic chains, an
analytical expression of the Lyapunov exponent is obtained. We have also developed for the first time a real-
space renormalizationmethod to calculate the PR ofmacroscopic GF lattices described by tight-binding Hamilto-
nians. Moreover, we report a novel unified renormalizationmethod for the Kubo-Greenwood formula applied to
GF chains. For quasiperiodic lattices, the results reveal a power-law decay of the spectral averages for both PR and
DC conductivity when the system length increases. In addition, we present a systematic analysis of the AC con-
ductivity spectra observing truly large resonant peaks in comparison to the ballistic one. The electrical conduc-
tance of GF nanowires is also investigated. Finally, the results suggest that PR could not be proper for the
analysis of critically localized states.
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1. Introduction

The structural disorder of a solid can profoundly modify the nature
of electronic states. It is well known that they are all extended in period-
ic lattices and exponentially localized in random-disordered systems of
one and two dimensions [1]. However, the degree of localization in
other non-periodic systems is still an unclear subject. In fact, delocalized
electronic states are found in one-dimensional systems with correlated
disorder [2,3] and some of these results have been experimentally con-
firmed [4,5].

Nowadays, the study of electronic states in artificial structures is of
great importance in condensed matter physics, because they introduce
many new physical properties essential for technological applications
of atomic-scale devices. These structures can be multilayers, quantum
wires, rings, or dots, etc. In particular, quasiperiodic and aperiodic sys-
tems become a subject of remarkable interest since the discovery of
quasicrystals [6] and the fabrication of high-quality superlattices includ-
ing quasiperiodic ones [7], whose Raman spectrum has a good agree-
ment with the theory [8]. Much attention has been devoted to the
Fibonacci lattice, because it provides a prototype structure for studying
quasiperiodic systems and possesses critically localized electronic states
[9]. The corresponding energy spectrum is neither absolutely continu-
ous nor pure point, but singular continuous [10].
There is a generalization of the Fibonacci sequence obtained by the
substitutions A→AmBn and B→A, where m and n are positive integer
numbers. The symbol Am represents a string of m A's. The original
Fibonacci sequence is recovered whenm=n=1 and generalized ones
with mN1 and n=1 are called precious means, while metallic means
stand for sequences with m=1 and nN1 [11]. Along last two decades,
the electronic, vibrational, and optical properties of generalized
Fibonacci (GF) lattices have been investigated [11–14]. In particular,
real-space renormalization-group methods based on the decimation
technique were developed for calculating the local density of states at
any given site [15] and the average Green's functions [16] of several
macroscopic GF lattices. Moreover, the total density of states and the
electrical conductivity inmixing Fibonacci chainswithm=n=1 are in-
vestigated [17], and the alternating current (AC) of transparent states is
also analyzed [18] observing a decreasing oscillatory behavior as oc-
curred in periodic lattices, in contrast to the resonant AC conduction
found at bandgap energies [19].

In this article, we report a detailed analysis of the electrical conduc-
tivity, Lyapunov coefficient, and participation ratio (PR) of GF lattices
with macroscopic length. This analysis was carried out by means of a
real-space renormalizationmethod capable to address trulymacroscop-
ic systems without introducing any additional approximations, whose
mathematical formulations are presented in Appendices A, B and C.
Wewill introduce the GF sequences in section two, and define the local-
ization and transport physical quantities in section three. The results of
both direct current (DC) conductivity and thewavefunction localization
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are presented in section four, while the AC conduction is investigated in
section five.We further discuss the electronic transport and localization
in GF nanowires with a square cross-section in section six. Finally, the
conclusions of this study are given in section seven.

2. Generalized Fibonacci sequences

The Fibonacci chains can be studied in several forms, for exam-
ple, by using two sorts of bonds (bond problem), two kinds of
atoms (site problem) or a combination of both (mixing problem)
[17]. In this paper, we analyze the bond problem, in which two
hoping integrals, tA and tB, are arranged following the GF sequences
and the nature of atoms are assumed to be the same with a null self-
energy. The GF sequences (Sl) can be built by using the following
addition scheme [13,20],

S0ðm;nÞ ¼ fBg; S1ðm;nÞ ¼ fAg;
and Slðm;nÞ ¼ Sml�1ðm;nÞ⊕ Snl�2ðm;nÞ; ð1Þ

where l is the generation index, m and n are positive integers that
define the type (m,n) of GF sequences. For example, S2(2,1)=
{AAB} and S3(2,1)={AABAABA}. These Sl(m,n) can also be obtained
by the substitution rules given by [20,21]

A→AmBn and B→A; ð2Þ

which may be rewritten by using the substitution matrix (M) as
[22]

A
B

� �
→M A

B

� �
¼ m n

1 0

� �
A
B

� �

¼
AA⋯A
⏟m

BB⋯B
⏟n
A

 !
:

ð3Þ

MatrixM has the following eigenvalues (λ±),

m−λ n
1 −λ

����
���� ¼ 0 ⇒λ2−mλ−n ¼ 0

⇒ λ� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4n

p

2
:

ð4Þ

For n=1, Eq. (4) leads to λ+N1 and |λ−|b1, which fulfill the Pisot
condition [22,23].

Moreover, the determinant of M,

m n
1 0

����
���� ¼ −n; ð5Þ

is unimodular if n=1. Hence, the corresponding sequence is called qua-
siperiodic and possesses Bragg-peak diffraction spectra, because both
the Pisot eigenvalue condition and the unit-determinant requirement
of M are satisfied [24]. Conversely, the GF sequences with n≠1 do not
satisfy the Pisot condition neither the unit-determinant requirement,
thus they are not quasiperiodic. Among non-quasiperiodic structures,
the Thue-Morse sequence is anotherwidely studied one, since it accom-
plishes the Pisot condition but has a non-unimodular substitution ma-
trix; in consequence, it is not quasiperiodic neither [25].

The total number of A and B in Sl(m,n), denoted by Fl (m,n), satisfies
the relation

Flðm;nÞ ¼ mFl−1ðm;nÞ þ nFl−2ðm;nÞ ð6Þ

with F0(m,n)=F1(m,n)=1. At the limit of infinite length, the ratio of
Fl (m,n) for subsequent generations defined as

τðm;nÞ ≡ lim
l→∞

Flþ1ðm;nÞ
Flðm;nÞ ð7Þ
satisfies the quadratic equation τ2−mτ−n=0, whose positive solu-
tion is

τðm;nÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4n

p

2
: ð8Þ

In fact, the irrational number τð1;1Þ ¼ ð1þ
ffiffiffi
5

p
Þ=2 is referred as the

goldenmean,τð2;1Þ ¼ 1þ
ffiffiffi
2

p
as the silvermean,τð3;1Þ ¼ ð3þ

ffiffiffiffiffiffi
13

p
Þ=2

as the bronze mean, τ(1,2)=2 as the copper mean, and τð1;3Þ ¼ ð1þffiffiffiffiffiffi
13

p
Þ=2 as the nickel mean.
Both substitution and addition methods for the nine GF se-

quences, withm and n=1, 2 or 3, analyzed in this paper are sum-
marized in Table 1. Segments of these GF chains for the bond
problem are illustrated in Fig. 1, where the initial conditions were
S0(m,n)={B} and S1(m,n)={A}. Notice that for a given generation
l, a GF chain of type (3,3) has more atoms than a standard Fibonacci
chain with (1,1).

In the next section,we describe themodel used for the study of elec-
tronic transport and localization of wavefunctions in GF chains defined
in this section.

3. Modeling electronic transport and localization

In order to isolate the quasicrystalline effects on the physical proper-
ties of GF chains, let us consider a single-band tight-binding Hamiltoni-
an (H) given by

H ¼ ∑
bi; jN

ti; j jiN b jj þ j jN bijf g; ð9Þ

where | j〉 represents theWannier function of atom jwith null self-ener-
gy and ti ,j is the hopping integral between nearest-neighbor sites i and j,
indicated by 〈i, j〉, which may be tA or tB arranged according to the GF
sequences.

The density of states (DOS) can be calculated bymeans of the retard-
ed single-electron Green's function (G) [26],

DOS Eð Þ ¼ −
1
π

lim
η→0þ

ImTr G E þ iηð Þ½ �; ð10Þ

where η is the imaginary part of energy (E) and the Green's function is
determined by the Dyson equation given by (E−H)G=1.

The electronic wavefunction (jψN ¼ ∑
j
c jj jN) satisfies the stationary

Schrödinger's equation, which for both periodic or non-periodic chains
described by Hamiltonian (Eq. (9)) can be written as

C jþ1 ¼ T jC j; ð11Þ

where

T j ¼ E=t j; jþ1 −t j; j−1=t j; jþ1
1 0

� �

and C j ¼ c j
c j−1

� � ð12Þ

are respectively the transfer matrix and amplitude vector of the
wavefunction. The amplitude vectors of atoms at the begin and end of
the chain are related by the product of transfer matrices,

TNT lð ÞT1 ≡ TN ∏
N−1

j¼2
T j

 !
T1 ¼ τ11 τ12

τ21 τ22

� �
; ð13Þ

where N is the number of atoms in the chain of generation l,

T lð Þ ¼ ∏
N−1

j¼2
T j; ð14Þ



Table 1
Substitution and addition rules for the GF sequences of type (m, n).

n = 1 n = 2 n = 3

m = 1 A→AB & B→A A→ABB & B→A A→ABBB & B→A
Sl=Sl−1⊕Sl−2 Sl=Sl−1⊕2Sl−2 Sl=Sl−1⊕3Sl−2

m = 2 A→AAB & B→A A→AABB & B→A A→AABBB & B→A
Sl=2Sl−1⊕Sl−2 Sl=2Sl−1⊕2Sl−2 Sl=2Sl−1⊕3Sl−2

m = 3 A→AAAB & B→A A→AAABB & B→A A→AAABBB & B→A
Sl=3Sl−1⊕Sl−2 Sl=3Sl−1⊕2Sl−2 Sl=3Sl−1⊕3Sl−2
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and the transfer matrices that connect the system to the semi-infinite
periodic leads with null self-energies and hopping integrals t are

T1 ¼ E=t1;2 −t=t1;2
1 0

� �

and TN ¼ E=t −tN−1;N=t
1 0

� �
:

ð15Þ

From Eq. (13), the transmittance (T) of a linear chain is given by [27]

T Eð Þ ¼
4−

E
t

� �2

τ21−τ12 þ ðτ22−τ11ÞE
2t

� �2
þ τ22 þ τ11ð Þ2

�
1−

E2

4t2

� : ð16Þ

The electrical conductance (g) can be calculated through the
Landauer formula [28]

g Eð Þ ¼ 2e2

h
T Eð Þ ¼ g0T Eð Þ; ð17Þ

where g0≡2e2/h is the quantum of conductance.
The localization of wavefunction can be analyzed by looking at the

Lyapunov coefficient (γ) and the participation ratio (PR), which are re-
spectively defined by [27]

γ Eð Þ ¼ 1
N
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21;1 þ τ21;2 þ τ22;1 þ τ22;2

q

and PRðEÞ ¼ ∑
N

j¼1
cjðEÞ
�� ��4 !�1

:
ð18Þ

In general, the inverse of γ is interpreted as the localization length if
the wavefunction is exponentially localized. On the other hand, PR
counts the number of atoms that contributes to a normalized
wavefunction, e.g., PR=N for a fully extended state and PR=1 for a
wavefunction with amplitude only at a single atom.

Within the linear response theory, the electrical conductivity can be
calculated by means of the Kubo-Greenwood formula [29],

σðμ;ω; TÞ ¼ 2e2ℏ
Ωπm2 ∫

∞

−∞
dE

f Eð Þ− f E þ ℏωð Þ
ℏω

� Tr p ImGþ E þ ℏωð Þ p ImGþ Eð Þ� 	 ; ð19Þ

where Ω is the system volume,
p ¼ im

ℏ ½H; x� ¼ ∑ jft j; jþ1j jN b jþ 1j � t j; j�1j jN b j� 1jg is the projec-
tion of the momentum operator along the applied electrical field,
G+(E)=G(E+ iη) is the retarded one-particle Green's function, and
f (E)={1+ exp[(E−μ)/kBT]}−1 is the Fermi-Dirac distribution with
the chemical potential μ and temperature T.

For a periodic linear chain of N atoms with null self-energies and
hopping integral t, connected to two semi-infinite periodic leads with
the same t, the AC conductivity at zero temperature has an analytical so-
lution of [30]

σPðμ;ω;0Þ ¼ 8e2t2a
π N−1ð Þℏ3ω2

1−
μ
2t


 �2� �

� 1−cos
N−1ð Þℏω

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− μ=2tð Þ2

q
2
64

3
75

8><
>:

9>=
>;;

ð20Þ

when −2 |t |≤μ≤2 |t |. In particular, its DC conductivity for ω→0 is

σP ≡ σPðμ;0;0Þ ¼ e2a
πℏ

N−1ð Þ: ð21Þ

It is easy to verify that σP(μ,ω, 0)≤σP for −2 | t |≤ μ≤2 | t |.
Analytical solutions can also be found for the density of states

DOSðEÞ ¼ N ðπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 t2−E2

p
Þ
−1

, the participation ratio PR(E)=N and the
Lyapunov coefficient

γp Eð Þ ¼ 1
2N

ln 2þ E2

t2
f N−1ð Þ þ 2

XN−2

i¼0

f ið Þ
" #( )

ð22Þ

where

f Jð Þ ¼
XJ=2b c

l¼0

−1ð Þl J−lð Þ!
l! J−2lð Þ!

E2

t2
−2

 ! J−2l

: ð23Þ

However, there are no general analytical solutions for these physical
quantities in long GF chains and they are calculated in this article by
means of the real-space renormalization method, whose procedure
can be illustrated for the case of transfer matrix, by using the method
of addition given by Eq. (1) and by taking the advantage of the associa-
tivity of matrix products. For example, the transfer matrix of a (m,n)-
type GF chain of generation l can be calculated by

T lð Þ ¼ T l−2ð Þ½ �nTM T l−1ð Þ½ �m; ð24Þ

where the middle connecting matrix (TM) is given by

TM ¼ E=tA −tM=tA
1 0

� �
ð25Þ

being tM=tA if l is odd and tM=tB if l is even. In otherwords, the transfer
matrix of generation l can be obtained just by multiplying n times the
transfer matrix of generation l−2 and m times the transfer matrix of
generation l−1. Nevertheless, the formulation of this renormalization
procedure for the DOS and PR is considerably more complex, whose
mathematical details are respectively given in Appendices A and B. It
is worth mentioning that once these new renormalization methods
are developed, the computing time is proportional to the generation
number l, i.e., it is proportional to the logarithm of the system length.

In the next section, we present the results of DOS, DC conductivity,
Lyapunov coefficient, and participation ratio for the nine GF chains of
type (m,n) with m and n equal to 1, 2, or 3.

4. Localization and DC conductivity

In order to study macroscopic GF chains with lengths of 108 atoms,
different generation numbers (l) are chosen for each type of GF chains,
as specified in Table 2.



Fig. 1. Segments of generalized Fibonacci chains of type (m,n) defined by Eq. (2) for the bond problem with m and n equal to 1, 2, or 3. Two hopping strengths of bonds, tA and tB, are
indicated.

Table 2
Number of atoms in (m,n)-type GF chains of generation l.

N n = 1 n = 2 n = 3

m = 1 433,494,438 for l = 42 357,913,942 for l = 29 315,732,482 for l = 24
m = 2 318,281,040 for l = 23 268,377,089 for l = 20 581,130,734 for l = 19
m = 3 239,244,623 for l = 17 253,841,390 for l = 16 187,869,862 for l = 15
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For the sake of simplicity, a uniform bond length (a) is taken and
the aperiodicity is introduced through the order of hopping integrals
tA and tB. Two semi-infinite periodic leads with null self-energy and
hopping integral t are connected to the ends of all analyzed GF
chains. In these leads, a phase difference of ei θ between the
wavefunction amplitudes of nearest-neighbor sites is considered,
where θ satisfies the dispersion relation E=2tcosθ. In Fig. 2(a)–(l),
spectra of the density of states (DOS), zero-temperature DC conduc-
tivity [σ=σ(μ, 0,0)], Lyapunov coefficient (γ) and participation ratio
(PR) are plotted as functions of the chemical potential (μ) for the
three GF chains with n=1, null self-energies, hopping integrals of
tA=0.8 t and tB= t. The lengths of these chains are given in Table 2.
The used imaginary part of the energy is η=10−5 | t | for DOS in
Fig. 2(a–c), η=10−15 | t | for their magnifications in Fig. 2(a′–c′),
and η=10−13 | t | for σ in Fig. 2(d–f). Grids of 400,000 and of
1,594,324 chemical potentials are respectively used for plotting
Fig. 2(a-i) and (j-l).

Notice that all spectra of DOS , σ , γ, and PR show the same band-
gap structure for each type of GF chains. In particular, the inverse of
Lyapunov coefficient (γ−1) of Fig. 2(g–i) reveals localization lengths
very close to those of the periodic chain (γP

−1). Such behavior is
confirmed by the almost ballistic DC conductivity (σP) in each
minibands, in contrast to a general small PR values. In fact, they are
even smaller when tA diminishes, contrary to practically unchanged
σ and γ−1 values in each miniband whose bandwidth decreases
with tA. Magnifications of DOS spectra around μ=0 are further pre-
sented in Fig. 2(a′–c′) and they confirm the fractal nature of these
spectra from quasiperiodic chains [9].

It is worth mentioning that the DOS spectrum of Fig. 2(b) for the
silver mean is very close to the band structure reported in Ref. [31],
in which the total band width is slightly larger than ours since their
hopping integrals were tA= t and tB=0.8 t. In addition, the silver
mean sequence of Ref. [31] is an isomer of ours, i.e., instead of
A→AAB they used a substitution rule of A→ABA. In fact, the three iso-
mers of the silver mean have almost the same DOS spectra. However,
the localization nature of their states could be very different. For
example, there are analytical solutions for the transmittance (T) at
E=0 and they are

TðE ¼ 0; lÞ ¼
4 χp þ χ−pð Þ−2

; for isomer A→AAB

4ðχl þ χ−lÞ−2
; for isomer A→ABA

4 χp þ χ−pð Þ−2
; for isomer A→BAA

8><
>: ; ð26Þ

where χ= tA/tB, p=[1− (−1)l]/2 and l is the generation number.
Notice that for the case A→ABA and χ≠1, T(E=0, l)→0 when l→∞.
But for the isomers A→AAB and A→BAA, T(E=0, l)=1 when l is an
even number, regardless the value of χ. Hence, we have always
transparent states at E=0 in these two isomers with even genera-
tion numbers.

In Figs. 3 and 4, the density of states (DOS), zero-temperature DC
conductivity (σ), Lyapunov coefficient (γ) and participation ratio (PR)
as functions of the chemical potential (μ) are plotted for the GF chains
with n=2 and n=3, respectively. The parameters for numerical calcu-
lations are the same as in Fig. 2, except that the lengths of these chains
are given in Table 2.

Notice that in Fig. 3(d–f) the DC conductivity around μ=0 is almost
σP, despite of theminimumDOS at the same region observed in Fig. 3(a–
c). In Fig. 3(a′–c′), magnifications of DOS around μ=0 show oscillating
behaviors, in contrast to the fractal one observed in Fig. 2(a′–c′) for qua-
siperiodic chains.

Image of Fig. 1


Fig. 2. Density of states (DOS), DC conductivity (σ), Lyapunov coefficient (γ) and participation ratio (PR) as functions of the chemical potential (μ) for three generalized Fibonacci chains
with n=1, null self-energies, hopping integrals of tA=0.8t and tB=t.
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Contrast to Fig. 3, the high-conductivity zones in Fig. 4(d–f) are lo-
cated outside the central region, correspondingly again to small values
of DOS and an oscillating behavior as shown in Fig. 4(a′–c′). Note also
that in Figs. 3 and 4, the DC conductivity (d–f), Lyapunov (g–i) and PR
Fig. 3. Density of states (DOS), DC conductivity (σ), Lyapunov coefficient (γ) and participation
with n=2, null self-energies, hopping integrals of tA=0.8t and tB=t.
(j–l) spectra possess almost the same band structure with their high-
value zones located at the same energy regions. A further analysis of
PR for n=2 and n=3 reveals their practical constant values when the
hopping integral tA decreases, contrary to the decay behavior in PR
ratio (PR) as functions of the chemical potential (μ) for three generalized Fibonacci chains

Image of Fig. 2
Image of Fig. 3
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spectra of Fig. 2. This fact confirms the presence of almost extended
states around μ=0 in the (1,2) copper-mean lattice reported in refer-
ence [16].

In order to analyze the global behavior of DC conductivity (σ) and
participation ratio (PR) spectra, we introduce the spectral averages of
σ and of PR defined as

σh i ¼

Z ∞

−∞
σ μð ÞDOS μð ÞdμZ ∞

−∞
DOS μð Þdμ

and PRh i ¼

Z ∞

−∞
PR μð ÞDOS μð ÞdμZ ∞

−∞
DOS μð Þdμ

:

ð27Þ

The results of 〈σ〉 as functions of the system length (N) are shown in
Fig. 5(a–i) for the nine GF chains of Fig. 1 with hopping integrals tA=tB
(dark yellow circles), tA=0.99tB (red hexagons), tA=0.95tB (blue pen-
tagons), tA=0.9tB (orange down triangles), tA=0.85 tB (green squares)
and tA=0.8 tB (magenta up triangles). The imaginary part of the energy
was η=10−13 |t | forσ and η=10−5 |t | forDOS. Observe thatwhen the
system length grows, 〈σ〉 is a constant for the periodic case and it decays
following a power law for quasiperiodic systems with n=1 and it is
truly archived when the system size is large enough. For other six GF
systems that do not fulfill the Pisot quasiperiodic criteria, the average
conductivity decaymore slowly than the quasiperiodic systems, neither
a constant as in periodic ones.

In Fig. 6, the spectral average of participation ratio (〈PR〉) is plotted as
functions of the number of atoms (N) in the nine GF chains of Fig. 1. The
numerical calculations of 〈PR〉 were carried out by using a new
renormalization method developed for the participation ratio of GF
chains and presented in Appendix B. The parameters used in these cal-
culations are the same as in Fig. 5. Observe that the 〈PR〉 results confirm
Fig. 4. Density of states (DOS), DC conductivity (σ), Lyapunov coefficient (γ) and participation
with n=3, null self-energies, hopping integrals of tA=0.8t and tB=t.
the power-law and sub-power-law behaviors of 〈σ〉, respectively for
quasiperiodic and non-quasiperiodic systems, obtained from the
Kubo-Greenwood formula.

In order to perform an analytical and comparative study of PR at μ=
0 for (1,2)- and (2,1)-type GF chains, let us introduce the notation
PR(m,n, l) for a (m,n)-type GF chain of generation l evaluated at μ=0,
where the transfer matrices of Eq. (12) can be

0 −χ
1 0

� �
;

0 −χ−1

1 0

� �
or 0 −1

1 0

� �
; ð28Þ

with χ= tA/tB. Hence, the normalized PR for a (2,1)-type GF chain of
generation l=2k+1 with Nl atoms is given by

PRð2;1;2kþ 1Þ ¼
Xk−1

j¼−k
Λ j lð Þχ2 j

h i2
Nl

Xk−1

j¼−k
Λ j lð Þχ4 j

; ð29Þ

where Λj(2k+1)=2Λj(2k)+Λj(2k−1)−2δj ,0 andΛ−kðlÞ ¼ 1
2½3−ð−1Þl�.

At the limit of χ→0 and l→∞, we have

lim
l→∞
χ→0

PRð2;1;2kþ 1Þ ¼ lim
l→∞

Λ−k lð Þ
Nl

¼ 0: ð30Þ

In contrast, the (1,2)-type GF chain has

PRð1;2; lÞ ¼ Θ−1 lð Þχ−2 þ Θ0 lð Þ þ Θ1 lð Þχ2
� 	2
Nl Θ−1 lð Þχ−4 þ Θ0 lð Þ þ Θ1 lð Þχ4½ � ; ð31Þ

whose coefficients Θ−1,Θ0,and Θ1 are given in Table 3.
ratio (PR) as functions of the chemical potential (μ) for three generalized Fibonacci chains

Image of Fig. 4


Fig. 5. Spectral average of DC conductivity (〈σ〉) versus the number of atoms (N) for the nine generalized Fibonacci chains illustrated in Fig. 1 with hopping integrals tA=tB (dark yellow
solid circles), tA=0.99tB (red open hexagons), tA=0.95tB (blue open pentagons), tA=0.9tB (orange open down triangles), tA=0.85tB (green open squares) and tA=0.8tB (magenta open
up triangles).
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At the limit of χ→0 and l→∞, Eq. (31) leads to

lim
l→∞
χ→0

PRð1;2; lÞ ¼ lim
l→∞

Θ−1 lð Þ
Nl

¼ lim
l→∞

2Nl−2 þ Nl−3∓1
Nl

¼ 3
8
; ð32Þ

because Nl=Nl−1+2Nl−2−2 and lim
l→∞

ðNlþ1=NlÞ ¼ 2. The analytical re-

sults of Eqs. (30) and (32) confirm the numerical ones shown in Figs. 2
and 3.

5. AC conductivity

As observed in Figs. 2, 3 and 4, there are many peaks in DC con-
ductivity (σ) spectra. If we choose a chemical potential (μ) located
between two successive peaks and an external alternating electrical
field with ℏω equal to the difference between their energies, a reso-
nant AC electronic transport is registered in segmented [32] and
branched nanowires [19]. In this section, we analyze such transport
in GF chains. Fig. 7 shows AC conductivity spectra in color scale ver-
sus the chemical potential (μ) and the electrical field frequency (ω)
for GF chains with tA=0.8t, tB= t (a) m=1, n=1 and l=14; (b)
m=2, n=2 and l=7; (c) m=3, n=3 and l=5. The calculations
were performed by using an imaginary part of energy η=10−15 | t |
and these GF chains are connected to two semi-infinite periodic
leads with hopping integrals of t.

Observe in Fig. 7(a) a band structure at low frequency limit similar
to that of Fig. 2(d). For several frequencies, red zones with an AC con-
ductivity larger than the ballistic one σP(μ,ω,0) of periodic chain
given by Eq. (20) can be found. For example, in Fig. 7(a) there is a reso-
nant peak of σ (μ,ω,0)=1.755σP (red bar) at ℏω=0.06123246|t | for

Image of Fig. 5


Fig. 6. Spectral average of participation ratio (〈PR〉) versus the number of atoms (N) for the nine generalized Fibonacci chains illustrated in Fig. 1with hopping integrals tA=tB (dark yellow
solid circles), tA=0.99tB (red open hexagons), tA=0.95tB (blue open pentagons), tA=0.9tB (orange open down triangles), tA=0.85tB (green open squares) and tA=0.8tB (magenta open
up triangles).
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0.11738557|t |≤μ≤0.17861803|t |, whose conductivity quickly decays
with the diminution or the increase of frequency. Close to this red bar,
there is another resonant peak of σ (μ,ω,0)=0.384σP (green bar) at
ℏω=0.06745621| t | for 0.11400161| t |≤μ≤0.18145782| t |. The first
one is originated by an interband excitation between two high DC
Table 3
Coefficients Θi of term χ i in Eq. (31) for (1,2)-type GF chains.

m=1,n=2 l even l odd

Θ−1(l) 2Nl−2−Nl−3−1 2Nl−2−Nl−3+1
Θ0(l) Nl−1−1 Nl−1−2
Θ1(l) Nl−3 Nl−3−1
conduction states at E=0.11738557| t | and E=0.17861803| t | just
located at the borders of a bandgap, while the second one is due to
third neighbor peaks of high DC conductions located at E=
0.11400161 | t | and E=0.18145782 | t |. In fact, there are resonant
AC conductions when ℏω is equal to the energy difference corre-
sponding to DC conductivity peaks separated by an even number of
peaks in the DC conductivity spectrum, as shown in Fig. 3 of Ref.
[19]. Furthermore, notice in Fig. 7(b) and (c) the presence of color
zones with AC conductivity 0.2σP≤σ (μ,ω, 0)≤0.9σP, caused by reso-
nances between rounded peaks shown in Figs. 3(b′) and 4(c′) sepa-
rated by an energy of the order of | t |/N, in contrast to sharp peaks in
Fig. 2(a′) leading to well defined resonant frequencies in Fig. 7(a). In
general, high resonant AC conductivities have been found at the ex-
tremes of bands.
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Fig. 8. Spectral averages of zero-temperature AC conductivity 〈σ (μ,ω,0)〉 (open circles) versu
error bars indicate the maximum and minimum AC conductivity values.

Fig. 7.AC conductivity spectra (in color scale) versus chemical potential (μ) and frequency
(ω) for generalized Fibonacci chains with (a)m=1, n=1 and l=14, (b)m=2, n=2 and
l=7, (c) m=3, n=3 and l=5.
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In order to compare the global resonant AC conduction capability in
different GF chains, we introduce a spectral average conductivity de-
fined as

bσðμ;ω;0ÞN ¼ 1
Npk−1

∑
Npk−1

j¼1
σðμ j;ω j;0Þ; ð33Þ

where Npk is the total number of peaks in the DC conductivity
spectrum, μj=(Ej+1+Ej)/2 and ωj=(Ej+1−Ej)/ℏ are respectively the
central energy and the resonant frequency of two successive DC con-
ductivity peaks with energies of Ej and Ej+1. Fig. 8 show bσ (μ,ω,0)N
(open circles) versus the number of atoms (N) in nine GF chains,
where the error bars illustrate the maximum and minimum values of
AC conductivities in each generation (l). Observe that 〈σ (μ,ω,0)〉 grows
with the number of atoms and the maximum AC conductivity can reach
to 1010 times the ballistic DC conductivity (σP) for non-quasiperiodic GF
chains of 105 atoms. In fact, the zero-temperature ballistic AC conductiv-
ity σP(μ,ω,0) of periodic chains is bounded by σP. Overall, the truly high
AC conductivities were obtained from the resonance of very sharp DC
conductivity peaks.

6. Generalized Fibonacci nanowires

The electronic transport in aperiodic nanowires with finite cross-
section can be studied by using the renormalization plus convolution
method for the Kubo-Greenwood formula and its electrical conductivity
(σ) is expressed as [30]

σðμ;ω; TÞ ¼ 1
Ω⊥

∑
β

σ jjðμ � Eβ ;ω; TÞ; ð34Þ

where σ∥ is the electrical conductivity of the parallel subsystem,Ω⊥ and
Eβ are respectively the volume and the eigenenergies of the
s the number of atoms (N) for nine generalized Fibonacci chains of type (m,n), where the
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Fig. 9. Sketch of a segment of a nanowire with a periodic cross section of 9×9 atoms, whose hopping integrals tA and tB along the longitudinal direction follow the copper-mean sequence.
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perpendicular subsystem. The electrical conductance is written as
g(μ,ω,T)≡σ (μ,ω,T)Ω⊥/Ω∥, where Ω∥ is the length of the nanowire. For
example, a nanowire with a periodic cross section of 9×9 atoms is
shown in Fig. 9, whose hopping integrals tA and tB along the longitudinal
direction of nanowire are ordered following the copper-mean sequence
with m=1 and n=2.

The zero-temperatureDC conductance (g) as a function of the chem-
ical potential (μ) is presented in Fig. 10 for nineGF nanowireswith cross
sections of 9 × 9 atoms (see Fig. 9), whose longitudinal arrangements of
hopping integrals follow the sequences shown in Fig. 1. The lengths of
these nanowires are specified in Table 2 and the Hamiltonian parame-
ters are tA=0.8 t, tB= t and null self-energies. The imaginary part of
the energy is η=10−15 | t | and Fig. 10 are plotted by using a grid of
Fig. 10. Zero-temperature electrical conductance (g) versus the chemical potential (μ) for nin
energies, whose longitudinal arrangements of hopping integrals follow the sequences of Fig. 1
(light gray lines). Insets: Corresponding conductance spectra for tA/tB=0.5, 0.6, 0.7, 0.8, 0.9
120,000 chemical potentials. The conductance g spectra, normalized
by the quantum of conductance g0≡2e2/h, of GF nanowires are com-
pared to that of a periodic nanowire with the same cross section (light
grey lines). Observe its quantized conductance, in which the step height
in unity of g0 at ±(| Eβ |+2 | t | ) is the degeneracy of Eβ. In particular,
the maximum step height is 9g0 located at μ=±2 | t |, since the cross
section is of 9 × 9 atoms. Moreover, the integral ∫∞−∞gðμ;0;0Þdμ of this
stepped spectrum is 324g0| t |, because each of the 81 ballistic
conducting channels provides a constant area of 4g0| t | wherever it is
placed.When the arrangement of hopping integrals follows a quasiperi-
odic sequence along the longitudinal direction, the conductance is sig-
nificantly smaller than the periodic case. In general, the non-
quasiperiodic nanowires with nN1 have larger electrical conductance
e GF nanowires of type (m,n) with cross sections of 9×9 atoms, tA=0.8t, tB=t, null self-
. These spectra are compared to that of a periodic nanowire with the same cross section
and 1.0.
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Fig. A1. Schematic representation of the two-stage renormalization procedure for generalized Fibonacci chains of type (m,n).
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than those of quasiperiodic oneswith n=1, in consistence with the sin-
gle-channel spectral-average results of Fig. 5. In fact, they have large in-
tervals of μ with g(μ,0,0)N0, in contrast to the almost zero minimum
value of g over whole spectra for quasiperiodic nanowires, which
could be related to the eigenvalue spectra supported on Cantor sets of
Lebesgue measure zero for quasiperiodic chains with site disorder
[33]. Finally, the insets of Fig. 10 show the evolution of electrical conduc-
tance spectra when the bond disorder amplitude of GF nanowires
grows. Observe the rapid vanish of conductance spectra of quasiperiodic
nanowires in comparison to the non-quasiperiodic ones.

7. Conclusions

To quantify the localization of wavefunctions in macroscopic gener-
alized Fibonacci (GF) systems, we have developed a new real-space
renormalization method for the participation ratio (PR). Also, we have
extended the renormalization method previously developed for the
Kubo-Greenwood formula in Fibonacci lattices [30] with n=m=1 to
all (m,n)-type GF ones. In general, these renormalization methods
have the advantage of being computationally efficient without intro-
ducing additional approximations and representing a useful alternative
for the study of non-periodic systems, where the reciprocal space is ab-
sent or useless.

The PR has been one of the most used quantities for the study of
wavefunction localization in disordered systems and the results of this
article reveal its deficiency in quasiperiodic lattices. In particular, we
found a transparent state at μ=0 in (2,1)-type GF chains for any even
number of generation [34] and χ=tA/tBN0. However, the correspond-
ing PR has a limiting value of zero, as demonstrated in Eq. (30). In
other words, an extremely localized electronic state with almost zero
PR could possess a ballistic transport. In general, the results confirm
the close relation, with the possible exception of critically localized
states [9], between the wavefunction localization and the electronic
transport at zero temperature. For example, the close resemblance be-
tween DC conductivity spectra and Lyapunov exponent ones. In partic-
ular, they are self-similar for the GF chains with n=1, in accordance to
Table A1
Significance of symbols in Eq. (A.2).

Stage α β ε δ λ ξ ζ

First L L F j−1 j k−1 1
R R k−2

Second F L R m 1 k n
their purely singular continuous spectra established for the site problem
[33]. This fact leads to a power-law decay of the spectral averages of
both DC conductivity and PR when the number of atoms increases. In
contrast, GF chains with n=2 and n=3 present zones with high-con-
duction oscillating behavior,which gives rise a slowdecay of these spec-
tral averages. In addition, we found an analytical expression of
Lyapunov exponent for periodic lattices.

Finally, we report the first global analysis of AC conduction over en-
tire spectra of GF chains. The results show extremely high resonant AC
conductivity peaks in comparison to the ballistic AC one, whose average
value grows faster in non-quasiperiodic systems than quasiperiodic
ones. In general, partially localized electronic states could favor the in-
teraction with external oscillating electric fields through local electric
dipoles, inducing a larger AC response than a homogeneous charge dis-
tribution in periodic systems. Hence, the spatial localization of states de-
termines their resonance intensity via the Fermi's golden rule, from
which the Kubo-Greenwood formula can be obtained [26]. This study
of the correlation between wavefunction localization and electronic
transport can be extended to multidimensional systems, as partially
done in Section VI for the DC conductivity of GF nanowires by using
the convolution theorem.
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Appendix A. Renormalization formulas for the density of states

For a generalized Fibonacci (GF) chain of type (m,n) with two kinds
of bonds, tA and tB, the density of states (DOS) of generation l evaluated
at energy E in terms of the Green's function (G) can be written as in Ref.
[30],

DOSðE; lÞ ¼ −
1
π
lim
η→0þ

Im∑N lð Þ
j¼1Gj; j zð Þ

¼ � 1
π
lim
η→0þ

Im½AFðl;1ÞGL;L zð Þ þ BFðl;1ÞGR;R zð Þ
þC Fðl;1ÞGL;R zð Þ þ DFðl;1Þ�

ðA:1Þ

where z=E+ iη, N(l) is the total number of atoms in a GF chain of gen-
eration l, and the coefficients A , B , C andD are iteratively calculated by
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means of a two-stage renormalization procedure, as schematically sum-
marized in Fig. A1, through

Aαðk;λÞ ¼ Aβðk; δÞ þ θ2αðk;λÞ½Aεðξ; ζÞ
þBβðk; δÞ−1� þ θαðk;λÞCβðk; δÞ

Bαðk;λÞ ¼ Bεðξ; ζÞ þ ϕ2
αðk;λÞ½Aεðξ; ζÞ

þBβðk; δÞ−1� þ ϕαðk;λÞCεðξ; ζÞ
Cαðk;λÞ ¼ ϕαðk;λÞCβðk; δÞ þ θαðk;λÞCεðξ; ζÞ
þ2θαðk;λÞϕαðk;λÞ Aεðξ; ζÞ þ Bβðk; δÞ−1

� 	
Dαðk;λÞ ¼ Dβðk; δÞ þ Dεðξ; ζÞ þ ½Aεðξ; ζÞ

þBβðk; δÞ−1�= z−ERðk; δÞ−ELðξ; ζÞ½ �

;

8>>>>>>>>>><
>>>>>>>>>>:

ðA:2Þ

where

θαðk;λÞ ¼ tβðk; δÞ=½z−ERðk; δÞ−ELðξ; ζÞ�
ϕαðk;λÞ ¼ tεðξ; ζÞ=½z−ERðk; δÞ−ELðξ; ζÞ�
ELðk;λÞ ¼ ELðk; δÞ þ t2βðk; δÞ=½z−ERðk; δÞ

�ELðξ; ζÞ�
ERðk;λÞ ¼ Eεðξ; ζÞ þ t2ε ðξ; ζÞ=½z−ERðk; δÞ

�ELðξ; ζÞ�
tαðk;λÞ ¼ tβðk; δÞtεðξ; ζÞ=½z−ERðk; δÞ

�ELðξ; ζÞ�

8>>>>>>>>>><
>>>>>>>>>>:

ðA:3Þ

and the significance ofα ,β ,ε ,δ ,λ ,ξ and ζ are given in Table A1,where in
each row the value of α determines the meaning of the subsequent
parameters.

For a GF chain of generation k, the renormalization procedure con-
sists of using the same Eqs. (A.2)–(A.3) and following the steps: (1) it-
eratively calculating the coefficients AL(k−1, j), BL(k−1, j), CL(k−1, j)
and DL(k−1, j) for j=2, 3 ,⋯ , m; (2) iteratively computing AR(k−
2, j), BR(k−2, j), CR(k−2, j) and DR(k−2, j) for j=2, 3 ,⋯ , n; and (3)
using the results of left- and right-segment renormalizations to calcu-
late AF(k,1), BF(k,1), CF(k,1) andDF(k,1) of generation k. This calculation
should be repeated for k=2, 3, ⋯ , l in order to finally determine the
DOS of a GF chain of type (m,n) and generation l.

The initial conditions for Eqs. (A.2)–(A.3) are tF(0,1)=tB, AF(0,1)=
BF(0,1)=1, CF(0,1)=DF(0,1)=0, EL(0,1)=ER(0,1)=0, AF(1,1)=
BF(1,1)=1, CF(1,1)=DF(1,1)=0, tF(1,1)=tA, and EL(1,1)=ER(1,1)=0.

When the system is connected to two periodic leads, the Green's
functions at its extreme atoms are given by

GL;L zð Þ ¼ z−EL l;1ð Þ−ERPðl
0 Þ− t2Pðl

0 Þ
z−ELPðl

0 Þ

(

−
t2Fðl;1Þ

z−ER l;1ð Þ−ELPðl
0 Þ−t2Pðl

0 Þ= z−ERPðl
0 Þ

h i
9=
;

�1

;

ðA:4Þ

GR;R zð Þ ¼ z−ER l;1ð Þ−ELPðl
0 Þ− t2Pðl

0 Þ
z−ERPðl

0 Þ

(

−
t2Fðl;1Þ

z−EL l;1ð Þ−ERPðl
0 Þ−t2Pðl

0 Þ= z−ELPðl
0 Þ

h i
9=
;

�1

;

ðA:5Þ

and

GL;R zð Þ ¼ t Fðl;1ÞGR;R zð Þ
z−ELðl;1Þ−ERPðl

0 Þ−t2Pðl
0 Þ= z−ELPðl

0 Þ
h i ; ðA:6Þ

where l' is the generation number of these periodic leads built following
the GF renormalization procedurewithm=n=1 and tA=tB=t, whose
effective self-energies and hopping-integrals are EP

L(l')=EP
L(l'−

1)+tP
2(l'−1)γP, EPR(l')=EP

R(l'−2)+tP
2(l'−2)γP, and tP(l')=tP(l'−1)tP(l'−

2)γP, being γP=[z−EP
R(l'−1)−EP

L(l'−2)]−1.
In order to illustrate the procedure for obtaining the renormalization

formulas, we may take the middle state of Fig. A1 as the initial system,
whose DOS can be written from Eq. (A.1) as

DOSðE; lÞ ¼ −
1
π
lim
η→0þ

Im

∑mN l−1ð Þ
j¼1 Gj; jðzÞ

þ∑N lð Þ
j¼mN l−1ð ÞGj; jðzÞ

�GC;CðzÞ

2
666664

3
777775

¼ −
1
π
lim
η→0þ

Im

ALðl;mÞGL;L zð Þ þ BLðl;mÞGC;C zð Þ
þCLðl;mÞGL;C zð Þ þ DLðl;mÞþ
ARðl;nÞGC;C zð Þ þ BRðl;nÞGR;R zð Þ

þCRðl;nÞGC;R zð Þ
þDRðl;nÞ−GC;C zð Þ

2
66664

3
77775;

ðA:7Þ

where the Green's function elements satisfy the Dyson's equation given
by

z−ELðl;mÞ −tLðl;mÞ 0
−tLðl;mÞ z−ECðl;1Þ −tRðl;nÞ

0 −tRðl;nÞ z−ERðl;nÞ

0
@

1
A�

GL;L zð Þ GL;C zð Þ GL;R zð Þ
GC;L zð Þ GC;C zð Þ GC;R zð Þ
GR;L zð Þ GR;C zð Þ GR;R zð Þ

0
@

1
A ¼

1 0 0
0 1 0
0 0 1

0
@

1
A:

ðA:8Þ

In other words,

GC;X zð Þ ¼ δC;X
z−ECðl;1Þ þ

tLðl;mÞ
z−ECðl;1ÞGL;X zð Þ þ tRðl;nÞ

z−ECðl;1ÞGR;X zð Þ; ðA:9Þ

where X=L ,C, or R, and EC(l,1)=ER(l,m)+EL(l,n). Taking the advan-
tage of being the Green's function a symmetric matrix derived from a
symmetric Hamiltonian, Eq. (A.9) for X=C can be rewritten by using
the same equation for X=L and X=R as

GC;C zð Þ ¼ z−ECðl;1Þ½ �−1 þ θ2Fðl;1ÞGL;L zð Þ þ ϕ2
Fðl;1ÞGR;R zð Þ

þ 2θ Fðl;1ÞϕFðl;1ÞGL;R zð Þ: ðA:10Þ

Substituting Eqs. (A.9)–(A.10) into Eq.(A.7), one obtains

DOSðE;lÞ ¼ −
1
π

lim
η→0þ

ImfALðl;mÞGL;L zð Þ
þDLðl;mÞ þ DRðl;nÞ þ BRðl;nÞGR;R zð Þ

þCLðl;mÞ θFðl;1ÞGL;L zð Þ þ ϕFðl;1ÞGR;L zð Þ� 	
þCRðl;nÞ θ Fðl;1ÞGL;R zð Þ þ ϕFðl;1ÞGR;R zð Þ� 	
þ½BLðl;mÞ þ ARðl;nÞ−1�½θ2Fðl;1ÞGL;L zð Þ

þϕ2
Fðl;1ÞGR;R zð Þ þ 2θ Fðl;1ÞϕFðl;1ÞGL;R zð Þ

þ z−ECðl;1Þ½ �−1�g;

ðA:11Þ

which leads to Eq. (A.2). On the other hand, substituting Eqs. (A.9) into
Eq. (A.8), it becomes to

z−ELðl;1Þ −t Fðl;1Þ
−t Fðl;1Þ z−ERðl;1Þ

� �
�

GL;L zð Þ GL;R zð Þ
GR;L zð Þ GR;R zð Þ

� �
¼ 1 0

0 1

� �
;

ðA:12Þ
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where the renormalized hopping integral tF(l,1) and self-energies,
EL(l,1) and ER(l,1), are given in Eq. (A.3).

Appendix B. Renormalization formulas for the participation ratio

Since the single-electron wavefunction (|Ψ〉) can be written as a lin-
ear combination of theWannier's function (|j〉) of atom j, jΨi ¼ ∑ jc jj ji,
the participation ratio (PR) for a non-normalized wavefunction is given
by

PR ¼
X

j
jc j j2


 �2
X

j
jc jj4

ðB:1Þ

and its denominator may be expressed in term of the wavefunction
amplitudes at extreme sites, cL and cR, as

∑ jjc jj4 ¼ I Fðl;1ÞjcLj4 þ LFðl;1Þ c2L c
�
R
2 þ c2Rc

�
L
2

h i
þ J Fðl;1ÞjcRj4 þ P Fðl;1ÞjcLj2 cLc�R þ cRc�L

� þ
K Fðl;1ÞjcLj2jcRj2 þ Q Fðl;1ÞjcRj2 cLc�R þ cRc�L

� 
;

ðB:2Þ

where IF(l, 1), JF(l,1), KF(l,1), LF(l, 1), PF(l,1) and QF(l, 1) are the
renormalization coefficients for PR. Analogously, the normalization con-
dition of wavefunction |Ψ〉 can also be expressed as

1 ¼ ∑
j
jc jj2 ¼ RFðl;1ÞjcLj2 þ SFðl;1ÞjcRj2

þ UFðl;1Þ½cLc�R þ cRc�L �:
ðB:3Þ

Following a similar renormalization procedure for theDOS explained
at the end of Appendix A, by using the Schrödinger equation instead of
the Dyson one, the renormalization coefficients for PR of a (m,n)-type
GF chain of generation l can be iteratively calculated for k=
2, 3, ⋯ , l by means of

Iαðk;λÞ ¼ θ3αðk;λÞ θαðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1
h in

þ2Qβðk; δÞ
�þ Iβðk; δÞ þ 2θαðk;λÞPβðk; δÞ

þ θ2αðk;λÞ Kβðk; δÞ þ 2Lβðk; δÞ
� 	

;

ðB:4Þ
Jαðk;λÞ ¼ ϕ3
αðk;λÞ ϕαðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1

h in
þ2Pεðξ; ζÞg þ Jεðξ; ζÞ þ 2ϕαðk;λÞQ εðξ; ζÞ

þϕ2
αðk;λÞ Kεðξ; ζÞ þ 2Lεðξ; ζÞ½ �;

ðB:5Þ

Kαðk;λÞ ¼ θ2αðk;λÞ 4ϕ2
αðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1

h in
þKεðξ; ζÞ þ 4ϕαðk;λÞPεðξ; ζÞg

þϕ2
αðk;λÞ Kβðk; δÞ þ 4θαðk;λÞQβðk; δÞ

� 	
;

ðB:6Þ

Lαðk;λÞ ¼ θ2αðk;λÞ ϕ2
αðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1

h in
þLεðξ; ζÞ þ ϕαðk;λÞPεðξ; ζÞg

þϕ2
αðk;λÞ Lβðk; δÞ þ θαðk;λÞQβðk; δÞ

� 	
;

ðB:7Þ

Pαðk;λÞ ¼ θ3αðk;λÞ 2ϕαðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1
h in

þPεðξ; ζÞg þ θαðk;λÞϕαðk;λÞ ½Kβðk; δÞþ
�

2Lβðk; δÞ�þ3θαðk;λÞQβðk; δÞ
�þ ϕαðk;λÞPβðk; δÞ;

ðB:8Þ

Qαðk;λÞ ¼ ϕ3
αðk;λÞ 2θαðk;λÞ Jβðk; δÞ þ Iεðξ; ζÞ−1

h in
þQβðk; δÞ

�þ θαðk;λÞϕαðk;λÞ ½f Kεðξ; ζÞþ
2Lεðξ; ζÞ� þ 3ϕαðk;λÞPεðξ; ζÞg þ θαðk;λÞQ εðξ; ζÞ;

ðB:9Þ

Rαðk;λÞ ¼ θ2αðk;λÞ Sβðk; δÞ þ Rεðξ; ζÞ−1
� 	

þ Rβðk; δÞ þ 2θαðk;λÞUβðk; δÞ; ðB:10Þ
Sαðk;λÞ ¼ ϕ2
αðk;λÞ Sβðk; δÞ þ Rεðξ; ζÞ−1

� 	
þ Sεðξ; ζÞ þ 2ϕαðk;λÞUεðξ; ζÞ; ðB:11Þ
Uαðk;λÞ ¼ θαðk;λÞ ϕαðk;λÞ Sβðk; δÞ þ Rεðξ; ζÞ−1
� 	�

þ Uεðξ; ζÞg þ Rβðk; δÞ þ ϕαðk;λÞUβðk; δÞ; ðB:12Þ

where θα and ϕα are given in Eq. (A.3) while the meaning of
α , β , ε , δ , λ , ξ and ζ are specified in Table A1.

The initial conditions for the renormalization of PR are IF(0,1)=
JF(0,1)=1, KF(0,1)=LF(0,1)=PF(0,1)=QF(0,1)=0, RF(0,1)=SF(0,1)=1,
UF(0,1)=0, EL(0,1)=ER(0,1)=0, tF(0,1)=tB, IF(1,1)=JF(1,1)=1,
KF(1,1)=LF(1,1)=PF(1,1)=QF(1,1)=0, RF(1,1)=SF(1,1)=1, UF(1,1)=0,
EL(1,1)=ER(1,1)=0, and tF(1,1)=tA.

Appendix C. Renormalization formulas for the Kubo-Greenwood
conductivity

In this article, the electrical conductivity (σ) is analyzed bymeans of
the Kubo-Greenwood formula given by Eq. (19), in which the trace can
be written as [30]

Tr p ImGþ E þ ℏωð Þ p ImGþ Eð Þ� �
¼ m2a2

4ℏ2 SðEþω; Eþ; lÞ þ SðE�ω; E�; lÞ−SðEþω; E�; lÞ−SðE�ω; Eþ; lÞ
� 	 ðC:1Þ

where Eω±=E+ℏω± iη, E±=E± iη, η is the imaginary part of the ener-
gy and

SðEκω; Eν ; lÞ
¼ ∑
N lð Þ−1

i; j¼1
ti;iþ1t j; jþ1 2Gκ

iþ1; j Eωð ÞGν
jþ1;i Eð Þ

n
−Gκ

iþ1; jþ1 Eωð ÞGν
j;i Eð Þ−Gκ

i; j Eωð ÞGν
jþ1;iþ1 Eð Þ

o
;

ðC:2Þ

in which κ and ν could be + or −. The partial sums S(Eωκ ,Eν, l) can be
written in terms of theGreen's function at extreme sites of the systemas

SðEκω; Eν ; lÞ ¼ Z FðEκω; Eν ; l;1Þ
þAFðEκω; Eν ; l;1ÞGL;L Eκω

� 
GL;L Eν
� 

þBFðEκω; Eν ; l;1ÞGL;R Eκω
� 

GL;R Eν
� 

þC FðEκω; Eν ; l;1ÞGR;R Eκω
� 

GR;R Eν
� 

þDFðEκω; Eν ; l;1ÞGL;L Eκω
� 

GL;R Eν
� 

þDFðEν ; Eκω; l;1ÞGL;L Eν
� 

GL;R Eκω
� 

þF FðEκω; Eν ; l;1ÞGL;L Eκω
� 

GR;R Eν
� 

þF FðEν ; Eκω; l;1ÞGL;L Eν
� 

GR;R Eκω
� 

þI FðEκω;Eν ;l;1ÞGL;R Eκω
� 

GR;R Eν
� 

þI FðEν ; Eκω; l;1ÞGL;R Eν
� 

GR;R Eκω
� 

þ J FðEκω;Eν ;l;1ÞGL;L Eκω
� 

þ J FðEν ; Eκω; l;1ÞGL;L Eν
� 

þK FðEκω;Eν ;l;1ÞGL;R Eκω
� 

þK FðEν ; Eκω; l;1ÞGL;R Eν
� 

þLFðEκω;Eν ;l;1ÞGR;R Eκω
� 

þLFðEν ; Eκω; l;1ÞGR;R Eν
� 

;

ðC:3Þ

where the subscripts L and R of the Green's function respectively denote
the left and right extreme atom. The coefficients AF(E1,E2, l, 1),
BF(E1,E2, l,1) , ⋯, ZF(E1,E2, l,1) in Eq. (C.3), being E1 and E2 either Eω

κ

or Eν, can be iteratively calculated for k=2,3,⋯ , l by means of

AαðE1; E2; k;λÞ ¼ − PαðE1; E2; k;λÞ−PαðE2; E1; k;λÞ½ �2; ðC:4Þ

BαðE1; E2; k;λÞ ¼ 2½PαðE1; E2; k;λÞ�
PαðE2; E1; k;λÞ�½QαðE2; E1; k;λÞ−QαðE1; E2; k;λÞ�

þ2½RαðE1; E2; k;λÞ−SαðE2; E1; k;λÞ��
½RαðE2; E1; k;λÞ−SαðE1; E2; k;λÞ�;

ðC:5Þ

CαðE1; E2; k;λÞ ¼ − QαðE1; E2; k;λÞ−QαðE2; E1; k;λÞ½ �2; ðC:6Þ
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DαðE1; E2; k;λÞ
¼ 2 PαðE1; E2; k;λÞ−PαðE2; E1; k;λÞ½ �
� SαðE2; E1; k;λÞ−RαðE1; E2; k;λÞ½ �;

ðC:7Þ

FαðE1; E2; k;λÞ ¼ − RαðE1; E2; k;λÞ−SαðE2; E1; k;λÞ½ �2; ðC:8Þ

IαðE1; E2; k;λÞ
¼ 2 QαðE1; E2; k;λÞ−QαðE2; E1; k;λÞ½ �
� SαðE2; E1; k;λÞ−RαðE1; E2; k;λÞ½ �;

ðC:9Þ

JαðE1; E2; k;λÞ ¼ ραðE2; k;λÞFβðE1; E2; k; δÞ
þθαðE1; k;λÞKβðE1; E2; k; δÞ þ θαðE1; k;λÞ

�ραðE2; k;λÞfIβðE1; E2; k; δÞ þ UαðE1; E2; k;λÞ
þθαðE1; k;λÞ½CβðE1; E2; k; δÞ þ AεðE1; E2; ξ; ζÞ

þTαðE1; E2; k;λÞ�g þ θ2αðE1; k;λÞ
� LβðE1; E2; k; δÞ þ JεðE1; E2; ξ; ζÞ
� 	

þ JβðE1; E2; k; δÞ;

ðC:10Þ

KαðE1; E2; k;λÞ ¼ 2ραðE2; k;λÞθαðE1; k;λÞ
�ϕαðE1; k;λÞ½CβðE1; E2; k; δÞ þ AεðE1; E2; ξ; ζÞ
þTαðE1; E2; k;λÞ� þ ραðE2; k;λÞVαðE1; E2; k;λÞ

þ2θαðE1; k;λÞϕαðE1; k;λÞ½LβðE1; E2; k; δÞ
þ JεðE1; E2; ξ; ζÞ� þ ραðE2; k;λÞfθαðE1; k;λÞ

�½DεðE2; E1; ξ; ζÞ þWαðE2; E1; k;λÞ�þ
ϕαðE1; k;λÞ IβðE1; E2; k; δÞ þ UαðE1; E2; k;λÞ

� 	g
þϕαðE1; k;λÞKβðE1; E2; k; δÞ
þθαðE1; k;λÞKεðE1; E2; ξ; ζÞ;

ðC:11Þ

LαðE1; E2; k;λÞ ¼ ραðE2; k;λÞFεðE2; E1; ξ; ζÞ
þϕαðE1; k;λÞKεðE1; E2; ξ; ζÞ þ ραðE2; k;λÞ�
ϕαðE1; k;λÞ DεðE2; E1; ξ; ζÞ þWαðE2; E1; k;λÞf
þϕαðE1; k;λÞ½CβðE1; E2; k; δÞ þ AεðE1; E2; ξ; ζÞþ
TαðE1; E2; k;λÞ�g þ ϕ2

αðE1; k;λÞ½LβðE1; E2; k; δÞ
þ JεðE1; E2; ξ; ζÞ� þ LεðE1; E2; ξ; ζÞ;

ðC:12Þ

and

ZαðE1; E2; k;λÞ ¼ ραðE1; k;λÞ½LβðE1; E2; k; δÞ
þ JεðE1; E2; ξ; ζÞ� þ ZβðE1; E2;k; δÞ þ ραðE1; k;λÞ
�ραðE2; k;λÞ½CβðE1; E2; k; δÞ þ AεðE1; E2; ξ; ζÞ

þTαðE1; E2; k;λÞ� þ ραðE2; k;λÞ
� LβðE2; E1; k; δÞ þ JεðE2; E1; ξ; ζÞ
� 	

þZεðE1; E2; ξ; ζÞ;

ðC:13Þ

where the meaning of α, β, ε, δ, λ, ξ and ζ are specified in Table A1 for
each stage of renormalization,

ραðEφ; k;λÞ ¼ z−ELðEφ; ξ; ζÞ−ERðEφ; k; δÞ
� 	−1

; ðC:14Þ

θαðEφ; k;λÞ ¼ tβðEφ; k; δÞραðEφ; k;λÞ; ðC:15Þ

ϕαðEφ; k;λÞ ¼ tεðEφ; ξ; ζÞραðEφ; k;λÞ; ðC:16Þ

ELðEφ; k;λÞ ¼ ELðEφ; k; δÞ þ t2βðEφ; k; δÞραðEφ; k;λÞ; ðC:17Þ

ERðEφ; k;λÞ ¼ EεðEφ; ξ; ζÞ þ t2ε ðEφ; ξ; ζÞραðEφ; k;λÞ; ðC:18Þ

tαðEφ; k;λÞ ¼ tβðEφ; k; δÞtεðEφ; ξ; ζÞραðEφ; k;λÞ; ðC:19Þ

PαðE1; E2; k;λÞ ¼ θαðE2; k;λÞRβðE1; E2; k; δÞ
þθαðE1; k;λÞSβðE1; E2; k; δÞ þ θαðE1; k;λÞ�
θαðE2; k;λÞ PεðE1; E2; ξ; ζÞ þ QβðE1; E2; k; δÞ

� 	
þPβðE1; E2; k; δÞ;

ðC:20Þ

QαðE1; E2; k;λÞ ¼ ϕαðE1; k;λÞRεðE1; E2; ξ; ζÞ
þQ εðE1; E2; ξ; ζÞ þ ϕαðE2; k;λÞSεðE1; E2; ξ; ζÞ

þϕαðE1; k;λÞϕαðE2; k;λÞ½PεðE1; E2; ξ; ζÞ
þQβðE1; E2; k; δÞ�;

ðC:21Þ
RαðE1; E2; k;λÞ ¼ ϕαðE2; k;λÞRβðE1; E2; k; δÞ
þθαðE1; k;λÞϕαðE2; k;λÞ½PεðE1; E2; ξ; ζÞþ

QβðE1; E2; k; δÞ� þ θαðE1; k;λÞRεðE1; E2; ξ; ζÞ;
ðC:22Þ

SαðE1; E2; k;λÞ ¼ ϕαðE1; k;λÞSβðE1; E2; k; δÞ
þθαðE2; k;λÞϕαðE1; k;λÞ½PεðE1; E2; ξ; ζÞþ

QβðE1; E2; k; δÞ� þ θαðE2; k;λÞSεðE1; E2; ξ; ζÞ;
ðC:23Þ

TαðE1; E2; k;λÞ
¼ 2 PεðE1; E2; ξ; ζÞ−PεðE2; E1; ξ; ζÞ½ �
� QβðE2; E1; k; δÞ−QβðE1; E2; k; δÞ
� 	

;
ðC:24Þ

UαðE1; E2; k;λÞ
¼ 2 PεðE1; E2; ξ; ζÞ−PεðE2; E1; ξ; ζÞ½ �
� SβðE2; E1; k; δÞ−RβðE1; E2; k; δÞ
� 	

;
ðC:25Þ

VαðE1; E2; k;λÞ
¼ 2 SεðE1; E2; ξ; ζÞ−RεðE2; E1; ξ; ζÞ½ �
� SβðE2; E1; k; δÞ−RβðE1; E2; k; δÞ
� 	

;
ðC:26Þ

and

WαðE1; E2; k;λÞ
¼ 2 QβðE1; E2; k; δÞ−QβðE2; E1; k; δÞ

� 	
� SεðE2; E1; ξ; ζÞ−RεðE1; E2; ξ; ζÞ½ �;

ðC:27Þ

being Eφ either E1 or E2.
The Green's functions at the ends of system are the same as in Ap-

pendix A, except they are evaluated at Eφ instead of z, i.e.,

GL;L Eφ
�  ¼ Eφ−ELðEφ; l;1Þ � t2Pðl

0 Þ
Eφ−ELPðl

0 Þ

(

−ERPðl
0 Þ � t2FðEφ; l;1Þ

Eφ−ERðEφ; l;1Þ−ELPðl
0 Þ− t2P l

0� 
Eφ−ERP l

0� 

9>>>=
>>>;

�1

;

ðC:28Þ

GR;R Eφ
�  ¼ Eφ−ERðEφ; l;1Þ− t2Pðl

0 Þ
Eφ−ERPðl

0 Þ

(

−ELPðl
0 Þ � t2FðEφ; l;1Þ

Eφ−ELðEφ; l;1Þ−ERPðl
0 Þ− t2Pðl

0 Þ
Eφ−ELPðl

0 Þ

9>>>>=
>>>>;

�1

;

ðC:29Þ

and

GL;R Eφ
�  ¼ t FðEφ; l;1ÞGR;R Eφ

� 
Eφ−ELðEφ; l;1Þ−ERPðl

0 Þ− t2Pðl
0 Þ

Eφ−ELPðl
0 Þ

: ðC:30Þ

Finally, the initial conditions are AF(E1,E2,0,1)=0, CF(E1,E2,0,1)=0,
DF(E1,E2,0,1)=0, IF(E1,E2,0,1)=0, JF(E1,E2,0,1)=0, KF(E1,E2,0,1)=0,
LF(E1,E2,0,1)=0, ZF(E1,E2,0,1)=0, PF(E1,E2,0,1)=0, QF(E1,E2,0,1)=0,
RF(E1,E2,0,1)=0, EL(Eφ,0,1)=0, ER(Eφ,0,1)=0, BF(E1,E2,0,1)=2tB2,
FF(E1,E2,0,1)=−tB

2, tF(Eφ,0,1)=tB, AF(E1,E2,1,1)=0, SF(E1,E2,0,1)=tB,
CF(E1,E2,1,1)=0, DF(E1,E2,1,1)=0, IF(E1,E2,1,1)=0, JF(E1,E2,1,1)=0,
KF(E1,E2,1,1)=0, LF(E1,E2,1,1)=0, ZF(E1,E2,1,1)=0, PF(E1,E2,1,1)=0,
QF(E1,E2,1,1)=0, RF(E1,E2,1,1)=0, EL(Eφ,1,1)=0,ER(Eφ,1,1)=0,
BF(E1,E2,1,1)=2tA2, FF(E1,E2,1,1)=−tA

2, SF(E1,E2,1,1)=tA, and tF(Eφ,1,1)=tA.
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