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The nonlinear instability of a thin liquid film flowing down a heated thick wall
with deformations in the backside is investigated. Here it is assumed that the wall
deformations are sinusoidal in space. Time dependent perturbations are imposed at
the origin of the free surface of the film. It is found that the wall deformations have an
important influence on the flow instability. Moreover, it is shown that the free surface
has a large amplitude spatial response to the backside deformations of the wall. This
response increases its amplitude considerably when decreasing the wall spatial wave-
length down to the wavelength of the time dependent perturbations. At that point,
numerical analysis reveals that the time dependent perturbations in some cases are
almost impossible to observe on the free surface response. However, in other cases,
their interaction produces large amplitude nonlinear wave modulations. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4948253]

I. INTRODUCTION

A number of papers have been devoted to the isothermal flow of a thin film flowing down a
deformed wall1–9 under different physical conditions. The case of a heated deformed wall has been
investigated in Ref. 10 (Section 5.3) under the small wavenumber lubrication approximation and in
Ref. 11 by use of a weighted residuals approach. By means of the same approximation,12 Ogden
et al. studied the non-isothermal problem with a porous layer in addition to the liquid layer.

When the problem is non-isothermal, it is important to take into account the thickness and
thermal conductivity of the wall in order to model a system which approaches closely to the exper-
iment. In natural convection, the thickness of the wall has been taken into account in Ref. 13, for
example. In the case of thermocapillarity, it has been used by Refs. 14–16 and references therein.
The deformation of the wall has also been added to a thick wall in the thermal Marangoni problem
as in Ref. 17.

The thickness of the wall has been taken into account with topography in the formation of
rivulets flowing down an incline in Ref. 18. This and the previous papers were the motivation to
investigate in a systematic way the effect of the thickness and thermal conductivity of the wall on
the stability of a thin film falling down an incline.19 Under the small wavenumber approximation,
the wall is assumed to be flat in both sides. It is found that the relative thickness and relative
thermal conductivity of the wall appear in only one parameter, important enough to determine the
Marangoni instability of the flow (see a more general review in Ref. 10). The effect of sinusoidal
deformations of a heated thick wall is investigated in Ref. 20. It is found that, under particular
conditions, it is possible to decrease the amplitude of the free surface response to the wall deforma-
tions increasing the Marangoni number, while the time dependent perturbations imposed on the free
surface increase in amplitude, as expected. At the same time, the resonance effect found in Refs. 1
and 2 is able to stabilize in space and time the time dependent perturbations. This surprising result
was the incentive to investigate what happens when the wall is cooled from below under similar
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circumstances.21 It is shown that the free surface response to the wall deformation increases when
increasing the magnitude of the negative Marangoni number, while the time dependent perturba-
tions decrease in space and time, as expected. However, it is shown that the resonance effect is more
effective to stabilize in space and time than the negative Marangoni numbers used in that paper.

These unforeseen results were an incentive to try to understand the evolution of the nonlinear
instability of a thin film flowing down a heated thick wall which has sinusoidal deformations in its
backside. The results are presented in this paper under the lubrication approximation.22,23 Here, the
evolution of the thermocapillary perturbations is investigated numerically in space and time.19–21,24

The paper is structured as follows. Section II presents the evolution equation of the surface
perturbations of a thin film flowing down a heated thick wall with deformations in its backside.
Section III shows the numerical results in space and time of the free surface deformation.
Sections IV and V are the discussion and conclusions, respectively.

II. EQUATIONS OF MOTION AND THE BENNEY TYPE EQUATION

The evolution of the perturbations on the free surface of a thin film flowing down an inclined
heated thick wall with finite thermal conductivity is investigated. It is assumed that the wall has
sinusoidal deformations in its backside, that is, the other side with respected to the flat side where
the liquid film is flowing down (see Fig. 1).

Use is made of the lubrication approximation where the wavelength of the free surface pertur-
bations is supposed to be very large in comparison with its amplitude and the thickness of the film.
In this way, the scaling parameter is ε = 2πh0

λ
≪ 1, where the thickness of the layer is h0 and λ is the

wavelength. Two different scalings are assumed for distance. In the direction perpendicular to the
wall, use is made of h0 and in the direction parallel to it, use is made of λ/2π. Therefore, the scaling
representing the variation in different directions is made using ε. Time is made nondimensional with
h0λ/(2πν), velocity with ν/h0, pressure with ρν2/h2

0, and temperature with △T = (T0 − Tambient) > 0.
Here, ν is the kinematic viscosity and ρ is the density. T0 is the temperature at the lower face of the
wall and Tambient is the temperature of the ambient atmosphere above the fluid free surface.

As can be seen in Fig. 1, the origin is located at the flat side of the wall facing the liquid
film. The unperturbed free surface is located at z = 1. When time dependent perturbations are
imposed on the free surface at x = 0, they are located at z = 1 + H(x, y, t) = h(x, y, t). In the present
problem, the back face of the wall is located at z = −d(1 + aw sin(qwx)) where d = −dw/h0 and
dw is the dimensional mean thickness of the wall. Notice that the amplitude of the wall backside
deformations is restricted to the range 0 ≤ aw < 1.

FIG. 1. Sketch of the system. The interface between the fluid and the wall is located at z= 0. (1) Deformation of the wall in its
backside. (2) Time dependent perturbations superposed to the response of the free surface due to the backside deformations
of the wall.
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The following definitions are used. The pressure is p, the velocity components in the (x, y, z)
directions are (u, v,w), the temperature of the fluid is T , the temperature of the wall is Tw, the
angle of inclination of the wall is β, the Reynolds number is R = gh3

0/ν
2, the Marangoni number

is Ma = (−dσ/dT) △ T h0/(ρνκ), and the Prandtl number is Pr = ν/κ with κ the heat diffusivity. In
this way, the scaled Navier-Stokes, continuity and heat diffusion equations are

εut + εuux + εvuy + wuz = −εpx + ε
2uxx + ε

2uy y + uzz + R sin β, (1)

εvt + εuvx + εvvy + wvz = −εpy + ε
2vxx + ε

2vy y + vzz, (2)

εwt + εuwx + εvwy + wwz = −pz + ε
2wxx + ε

2wy y + wzz − R cos β, (3)
wz = −εux − εvy, (4)

Pr
�
εTt + εuTx + εvTy + wTz

�
= ε2Txx + ε

2Ty y + Tzz, (5)

Pr
Qc

(
ρwCvw

ρCv

)
εTwt = ε2Twxx + ε

2Twyy + Twzz. (6)

Eqs. (1)–(3) are the balance of momentum equations and the assumption of fluid incompressibility
is given by Eq. (4). The last two Eqs. (5) and (6) correspond to the heat diffusion in the fluid and in
the wall, respectively. The small wavenumber approximation is assumed and Eqs. (1)–(6) are scaled
by means of the small parameter ε. Subindexes x, y , z, and t mean partial derivatives. Here, the
ratio of the wall and fluid heat conductivities is Qc = kw/k f . Note that ρ, Cv and ρw, Cvw are the
density and heat capacity of the fluid and the wall, respectively.

A set of boundary conditions have to be determined at different z-positions. At the fluid-wall
interface, the velocity satisfies the no-slip condition,

u = v = w = 0. at z = 0. (7)

At the free surface, the normal and shear stresses boundary conditions have to be satisfied. The
balance of pressure and surface tension forces on the free surface is represented by the normal stress
boundary condition,

− p +
1

N2 [ε3(uxh2
x + vyh2

y) + ε3(uy + vx)hxhy − ε(vz + εwy)hy − ε(uz + εwx)hx + wz]

= Pp(x, y, t) − 3
N3 S[(1 + ε2h2

y)hxx + (1 + ε2h2
x)hy y − 2ε2hxhyhxy]. at z = h(x, y, t) (8)

where N =


1 + ε2h2
x + ε

2h2
y. The balance of shear stresses and surface tension temperature gradi-

ents on the free surface is represented by the shear stress conditions in two directions,

ε(wz − εux)hx −
1
2
ε2(uy + vx)hy +

1
2
(uz + εwx)(1 − ε2h2

x)

−1
2
ε2(εwy + vz)hxhy =

Ma
Pr

(εTx + εhxTz). at z = h(x, y, t) (9)

and

ε(wz − εuy)hy −
1
2
ε2(uy + vx)hx +

1
2
(vz + εwy)(1 − ε2h2

y)

−1
2
ε2(εwx + uz)hxhy =

Ma
Pr

(εTy + εhyTz). at z = h(x, y, t). (10)

They are the first (Eq. (9)) and second (Eq. (10)) shear stress boundary conditions, respectively.
The temperatures of the fluid T and the wall Tw also satisfy conditions at different z-positions. The
temperature at the lowest and deformed part of the wall is

Tw = 1, at z = −d (1 + aw sin(qwx)) . (11)

The temperature and heat flux are continuous at the interface of the wall and the fluid,

Tw = T and QcdTw/dz = dT/dz at z = 0, (12)
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and a radiation boundary condition is assumed at the free surface,

Tz + BiT = 0, at z = h(x, y, t). (13)

The Biot number is defined as Bi = Hhh0/k f , where Hh is the coefficient of heat transfer. In the
equations the surface tension is assumed to be strong. That is, the nondimensional surface tension
number Σ = σh0/(3ρν2) is changed into S = ε2Σ with the scaling used.
The kinematic boundary condition is

w = εht + εuhx + εvhy, at z = h(x, y, t). (14)

This condition physically means that fluid particles always remain at the free surface. In the normal
stress boundary condition, an extra term appears representing a pressure which has the form

Pp(x, y, t) = A
����sin

ω

2
t
���� exp[−a(x2 + y2)]. (15)

It represents a turbulent air jet striking the free surface periodically in order to produce time depen-
dent perturbations which will propagate in space and time in the free surface. Similar stationary jets
have been used in real experiments on thin films (see the work of Lacanette et al.25). The magnitude
of the constants selected in Eq. (15) is A = 0.0001 and a = 0.05. This selection is made in order to
attain saturation in the numerical results due to the sensitivity of the system to these two parameters.
The absolute value of the sine function is taken because a jet has no suction. In the same way, ω,
which represents the frequency of oscillation, is divided by two for that reason.

In order to calculate the evolution equation of the free surface perturbations, the variables are
expanded in such a way satisfying the lubrication approximation (small wavenumber approxima-
tion) using the small parameter ε as follows:

u = u0 + εu1 + · · ·, v = v0 + εv1 + · · ·, w = ε(w1 + εw2 + · · ·),
p = p0 + εp1 + · · ·, T = T0 + εT1 + · · ·, Tw = Tw0 + εTw1 + · · ·. (16)

All the variables depend on (x, y, z, t), but h only depends on (x, y, t). At the lowest order in the
expansion, the main flow solutions are

p0 = −(z − h)R cos β − 3S∇2h + Pp(x, y, t), (17)

u0 = −
1
2

R sin βz(z − 2h), (18)

w1 = −
1
2

R sin βz2hx, (19)

T0 =
Bi [Qcz + dF(x, y)]

Qc(1 + Bih(x, y, t)) + BidF(x, y) , Tw0 =
Bi [z + dF(x, y)]

Qc(1 + Bih(x, y, t)) + BidF(x, y) , (20)

where F(x, y) = F(x) = 1 + aw sin(qwx) is the wall backside sinusoidal deformation.
Use of Eqs. (16) and (14) up to first order leads to the evolution equation of the free surface

perturbations including the effects of the wall deformations in its backside. That is,

ht + R sin βh2hx + ε

(R sin β)2( 2

15
h6hx)x

+
1
3
∇ ·


h3� − R cos β∇h + 3S∇2∇h − ∇Pp

�
+

1
2

Ma
Pr

Bih2

(1 + Bih + Bi d
Qc

F(x, y))2∇h

= 0.

(21)

Here ∇ = (∂/∂x, ∂/∂y). When aw = 0, this equation reduces to that of Dávalos-Orozco19 for a
flat thick wall. When d = 0 (or else, Qc → ∞), the equation reduces to that of Joo et al.22,23 in
the absence of evaporation. In the isothermal case Ma = 0, the equation is the same as that of
Dávalos-Orozco et al.24 or that of Joo et al.22 but with Pp = 0.

The linear results of Ref. 19 are needed to understand, through the coefficient of the ther-
mocapillary term of Eq. (21), the local behavior of the free surface response to the wall defor-
mation, mainly at the thinnest and at the thickest sections of the wall. Use is made of the same
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FIG. 2. Plot of the function f (d/Qc,Bi)=Bi/(1+Bi+Bi(d/Qc))2. Here, Bi= 0.1 and f (d/Qc,Bi= 0.1).

magnitudes of all parameters as in Ref. 19 for the sake of comparison in the following figures.
Thus, the perturbations start having the same characteristics and will evolve nonlinearly in space
and time according to Eq. (21) which includes the effects of the wall deformations. An impor-
tant function of parameters in Eq. (21) is that corresponding to the thermocapillary term. That
is, f (d/Qc,Bi) = Bi/(1 + Bi + Bi(d/Qc))2, where aw = 0. This function is shown in a 3D plot in
Ref. 19. However, in the present paper the Biot number is fixed at Bi = 0.1. Therefore, the plot in
Fig. 2 (see Ref. 19) will give us an insight into what is going on when the thickness of the wall
varies sinusoidally in space. Due to the presence of the wall deformation in Eq. (21), the parameter
in the abscissa of Fig. 2 should be dF(x)/Qc (instead of d/Qc), which oscillates with x. Therefore,
depending on the x-position, the thermocapillary convection will be more or less effective. For
example, the film flowing in the neighborhood of the thinnest section of the wall behaves as ex-
pected from the point of view of the coefficient f (d/Qc,Bi) of the thermocapillary term and plotted
in Fig. 2, for given Ma and relative heat conductivity Qc. That is, at the thinnest section (small d)
of the wall, the thermocapillary effects on the free surface of the film are very strong, as shown in
the left part of Fig. 2. It is clear in the figure that the function f (d/Qc,Bi) increases considerably for
small wall thicknesses. In contrast, in the thickest section of the wall, the thermocapillary effects are
small as observed in the right part of Fig. 2.

III. NUMERICAL ANALYSIS

Here Eq. (21) is solved numerically in space and time using finite differences. The problem is
investigated in two dimensions. Some parameters will remain fixed in all the calculations. They are
the angle of inclination of the wall β = 90◦ (vertical wall), the expansion parameter ε = 0.1, the
Prandtl number Pr = 7, and the surface tension number S = 1. Notice that the angle of inclination
of the wall is selected as β = 90◦ in order to have the most unstable conditions in the instability
problem. A parameter is introduced to relate the wavelength of the time dependent perturbations
λ with the wavelength of the wall backside deformations 2π/qw. It is defined as L = k/qw, or in
another way, L = (2π/qw)/λ. In the numerical calculations, use is made of the frequency of the time
dependent perturbations applied at x = 0 and z = 1. Therefore, the definition λ = 2πω/R, derived
from the phase velocity, is used instead. Therefore, the definition used in practice is L = R/ωqw. In
this way, L expresses the relative magnitudes of k with respect to qw. As will be shown presently, it
plays an very important role in the present problem.

Assuming that h(x, t) = 1 + H(x, t), the initial condition at t = 0 (just before time dependent
perturbations start to appear), the free surface has the height z = h(x, t) = 1 and H(x, t) = 0. The
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boundary conditions are the following. At x = −100 and x = RT + 100, the perturbation satisfies
H(x, t) = dH(x, t)/dx = 0, where t = T is the time interval of propagation of the perturbation which
runs with a phase velocity R. In this way, when t > 0, the free surface starts to respond to the
backside wall deformations and at x = 0, it is subjected to periodic time dependent perturbations.

Notice that only four figures are presented. Two of them correspond to Marangoni number
Ma = 50 and the other two to Ma = 100. The first one of each pair is for a small Reynolds number
and the second one is for a large Reynolds number. In each figure, the results are presented in such
a way that graphics corresponding to different parameters may be compared to each other using the
scaling of the vertical axis. Figure (a) corresponds to d/QC = 1 and figure (b) to d/QC = 10. Then,
each sub-figure (a) and (b) presents results for wall deformation amplitudes aw = 0.5 and aw = 0.9.
In this way, it is possible to see a wide map of the behavior of the thin film stability.

It is important to point out that the graph of each free surface deformation has a mean position
at z = 1. However, notice that the figures contain a number of ordered graphs which are plotted
very near to each other. This is done for the sake of presentation and comparison of the results for
different magnitudes of the parameters.

FIG. 3. Time= 1000. Ma= 50, ω = 0.5, R = 1.391. Fig. 3(a): d/Qc = 1 and Fig. 3(b): d/Qc = 10. aw = 0.5: (1) L = 1, (2)
L = 5, (3) L = 10, aw = 0.9: (4) L = 1, (5) L = 5, (6) L = 10, (7) Ref. 19, (8) fixed temperature d/Qc = 0. The pure response
is from x =−100 to 0.
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Therefore, the results are calculated for two magnitudes of the Marangoni number Ma = 50
and 100. Figure 3 for Ma = 50 shows some samples for ω = 0.5 and Reynolds number R = 1.391.
The figure is structured in such a way that it is possible to compare the behavior of the free
surface response to the wall deformations (see the region x = −100 to 0) and the time dependent
perturbations under different geometric conditions of the wall. Figs. 3(a) and 3(b) show results for
d/Qc = 1 and 10, respectively. Besides, Figs. 3(a) and 3(b) are divided into different sections for
the sake of comparison. First, for the deformation amplitude aw = 0.5, curves (1)–(3) correspond to
L = 1, 5, and 10, respectively. Second, for aw = 0.9, curves (4)–(6) correspond to L = 1, 5, and 10,
respectively. Third, it is of interest to compare the present results with those of Dávalos-Orozco19

(curve 7) with a thick flat wall for the same corresponding d/Qc and with those of a very thin or
very good conducting flat wall (curve 8), calculated here in space and time.

It is convenient to start from curves 8 and 7 in Fig. 3(a) for d/Qc = 1. Note that the amplitude
of curve 7 is smaller than that of curve 8 due to the presence of d/Qc which represents a thick wall
with finite thermal conductivity. The geometry of the wall appears when aw > 0. For aw = 0.5, it
is clear that the amplitude of the free surface response (see x = −100 to 0) increases decreasing

FIG. 4. Time= 600. Ma= 50, ω = 2, R = 2.783. Fig. 4(a): d/Qc = 1 and Fig. 4(b): d/Qc = 10. aw = 0.5: (1) L = 1, (2)
L = 5, (3) L = 10, aw = 0.9: (4) L = 1, (5) L = 5, (6) L = 10, (7) Ref. 19, (8) fixed temperature d/Qc = 0. The pure response
is from x =−100 to 0.
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the magnitude of L (from curves 3 to 1). Observe that the time dependent perturbations superpose
nonlinearly to the free surface response. Even more, as can be seen in curve 1, superposition leads to
a strong wave modulation due to the similarity of the two wavelengths λ and 2π/qw.

Other results are found for a larger wall amplitude when aw = 0.9. Note that in this case the
resonant amplitude is larger than before when going from L = 10 (curve 6) to L = 1 (curve 4).
Clearly, the amplitude of curve 4 is larger than that of curve 1. Decreasing the parameter to the
magnitude L = 1 it is shown that the time dependent perturbations merge with the free surface
response in such a way that it is not possible to distinguish them in the first units in space. After-
wards, it is possible to observe a mild space modulation. Here, the amplitude of the free surface
response behaves in a similar way to the resonance effect found in other papers.1,26,27

In Fig. 3(b) the results for d/Qc = 10 are shown. The amplitude of curve 7 is now notably
smaller than that of curve 8 due to the increase of d/Qc. For aw = 0.5, the free surface response
can be seen in the range x = −100 to 0. The decrease of L from curves 3 to 1 produces an increase
of the response in comparison with Fig. 3(a). When aw = 0.9 the resonance is more important and
the amplitude of curve 4 is very large in comparison with that of Fig. 3(a). Again, it is not possible

FIG. 5. Time= 1000. Ma= 100, ω = 0.5, R = 1.391. Fig. 5(a): d/Qc = 1 and Fig. 5(b): d/Qc = 10. aw = 0.5: (1) L = 1, (2)
L = 5, (3) L = 10, aw = 0.9: (4) L = 1, (5) L = 5, (6) L = 10, (7) Ref. 19, (8) fixed temperature d/Qc = 0. The pure response
is from x =−100 to 0.



054103-9 L. A. Dávalos-Orozco Phys. Fluids 28, 054103 (2016)

to distinguish the time dependent perturbations when L = 1 in curve 4 but there is a visible wave
modulation in curve 1 as a consequence of the nonlinear interaction between the response and the
time dependent perturbations. The very large amplitude of the response hides the time dependent
perturbations in curve 4.

The results of Fig. 4 for Ma = 50 correspond to a higher Reynolds number R = 2.783. In Fig. 4(a)
for d/Qc = 1, it is interesting the way the free surface perturbations present the wave modulation for
aw = 0.5 and 0.9. The reason is the decrease of the wavenumber of the time dependent perturbations.
This modulation is remarkable at resonance for L = 1 in curves 1 and 4. In the case aw = 0.9 the
strong increase in amplitude of curve 4 hides the small wave modulation. In Fig. 4(b) for d/Qc = 10
the increase in amplitude at resonance (L = 1) is more impressive. It shows no clear modulation at all
in curve 1 and curve 4 hiding the time dependent perturbations. Notice the different response of the
free surface in curves 5 and 6 of this figure in comparison with the corresponding ones of Fig. 4(a).
A similar result is found in curves 5 and 6 in the previous and following figures.

It is well known that an increase of the Marangoni number destabilizes the free surface pertur-
bations. This has as consequence an increase in amplitude. The Marangoni number is duplicated in

FIG. 6. Time= 600. Ma= 100, ω = 2, R = 2.783. Fig. 6(a): d/Qc = 1 and Fig. 6(b): d/Qc = 10. aw = 0.5: (1) L = 1, (2)
L = 5, (3) L = 10, aw = 0.9: (4) L = 1, (5) L = 5, (6) L = 10, (7) Ref. 19, (8) fixed temperature d/Qc = 0. The pure response
is from x =−100 to 0.



054103-10 L. A. Dávalos-Orozco Phys. Fluids 28, 054103 (2016)

the following figures up to Ma = 100. Notice that the amplitudes in curves 8 of Figs. 5(a) and 5(b)
have increased. In comparison with curves 8, an important decrease in amplitude is found in curve 7
of Fig. 5(a) for d/Qc = 1 and in curve 7 for d/Qc = 10 in Fig. 5(b).

The frequency and Reynolds number of Fig. 5 are ω = 0.5 and R = 1.391. With the present
Reynolds and Marangoni numbers, the response of the free surface has a larger amplitude as can
be seen in the curve 4 of Fig. 5(a) in comparison with curve 4 of Fig. 3(a). This has important
consequences in the behavior of the time dependent perturbations, mainly in the way they superpose
nonlinearly to the response. However, in this case too, it is possible to have a resonant effect when
decreasing the parameter L from 10 to 1. Compare the envelops of the modulation found in curves 4
and 1 of Figs. 3(a) and 5(a). Furthermore, the amplitude of the response at resonance of curves 4 and
1 in Fig. 5(b), for d/Qc = 10, is still more larger than that of Fig. 5(a). Moreover, they have almost
twice the amplitude as those of Fig. 3(b). However, here the modulation is barely seen.

The Reynolds number is increased to R = 2.783 in Fig. 6 with ω = 2 and Ma = 100. The
differences in the wavenumber of the time dependent perturbations are clearly seen. The free surface
response differs from those of the previous figure but it is similar to that of Fig. 4 except for the
amplitude. For example, when resonance is important in curves 4 and 1, the amplitude is almost
twice that of Fig. 4. Therefore, the increase in Marangoni number produced an increase in ampli-
tude both in the response and in the time dependent perturbations. A comparison of the curves in
this Fig. 6 shows that the increase of d/Qc from 1 to 10 increases considerably the amplitude of
the response at L = 1. In fact, curve 4 of Fig. 6(b) has an amplitude more than five times larger
than the corresponding one of Fig. 6(a) and curve 1 of Fig. 6(b) is three times larger in amplitude
than the corresponding one of Fig. 6(a). These results show the importance of all the parameters
involved in the present problem.

IV. DISCUSSION

The resonant effect shows a significant amplitude increase of the response of the free surface to
the wall deformations in its backside. From the point of view of the evolution equation, this result
is similar to that found when the deformations of the wall are located in the side of the liquid film.
In the present problem, Eq. (21) has the algebraic expression for the deformation of the wall in
the denominator of the thermocapillary term. When the deformations are located at the wall-liquid
interface, in the isothermal case,1 the expression of the deformation appears in the numerator of
the capillary term. Therefore, linearizing that equation,1,9 it is possible to verify that the wall
deformation appears as a spatial periodic forcing term. As a consequence, it is possible to have
resonance in space and time for some relative magnitudes of the wavelengths of the time dependent
perturbations and the wall deformation, that is, at some magnitude of L. The same has been found in
the lubrication approximation when the wall is very thin and very good heat conductor (see Ref. 10
Section 5.3). However, when the wall is thick and has finite thermal conductivity,20,21 the expression
of the wall deformation appears both in the capillary term and in the numerator and denominator of
the thermocapillary term.

In the present problem, the algebraic expression of the wall deformation only appears in the
denominator of the thermocapillary term. This is because the deformation does not affect the liquid
film flow directly as in the previous cases. It only affects the flow by thermal effects. Therefore it of
interest to ask why it is also possible to have free surface response resonance as in the other papers.
The answer is that this thermocapillary term has to be derivated by the spatial nabla operator applied
outside the brackets in Eq. (21). This operation allows the expression of the wall deformation to
appear in the numerator of a new term which, under particular conditions, makes it possible to have
a very large amplitude of the free surface response. In other words, it is able to appear as a spatial
forcing term. Here, as in previous papers, those conditions are measured by means of L, as can be
seen in all the figures presented in this paper. Therefore, this resonance appears in a variety of ways,
depending on the different magnitudes of the large number of parameters of the problem. It is clear
that, in order to have this large variety of phenomena, it is of particular importance the nonlinear
interaction between the free surface response and the time dependent perturbations.
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V. CONCLUSIONS

The influence of wall backside deformations on the thin film instability has been investigated in
this paper. It is shown that the change of the different parameters of the problem produces a variety
of results due to the nonlinear interaction of the free surface response to the wall deformation and
the free surface time dependent perturbations.

Some sample results are presented in the figures. They show the relevance the parameter d/Qc
19–21

has in the present problem. Notice that this parameter plays the role of the effective importance of the
wall deformation. However, aw and qw are crucial to attain a resonant effect. Observe in the figures
that the amplitude of the free surface response depends strongly on the aw. The reason is that when
this amplitude aw is large but smaller than one, there is a region where the wall is very thin. Therefore,
in this section, the liquid film feels the wall as a very good conductor. The sudden change of relative
high thermal conductivity produces a large bump in the free surface response as found in experiments
with a small area hot plate located in the wall.28–31 This effect is reinforced by the wavenumber qw

of the wall deformation which leads to resonance when L decreases.
The results are validated in all the figures by means of the curve 7 which is calculated numeri-

cally with Eq. (21) in the case of zero wall deformation, that is, aw = 0. It is shown that this curve 7
is the same as the corresponding one in Ref. 19 for a flat wall.

Besides, the validation with respect to experimental results is explained by means of Refs. 28–31
where the flow down a wall with a finite hot plate is investigated. Those experiments show that when
the thin film runs into a hot plate, the free surface shows a very high bump. This occurs as a result of
the sudden and large change of the temperature of the wall, which is traduced into a sudden and large
thermal change in the surface tension, affecting strongly the amplitude of the free surface response.

In this way, it is shown in the paper that it is also possible to have a large sudden change in
thermocapillary effects by increasing the amplitude of the sinusoidal wall deformation and reducing
its wavelength (which is similar to decreasing L). For this reason, the free surface response is able
to show a large amplitude (resonance) when the thermocapillary effects are important (see Fig. 2).
This occurs just when the wall thickness is very small (see the coefficient f(d/QC,Bi) of the thermo-
capillary term in Fig. 2 for small d/QC). Therefore, it is demonstrated that when the thermocapillary
coefficient f(d/QC,Bi) presents a large sudden change in Eq. (21), the amplitude of the free surface
response is very large.

The results presented above show the importance the wall deformations have on the thin film
instability even when they appear in the backside. That is why care should be taken too when
inserting in the wall equipment to measure non-isothermal phenomena in thin liquid films. Those
elements change the local thickness and local thermal conductivity of the wall and, depending on
the subject of research, they may have significant consequences on the experimental results.
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