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a b s t r a c t 

This study is concerned with the continuum modelling of sharp-corner contraction-expansion axisym- 

metric flows, under contraction-ratio variation, and more particularly, in the precise capture of the large- 

levels of experimental excess pressure-drops ( epd ) for Boger fluids. The particular contraction-ratios ( α) 

considered are those studied experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. 

Manero, M.F. Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260–271; of α = {2, 4, 6, 8, 10}. Their 

experimental PAA/corn-syrup Boger fluids have been characterized and modelled with the so-called 

swanINNFM model through dissipative continuum-scale modelling. This facilitates the precise capture 

of experimental-levels of epd- data (largest epd = O(6) under α = 10 contraction-ratio and sharp corners). 

The swanINNFM model has already proven capable of reproducing the large excess pressure-drops re- 

ported by J.P. Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33–63, in their experi- 

ments ( epd = O(3) for α= 4 contraction-ratio and PS/PS Boger fluids); it is also capable of reproducing 

the Boger-fluid pressure-drop rise, relative to Newtonian-instance, in axisymmetric α=4 contraction- 

flow, as opposed to the null rise observed in the planar counterpart reported by S. Nigen, K. Walters, 

J. Non-Newton. Fluid Mech., 102 (2002) 343–359. In the present study, at each contraction-ratio and un- 

der De -rise (flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at low 

deformation-rates, and ii) a sudden epd -rise above the Newtonian unity reference- line. With elevation 

in contraction-ratio, the first plateaued- epd phase is elongated and the maximum epd -levels rise signifi- 

cantly. Such epd -elevation is captured theoretically and numerically, with counterpart rise in extensional- 

viscosity. In addition, this position in epd -response correlates well against trends in vortex-dynamics - 

correctly capturing lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and coales- 

cence, and ultimate elastic corner-vortex domination. In this respect, their presence and transitions, may 

themselves be linked to increased elastic effects and normal-stress response. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Experimentally, on entry-flow A plethora of steady-state

tudies have considered various: geometrical-configurations 

axisymmetric-planar; contraction-ratio variation), edge-sharpness 

sharp-rounded corners), and fluid rheology (constant shear-

iscosity Boger fluids – shear-thinning fluids). For related back-

round see [1–4] . Regarding circular contractions and Boger fluids

nder a contraction-ratio of ( α = 4) , Boger et al. [5] compared the
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ow of two fluids with essentially equivalent characteristic relax-

tion times, derived from shear-flow measurement. Whilst increas-

ng deformation-rate, observations revealed two distinct patterns

rose in flow-structure. The first fluid, a polyacrylamide/corn-syrup

olution (PAA/CS), displayed a single vortex, initially at low rates,

onfined to the salient-corner by a concave flow separation-line.

his single vortex continually traversed from the corner to the

ip with rate increase, bounded by a straightened separation-line

nd cell of constant reattachment-length. Then, once the vortex

ecame located at the lip, it enhanced with further rise in flow-

ate; attendant with growing reattachment-length and convex

eparation-line (cell-shape). A second test fluid, a polyisobuty-

http://dx.doi.org/10.1016/j.jnnfm.2016.10.005
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lene/polybutene solution (PIB/PB), exhibited isolated salient-corner

and lip-vortices. Salient-corner vortex shrinkage and disappearance

were reported, followed by lip-vortex formation and enhancement.

These distinctly different forms of flow sequences were attributed

to variation in extensional properties. The authors concluded that

knowledge of steady and dynamic shear properties alone was

insufficient to characterise elastic liquids in such complex flow

scenarios. Subsequently, Boger and Binnington [6] studied the

influence of aspect-ratio ( α={4,22}) for a well-known M1-fluid (a

PIB/PB solution), concentrating upon circular geometries. There-

upon and with rising flow-rate, a similar pattern of isolated corner

and lip-vortices was observed to that provided in Boger et al. [5] ,

specifically for the relatively low aspect-ratio of α=4. Further

incrementation in contraction-ratio to α=22, provided a rich

sequence of structures, each displaying co-existence of salient-

corner and lip-vortices. In this context and with rising flow-rate,

this revealed patterns of: Newtonian flow-like structures at low

deformation-rates; followed by corner and lip-vortex co-existence

under an undulating flow separation-line; then, disappearance of

the salient-corner vortex; and finally, lip-vortex domination. Such

vortex-activity in this larger aspect-ratio, was attributed to the

larger extension-rates generated therein. With a similar PIB/PB

solution, McKinley et al. [7] also reported analogous trends under

α={2, 3, 4, 5, 6, 8}. Once more, with co-existent of salient-corner

and lip-vortices observed for α ≥ 6. 

Excess pressure-drop in contraction-expansion geometries With fo-

cus on contraction-expansion flow, circular-symmetric and sharp-

cornered, Rothstein and McKinley [8,9] provided results on ex-

cess pressure-drop ( epd ) and vortex dynamics for steady-state

flow of a polystyrene-polystyrene (PS/PS)-based Boger fluid. There,

with increase in Deborah number ( De ) (promoted via flow-rate Q -

increase), Rothstein and McKinley [8] reported a marked rise in

epd for ( α=4) contraction-ratio. These authors remarked that such

epd -rise was not related to an elastic-instability, instead attribut-

ing this to an additional polymeric dissipative-stress, observed

when the material is stretched through a constriction. In subse-

quent work, Rothstein and McKinley [9] explored the influence

of contraction-ratio and its variation for the same (PS/PS)-based

Boger fluid, where both sharp- and rounded-corners were consid-

ered. Contraction-ratios of α={2, 4, 8} provided large epd above

their Newtonian counterparts, irrespective of the contraction-tip

smoothness. Maximum epd -levels also rose with aspect-ratio in-

crease. In terms of kinematic flow features, salient-corner dom-

inated flow was prevalent for aspect-ratios of α ≥ 4, whilst lip-

vortices were apparent for α=2. More recent experimental studies

with a PAA/CS Boger fluid, of Perez-Camacho et al. [10] for α={2,

4, 6, 8, 10}, reported similar trends and findings, of increasing

max- epd with contraction-ratio increase. In addition, transitions

from salient-corner to lip-vortex domination were also recorded,

yet only for relatively large contraction-ratios of α ≥ 6. Although

such Boger-fluids are known to display similar shear rheometrical

properties, their departure here in kinematic response is suspected

to be linked to their respective extensional properties (hence for-

mulation, see Rothstein and McKinley [9] ). 

Numerical predictions Traditionally, Boger fluids have been rep-

resented by constant shear-viscosity Oldroyd-B models. Neverthe-

less, Oldroyd-B solutions have failed to predict the significant in-

creases observed experimentally in Couette correction (related to

pressure drop) for Boger fluids (for example [11–16] ). Moreover,

the lack of finite-extensibility of the Oldroyd-B model, and its over-

strong quadratic response in first normal stress difference N 1 , are

severe shortcomings. These have been overcome more recently, via

FENE-CR functionality [17] . Using the FENE-CR model , Szabo et

al. [18] simulated a flow of Boger fluids through an axisymmetric

( α=4) contraction-expansion with rounded-corners. This avoided

numerical approximation difficulties associated with resolving the
ow about sharp-corners. These authors used a split Lagrangian–

ulerian finite-element scheme in their computations and ex-

racted valuable information on epd . They used a solvent to total

iscosity ratio ( β) of 1/9 (benchmark highly-polymeric setting, far

rom Boger fluid composition), and varied the finite extensibility-

arameter ( L ) of FENE-CR model. With values of L = 3.26, 5 and

 (Oldroyd-B limit), they gradually increased strain-hardening fea-

ures, and hence, derived some modest epd -enhancement with L -

ncrease (of ∼10% at De ∼10 with L = 5). More recently, Castillo-

ejas et al. [19] performed simulations for Boger fluids, through

on-equilibrium molecular dynamics and on abrupt ( α={2,4})

ontraction-expansion flows. Their molecular studies point the way

orward, under planar and axisymmetric geometries, successfully

redicting significant pressure-drop enhancement in the circular

ase (for α=4, of ∼150% over the Newtonian unity reference-level;

or α=2, of ∼40%, and null response for planar). 

Contraction-flows, Boger and shear-thinning fluids: Aboubacar and

ebster, [20] and Aboubacar et al. [11,21] switched attention to

ontraction geometries, again involving highly-polymeric solvent

iscosity-ratio β =1/9. Both planar and axisymmetric configura-

ions were considered, with sharp versus rounded-corners. Us-

ng a hybrid finite element/volume method, numerical solutions

or ( α=4) aspect-ratio focussed on Couette-correction and vortex-

ynamics, with Oldroyd-B and Phan-Thien-Tanner (PTT) models

Linear (LPTT) and Exponential (EPTT) variants [22] ). There, on

ouette-correction under ε PTT =0.25 for circular sharp-corner, LPTT

nitially dropped up to Wi ∼1 and rose thereafter. In contrast,

PTT Couette-correction rose monotonically for all Wi, covering

 wider elasticity range, whilst comparatively Oldroyd-B results

ropped steeply to negative values over a narrow-restricted range

f Wi . So, and conspicuously for Boger fluids, experimental-levels

f pressure-drop were only poorly represented. It was argued that

ome of these trends were due to the relevant shifts and scaling

hat arise in the Couette-correction ratio, once shear-thinning is

ntroduced. Under the same context of highly-polymeric β = 1/9

uids, Oliveira et al. [23] focused on contraction-ratio variation in

harp-contractions ( α ∈ [2, 100]). Towards this end, a staggered-

rid finite-volume method was used. Similarly, these authors

rovided results for Couette-correction and vortex-activity using

ldroyd-B (constant viscosity) and Phan–Thien–Tanner (LPTT) con-

titutive equations ( shear-thinning ). There, the vortex-type (corner,

ip or mixed) was quantified in a 2D-map, with α and De as in-

ependent parameters. For α > 10, lip-vortex formation occurred

t a specific and fixed level of De . Moreover, at any constant

alue of De / α, the salient-corner vortex completely surrounded that

t the lip. In addition, parametric analysis was also conducted

n the ε PTT hardening-parameter, covering the range ε PTT = [0,

.5]. Couette-correction data somewhat replicated the trends re-

orted in Aboubacar et al. [21] . For example, under ε PTT =0.25

nd 10 ≤ α ≤100, Couette-correction was clustered around a sin-

le trend-line for all De . There, was an initial drop in Couette-

orrection, apparent up to De ∼1, followed by a subsequent rise. 

Nevertheless, and despite such advances in predictive capabil-

ty described above, only recently have the remarkably large ex-

erimental epd -levels for the PS/PS-Boger fluid) of Rothstein and

cKinley [9] been captured with continuum modelling ( ∼300% over

he unity reference-line). This has been achieved with the so-called

wanINNFM model of Tamaddon-Jahromi et al. [24] , within the

elevant α=4 rounded-corner contraction-expansion flow of Roth-

tein and McKinley [9] . In addition, in the context of sharp-corner

ontraction entry-flow and using the same model, López-Aguilar et

l. [25] have extended these ideas to apply to both planar and ax-

symmetric configurations. There and once again, the experimen-

al pressure-drop data of Nigen and Walters [26] for PAA Boger-

uids, have been well reproduced, null response in planar and ex-

essively large epd for circular. Such success relies on the swanIN-
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1 In complex flow, a generalized strain-rate ˙ ε and a shear-rate ˙ γ may be ex- 

tracted from the second and third invariants of rate-of-deformation tensor D , viz, 

˙ ε = 3 II I D / I I D , and ˙ γ = 2 
√ 

I I D ; where I I D = 

1 
2 

tr( D 2 ) , II I D = det (D ) . 
FM constitutive equation structure, which is a hybrid construct

f a FENE-CR polymer component with a White-Metzner func-

ional dependence of the extension-rate in both solvent and poly-

er contributions to the total stress. Hence, annunciation of the

arget for the present study, that is concerned with matching epd -

evels reported in Perez-Camacho et al. [10] , and the trace of coun-

erpart vortex activity. Then, the geometry is that of contraction-

xpansion form, axisymmetric and sharp-cornered; the fluid is a

oger fluid of PAA/corn-syrup. The geometric ratios considered

over α-variation, α={2, 4, 6, 8, 10}. It is shown how epd -levels

re closely extracted under swanINNFM modelling. With flow-rate

ise and larger contraction-ratios, the vortex-dynamics reveals var-

ous flow transitions, from salient-corner to lip-dominated activity,

eplicating that reported in the counterpart experiments. 

. Governing equations and discretisation 

The relevant governing equations are those of mass conserva-

ion and momentum transport, together with an equation of state

or stress. Under isothermal and incompressible flow assumptions,

hese equations may be expressed as: 

 · u = 0 , (1)

e 
∂u 

∂t 
= ∇ · T − Re u · ∇u − ∇p, (2)

here u , represents fluid-velocity, p , isotropic pressure and T ,

xtra-stress. A first dimensionless group number, the Reynolds

roup-number Re = ( ρŪ R c / μo ) , provides a relative measure of in-

rtial to viscous forces in the fluid. Here one identifies a ma-

erial density as ρ , an average velocity based on the flow-rate

 as U , a characteristic length of the flow domain as R c (taken

s the contraction-gap radius), and a characteristic viscosity as

o = μp + μs . This characteristic viscosity is taken at zero shear-

ate (simple-shear first-Newtonian viscosity-plateau), being split

nto two contributions, { μp , μs } of {polymeric, solvent} origin. In

his work, creeping flow is assumed, warranted through virtually

nertialess [ Re ≈ O (10 −2 )] flow conditions. 

Consistently then, the rheological nature of the fluid is speci-

ed through a solute-solvent split extra-stress T , where T = τp + τs ;

here τp and τs represent the polymeric (solute) and solvent

tress-contributions, respectively. Under such splitting, a measure

f the concentration of solute in the fluid-mixture, or solvent-

raction, may be defined as β = μs / μo . As required for Boger flu-

ds, large solvent-fractions provide fluid-representation of solvent-

ominated quality. 

Constitutive equation – swanINNFM(q) model This model

s a hybrid construct of a FENE-CR polymer component, with

 White-Metzner functional dependence on extension-rate. It

ossesses both polymer and solvent dissipative terms (WM-

ENE-CR; [17,24,25,27,28] ). Such a model takes advantage of

nite-extensibility, inherited from the parent FENE-CR model,

ith controlled-boosting of extensional-viscosity levels through

 dissipative-stress contribution (WM-component). Moreover, a

eakened N 1Shear response is obtained, in contrast to the strong

uadratic response of Oldroyd-B. 

In configuration-tensor A -form, the swanINNFM(q) model may

e expressed as: 

 = τp + τs = 

( 1 − β) 

De 
f ( T r ( | A | ) ) A φ( ̇ ε ) + 2 βφ( ̇ ε ) D , (3)

e 
∇ 

A 

+ f ( T r ( | A | ) ) ( A − I ) = 0 , (4)

here 
∇ 

A 

represents the upper-convected material derivative of A :

 

 

= 

∂A 

∂t 
+ u · ∇A − ( ∇u ) 

T · A − A · ( ∇u ) . (5)
D = ( ∇u + ∇u 

T )/2 is the rate-of-deformation tensor (superscript

 for tensor transpose). Finally, the ABS- f -functional, f ( Tr (| A |)), in

qs.(3) and (4) is taken as: 

f ( T r ( | A | ) ) = 

1 

1 − T r ( | A | ) / L 2 , (6) 

here, the extensibility-parameter L governs the plateau-level

f extensional viscosity ηExt , and the slope strength of N 1Shear .

ere, elevation in L -parameter results in larger ηExt -plateaux and

tronger N 1Shear -slopes, approaching the Oldroyd-B quadratic limit

s L → ∞ . 

A second non-dimensional group number, that of Deborah

umber De = λ1 ̄U / R c , may be defined through the ratio of a char-

cteristic time-of-the-material λ1 , and a characteristic time-of-the- 

ow . This flow characteristic-time is chosen as ( R c / ̄U ), and repre-

ents an average residence-time of a volume-element of fluid in

he contraction-gap. As such, this non-dimensional De modulates

he degree of viscoelasticity in the flow and correlates linearly with

ow-rate ( Q ) -rise. 

Within the White-Metzner construction, the dissipative-

unction φ( ̇ ε ) may be defined as φ( ̇ ε ) = 1 + ( λD ˙ ε ) 
2 . This repre-

ents a quadratic-term truncated Taylor series approximation, of

he more general hyperbolic-cosine function φ( ̇ ε ) = cosh ( λD ˙ ε )
24,29,30] . Here, λD represents a dissipative extensional-viscous

ime-scale (material dissipative-factor) and ˙ ε an extension-rate. 1 

he function φ( ̇ ε ) introduces additional dissipative-stress fac-

ors in both polymeric and solvent contributions to the stress

ensor, see Eq. (3) . These dissipative-stress contributions pro-

ote extra energy-removal from the flow [8] . Such loss of

nergy may be observed through large excess pressure-drop in

ontraction/contraction-expansion complex flows. The dissipative- 

actor λD is a time-parameter that governs the dissipative stress

ontribution, controlling the extensional viscosity boosting. The

issipative-factor λD may vary between [0, ∞ ). Note that the

wanINNFM(q) model collapses into FENE-CR [ φ( ̇ ε ) = 1 ] in: ideal

ows with null extensional deformation (via ˙ ε = 0 ; for example,

ure shear and planar flows); or indeed, when the extra dissipative

tress is deactivated through λD =0. 

Material function matching – First-normal stress difference

 1Shear The physical quantities reflecting the viscoelastic character-

stics of the polyacrylamide (PAA)/corn-syrup(CS) Boger fluid are

 a relaxation time of λ1 
Exp =0.174s and a zero-shear viscosity of

0 
Exp =13.5 Pa s. In addition, N 1Shear data was provided in [10] (see

ppendix A for scaling-factor equivalence on De numbers from ex-

eriments to simulation). In the range of shear-rate tested experi-

entally, the N 1Shear experimental data is well captured within the

odelling through parameter selection of - a solvent fraction of

=0.9 and an extensibility-parameter window of L={3, 10} (see

10] ). Hence in the present study, a representative parameter set

f { β , L } = {0.9,5} has been chosen. 

The rheometric response of the swanINNFM(q) model is dis-

layed in Fig. 1 . The model predicts a constant shear viscosity, yet

he first normal stress difference ( N 1Shear ) is weaker than the strong

uadratic form exhibited by the Oldroyd-B model. The extensional

ata in Fig. 1 a for the extensional viscosity ( ηExt ) of the swanIN-

FM(q) model are new contributions specific to the viscoelastic

etting for the range of 0 ≤ λD ≤ 1.0. Here and for low extensional

train-rates up to 0.3, this model-response is practically identical

o that of the Oldroyd-B model. Beyond this state, ηExt for the

D =0 (FENE-CR) model is capped, with ηExt limiting-plateau lev-

ls depending on L -elevation. Here, one is able to detect the conse-

uence of larger λD influence on ηExt . For λD > 0, a rising trend in
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Fig. 1. Material functions; a) ηExt & b) N 1Shear ; { β , L } = {0.9, 5}. 
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extensional viscosity is observed for swanINNFM(q), when com-

pared to the FENE-CR base-model. Hence for example, with

λD =0.2 and at strain-rates of O(1) unit, extensional viscosity is

around 5.5 units, whilst for λD =1.0, ηExt has reached around

∼8 units. With a five times increase in strain-rate [from O(1) to

O(5)], the corresponding ηExt -levels are around {10, 80} units for

λD ={0.2, 1.0}, respectively. The relevant rheometrical functions for

the swanINNFM(q) model are then: 

η = η0 , N 1 Shear = 

2 η0 ( 1 − β) De ̇ γ 2 

f 
, N 2 Shear = 0 , 

ηExt = 3 φ( ̇ ε ) βη0 + 3 φ( ̇ ε ) ( 1 − β) η0 

[
f 2 

( f − 2 De ̇ ε ) ( f + De ̇ ε ) 

]
. (7)

Hence, it becomes clear that for a particular material, the

φ( ̇ ε ) functional and its dissipative-factor λD , can be determined

from fitting to extensional viscosity data; hence covering a range

of deformation-rates, as experienced under alternative flow and

geometric settings. Yet, when not available, we have been able

to indicate through prediction in Nyström et al. [31] , that fit-

ting to experimental epd -measurement data can be used to

back-calculate a measure for extensional viscosity. Specifically

in Nyström et al. [31] , considering an axisymmetric hyperbolic
ontraction-expansion configuration in which a steady and con-

tant strain-rate is established, it is shown that a parametric re-

ationship between extensional viscosity ( ηExt ) and pressure drop

 epd ) can be established. This has led to a practical means to find

 best-fit to measured- epd from predicted- epd (simulation), and

ence, to determine an extensional-based material time-constant

D . In this manner and for elastic fluids, a much-sought for mea-

ure of extensional viscosity can be established through the de-

ived pressure-drop data. 

Sharp-corner contraction-expansion flow domain & mesh-

ng The relevant mesh characteristic detail, covering the spe-

ific meshes employed within this study, is provided in Table 1 .

 schematic illustration is shown in Fig. 2 , based on the α=8

spect-ratio geometry. Here, the aspect-ratio α denotes rela-

ive change in upstream-tube diameter to constriction diameter

held fixed at R c =1 unit) for all contraction-ratios cited. Mesh-

efinement analysis is conducted for the isolated benchmark-case

f α=4 contraction-ratio, drawing upon coarse, medium and re-

ned meshes. As a consequence of findings therein, and with

lternative aspect-ratios in mind, only medium refinement has

een employed, accordingly. One notes that mesh-structure proved

ey in attaining highly-elastic solutions through the present Q -

ncrease procedure. With focus on the constriction-zone at each

spect-ratio, meshes with uniform squared-structure construction

 Fig. 2 ), provided solutions at significantly larger Q -levels ( Wi crit ),

han other options with trapezoidal mesh-structure (as constructed

ith areas delimited by diagonals uniting the centreline with

he re-entrant corner contraction-tips). Such results are attributed

o numerical stability gains from larger CFL numbers, due to

 larger minimum-mesh size R min for squared-structure meshes;

hese R min -values are an order-of-magnitude larger than those for

he trapezoidal-structured options. 

Numerical approximation Comprehensive detail on the numer-

cal fe/fv algorithm employed to generate the present predictive so-

utions can be found elsewhere [25] . Concisely, this scheme is that

f a hybrid finite element/finite volume algorithm which follows

 three-stage time-splitting semi-implicit formulation. Note, across

ontraction-ratios, singularities at re-entrant corners were not an

mpediment for matching epd -experimental data in the De -ranges

ampled. New to this hybrid algorithmic formulation are tech-

iques in strain-rate stabilisation (SRS-term - Belblidia et al. [32–

4] ); handling ABS- f -correction ( f ( Tr (| A |))) in the constitutive equa-

ion, which provides consistent material-property prediction; and

ntroducing purely-extensional velocity-gradient component speci-

cation at the shear-free centreline of the flow, through a velocity

radient (VGR) correction, López-Aguilar et al. [35] . At entry-exit

ones, locally periodic boundary conditions were imposed, to over-

ome inconsistencies between inlet (and outlet) and inner-field ap-

roximations. Here, within the entry-zone a feedback procedure

as implemented from the interior shear-flow section (likewise

ith an interior-domain feed-forward procedure for the exit-zone),

otably active on velocity-gradients ( ∇u ) and extra-stress ( τp ), see

ópez-Aguilar et al. [36] . The optimum solution continuation pro-

edure adopted at each new flow rate is to first compute the best

atch extensional inelastic solution (swanINNFM( λD � = 0, λ1 =0))

o the experimental epd -level. Then, to use solution parameter con-

inuation through the relaxation time ( λ1 ) to introduce elasticity,

ith swanINNFM( λD � = 0, λ1 � = 0). 

. On excess pressure-drops ( epd ) 

Graphical plots for epd against flow-rate Q -increase ( De -

ncrease) are provided in Fig. 3 . Here, one may recall that larger Q -

evels, imply larger deformation-rates. This covers data for all five

eometry aspect ratios considered, α={2, 4, 6, 8, 10}. 
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Table 1 

Mesh characteristics. 

Contraction Ratio α Level of refinement Number of elements Total number of nodes DOF R min 

2 Medium 3003 6204 38 ,825 0 .0525 

4 Coarse 1872 3905 24 ,447 0 .1158 

Medium 2703 5600 35 ,049 0 .0579 

Refined 4511 9274 58 ,026 0 .0289 

6 Medium 3056 6313 39 ,507 0 .0582 

8 Medium 2508 5217 32 ,657 0 .0244 

10 Medium 3112 6445 40 ,337 0 .0241 

Fig. 2. Sharp contraction-expansion geometry mesh; α = {2, 4, 6, 8, 10}; medium level of refinement. 
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α = 4 contraction-ratio ( base-case , Fig. 3 b): When consider-

ng Q -rise, and whilst also applicable for all α ≥ 4, epd data

isplay three main regions of epd-response . For α = 4 the position

s depicted as: (i) a first lower-rate epd -plateau zone, with epd ∼1

 De < 0.6); (ii) a sharply rising - epd zone (0.6 < De < 1.3); and

iii) a tendency towards a second higher-rate epd -plateau ( De > 1.3)

more clearly captured with larger aspect-ratio, of say α=10). 

Pressure-drop ( α=4)-maxima reach an order of epd ∼1.42.

irstly, epd -data founded on predictions with the base-model

ENE-CR (swanINNFM λD = 0.0, L = 5, β = 0.9) are provided (as

hown in [10,24] ). Conspicuously, in Fig. 3 b, predictive-solution

 λD =0.0)-data lies significantly below experimental expectation in

he higher deformation-rate region of De > 0.6. Here, it is shown

ow by appealing to the new swanINNFM ( λD � = 0) model, such

nder-prediction may be successfully overcome, so that the span of

he experimental data may be well captured. Best practice would

ndicate that a Q -increase mode is the more practical and effi-

ient steady-state solution-seeking route through continuation to

mplement such predictive matching [24] . That is, when taken

gainst its alternative continuation-procedure of fluid-elasticity λ1 -

ncrease mode – a standard practice used under simulation proce-

ures. 

Epd λD –windows Employing fixed λD –solutions, the three main

pd -( α = 4 )-regions of response, identified above, are captured for
he De -range (0 ≤De ≤ 1.3), in upper-lower windows of λD -values

see continuous lines in Fig. 3 b). The first lower-window, is given

y λD = [0.0, 0.5], which covers the first lower-rate epd -plateau

one, just above epd -unity line, and slightly beyond up to De ≤ 0.8.

he second and upper-window, with λD = [0.5, 0.8], captures the

ronounced rising-trend observed in the experimental epd -data

hroughout the range 0.8 ≤De ≤ 1.4. One notes that for all α=4-

nstances and for the lower plateaued- epd phases, the lower λD -

ound is provided by λD =0 solutions (FENE-CR limit; see Fig. 1 for

ack-reference to material functions). In this fashion, even the ini-

ial drop below the unity epd -reference-line is extracted ( Fig. 3 b,c

or α={4, 6}). 

Epd -data subsets Upon more close inspection of the epd -

ata in Fig. 3 b, one may go somewhat further to classify three

pd ranges, and accordingly three epd -data subsets. Here, it is

he slope of the linear-fit line to each epd -data subset which is

he distinguishing factor, as noted in De -ranges {I, II, III}. Cru-

ially, this slope may be correlated against an averaged λD -value

cross each De -range identified. Such an average λD -value may

e established by sampling λD -values that match the experimen-

al epd -levels across a particular De -range. For example in the

=4 base-case, this suggests a step-function of λD -values , span-

ing such epd subsets/ De -ranges, identified through: (I) λD =0, at

elatively low flow-rates ( De ≤ 0.65); (II) λ =0.4, at intermediate
D 



44 J.E. López-Aguilar et al. / Journal of Non-Newtonian Fluid Mechanics 237 (2016) 39–53 

Fig. 3. epd prediction-windows against De ;{a, b, c, d, e} correspond to α={2, 4, 6, 8, 10}; experimental data-symbols, numerical predictions-lines. 
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flow-rates (0.6 < De ≤ 0.95); and (III) λD =0.7, at high flow-rates

(0.95 < De ≤ 1.3). 

α ≥ 6 contraction-ratio variation To progress across alterna-

tive deformation states, one may contrast epd -findings with larger

geometric aspect-ratios, α ≥ 6 . Note that with α-increase , firstly

experimental-epd maxima rise ; and secondly, larger Q-levels (larger

deformation-rates ) are required to precisely capture the distinct

character and phases of lower epd -plateau, epd -rise and higher

epd -plateau. 

Matching epd -rise phase, aspect-ratio α-variation Seeking a

match against the experimental data and with rise in α, it is clearly

necessary to adjust the λD –parameter selection within the pre-

dictions. In contrast to the α= 4 base-case with a solution win-

dow of [lower, upper] bounds of λD = [0.5, 0.8], the α= 6 case

demands larger dissipative-parameter λD -levels ( Fig. 3 c). Hence,

observing a fresh window and bounds of λD = [0.6, 1.0]. For yet

larger contraction-ratios of α=8, there is a sustained decrease

in λD -levels to match the experimental epd ( Fig. 3 d,e). For ex-

ample, in the α= 8 case, corresponding bounds are given un-

der solution window λD = [0.4, 0.55], whilst the α= 10 case re-

quires a bounded-window of λD = [0.2, 0.4]. Such λD -reduction for

α ≥ 8 may be correlated against ever increasing maximum extension-

rates with α-rise . These larger extension-rates with α-rise are
romoted by the relatively larger Q -levels needed to substantiate

he epd -rises detected in the experiments. This is a natural state of

ffairs, since the dissipative-function, φ( λD ˙ ε ) = 1 + ( λD ˙ ε ) 
2 , itself

as dependency upon the product factor ( λD ˙ ε ) as its driving pa-

ameter. Hence, for the same level of ϕ (whose increase stimulates

arger ηE and epd ), a larger extension-rate ˙ ε automatically provides

 smaller dissipative-parameter λD . Under such complex flow de-

ormation, as here, this is strong evidence of the need for rate-

ependent adjustment of the extensional-based dissipative param-

ter ( λD ) – as suggested by the step-function above, or indeed by

 multimode representation (motivated by extensional considera-

ions). In principal, upon using a more robust multimode approach,

ven better predictions against experimental findings may be an-

icipated, offering wider matching to experimental data in shear

 ηShear , N 1Shear ) than afforded by a single-mode averaged approxi-

ation. 

To investigate such dependencies and interrogate the position

urther, plots are provided in Fig. 4 for centreline extension-rate

aximum, ˙ ε max , dissipative-factor λD and dissipative-function φmax .

uch data is taken against deformation-rate rise and across the var-

ous contraction-ratios. Note, these extrema are extracted at vari-

us Q -levels, each Q -level being representative of an epd -subset in

ach α-instance, from Fig. 3 data. The λD –values are those required
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Fig. 4. Centreline a) ˙ ε max , b) λD and c) φmax against De; α = {2, 4, 6, 8, 10}. 
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Fig. 5. Vortex intensity against De; α = {2, 4, 6, 8, 10}. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 
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to best match the experimental epd -data, in each α-instance, and

at specific De -values ( Q -levels). In Fig. 4 a, with each α-instance, a

linear relationship is recorded between the maximum extension-

rate at the centreline ˙ ε max through De ( Q -rise). At fixed- De ( Q -

fixed) and with α-rise, centreline ˙ ε max increases. For instance at

De = 9, α = 8 maximum extension-rate equates to ˙ ε max = 11.5 units,

whilst equivalently for α = 10, ˙ ε max = 12 units; rendering a 4% in-

crement. In contrast in Fig. 4 b, covering the various α-instances, a

complex non-linear dependency is observed to hold between λD 

with Q -rise. For example, with α = {4, 6} and Q -rise, steep lin-

ear increasing trends are apparent on λD ; whilst, for α = {8, 10},

an initial (shallower) linear rise is observed at relatively small

deformation-rates, followed by a maximum being reached, before
 subsequent decline. The consequence is gathered in the rising

max -trends as observed in Fig. 4 c, which are relatively linear for

= {4, 6, 8}, and piecewise-linear for α = 10. 

Epd -data subsets and λD - step-functions ( α ≥ 6) Taken in con-

rast to the α = 4 base-case, α ≥ 8 instances display richer be-

aviour in epd -slope subsets ( Fig. 3 c–e). Note, both α = 4 and α = 6

ases displays three long subsets, as observed in Fig. 3 b,c. Gener-

lly and with α-rise, an increased number of subsets are required

o match the experimental data, albeit for an ever widening cover-

ge and De -range. In the extreme case of α = 10 ( Fig. 3 e), five sub-

ets are identified: (I) λD = 0 for De ≤ 3; (II) λD = 0.2 for 4 < De ≤ 5;

III) λD =0.37 for 5 < De ≤ 9; (IV) λD =0.31 for 9 < De ≤ 14; and

V) λ = 0.26 for 14 < De ≤ 18). Meanwhile, the α = 8 instance
D 



J.E. López-Aguilar et al. / Journal of Non-Newtonian Fluid Mechanics 237 (2016) 39–53 47 

Fig. 6. Vortex intensity against De; α = 10. 
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Fig. 7. Streamlines against De; α = 2. 
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isplays four subsets ( Fig. 3 d): (I) λD = 0 for De ≤ 1.7; (II)

D = 0.2 for 1.7 < De ≤ 2.3; (III) λD = 0.47 for 2.3 < De ≤ 4.8; and (IV)

D = 0.43 for 4.8 < De ≤ 10. 

α = 2 contraction-ratio variation This geometry choice is

nique amongst its counterparts, in that it offers much reduced

evels of maximum strain-rates (see Fig. 4 a). This implies that

arger levels of dissipative-factor λD [ = O(10 2 ), from the smallest

 -level] are required to furnish equivalent levels in the dissipative-

unction φ( λD ˙ ε ) ( Fig. 4 b,c), and hence impact upon the rheomet-

ical functions. Notably, α = 2 epd -data is devoid of the first lower

pd -plateau, displaying only an initial sharp rise in epd from the

pd -unity reference line. Then, at De ∼0.01, a continuous slope-

ecrease is observed, to finally attain a constant yet rather shal-

ow rising-trend for De > 0.03. Moreover, the epd -maximum level

bserved is epd ∼3, which is twice that for the base-case of α = 4

 epd ∼1.42). Here, only a single window of λD -values is required to

atch epd -experimental data ( Fig. 3 a). The {lower, upper} bounds
f such a solution-window are given by λD = [45, 180]. Neverthe-

ess, three epd -slope subsets remain to be identified: (I) λD = 165

or De ≤ 0.01; (II) λD = 115 for 0.01 < De ≤ 0.024; and (III) λD = 55

or 0.024 < De ≤ 0.056. In contrast to larger- α and with Q -rise, the

D -level decreases whilst transcending these epd -subsets. 

. On vortex dynamics 

In this section, particular consideration is given to flow struc-

ure, through vortex-intensity and streamlines patterns. Once

gain, this covers solution-data for all five geometry aspect-ratios,

= {2, 4, 6, 8, 10}. In summary , with Q -rise ( De -increase), a num-

er of vortex features may be observed, upstream and downstream

f the contraction. First, there is onset and rise in salient-corner

 sv )-vortex-intensity, �sal ( Figs. 5 a,b and 6 a), with concave-shape

 Figs. 8, 9 a–11 a; α = 4: upstream-downstream sv asymmetry and

rowth). Second, there is lip-vortex ( lv )-formation in some cases,

otably for α ≥ 6 cases ( Figs. 9–11 b). Third in these instances, the

onvex lip-vortex eventually dominates and evolves into an elastic

orner-vortex ( cv ), but only at relatively large flow-rates ( � lip : Figs.

 c,d and 6 b; streamlines: Figs. 9–11 c). One notes the use of abso-

ute value notation for clarity on �sal and � lip . Such features have
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Fig. 8. Streamlines against De; α = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Streamlines against De; α = 6. 

Fig. 10. Streamlines against De; α = 8. 
their counterpart streamline-representation in Figs. 7–11 . Such a

sequence of vortex-growth patterns has been observed previously,

under circular α = 4 entry-flow experiments for a PIB/PB Boger-

fluid flow (Boger et al. 1986). There, salient-corner and lip-vortices

co-existed at mid- Q -levels; subsequently, the lip-vortex began to

dominate and to ultimately develop into an elastic corner-vortex.

Conspicuously, within an intermediate- Q range [ α={4, 6, 8, 10},

De ∼{0.8, 1.5, 2, 3.5}], the appearance of a lip-vortex and its sub-

sequent domination, coincides with epd -rise and departure from

the unity reference-line. Such correspondence marks flow regime

change, and this is well captured under λD � = 0 solutions. 

Comparison of vortex-intensity with α-variation In Fig. 5 ,

trend plots of the salient-corner and lip-based vortex-activity are

provided, for both upstream and downstream zones. 

�sal -maxima, relative strength with α-variation In

the α= 2 case, despite its relatively low deformation-rates

(0.007 ≤De ≤ 0.05), a sharp rise in �sal is observed ( Fig. 5 a,b

red-dashed lines), with a unique range of vortex-enhancement

(symmetric convex vortices; see on to Fig. 7 ). Note, in Fig. 5 a

upstream, there is �sal -maxima rise from α = 2 to 4; then decline

from α = 4 to 6; and finally rise for α ≥ 6. The initial appearance

of a lip-vortex is also highlighted, alongside �sal -growth. Com-

paratively, Fig. 5 b downstream, �sal -maxima enlarge with α-rise.

Note that, with respect to the upstream-location, downstream

�sal -maxima are always smaller, and for α ≥ 6, appear somewhat

more delayed till larger Q -levels. 

In Fig. 5 c,d, counterpart lip vortex-intensity � lip -plots are pro-

vided (no lip-vortices present for α ≤ 4). With α-rise, lip-vortex on-

set is gradually shifted to larger Q -levels. Upstream, the first flow-

rates to witness lip-vortex formation are De = {1.53, 2.01, 2.36} for

α = {6, 8, 10}. From such positions, relatively sharp rise is observed

in � lip . Then, at sufficiently high Q -levels, a linear � lip -trend is re-

covered ( Fig. 5 c,d), during a phase dominated by an elastic corner-

vortex (see Figs. 9 c, 10 , 11 c). Notably for α={6, 8, 10} and on tran-

sition activity from salient-corner to elastic corner-vortex domina-

tion, predictions located at De ∼{2, 4, 7}, roughly coincide with ex-

perimental observations, reported at De ∼{2.6, 4.5, 7} (see [10] ). 

α= 10 instance Since the α = 10 geometry provides the most

prominent features (see streamline patterns, Figs. 7–11 ), this in-

stance is isolated in Fig. 6 , to display direct upstream-downstream

data comparison (also representative for all α ≥ 6). For α = 10,

the upstream lip-vortex first appears at De = 2.5 ( Fig. 6 a). Be-

fore this stage ( De < 2.5), there is salient-corner vortex asymmetry

upstream-downstream (see counterpart Fig. 11 a). Beyond De > 2.5,
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Fig. 11. Streamlines against De; α = 10. 
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Fig. 12. Normal stress ratio against De; α = {2, 4, 6, 8, 10}. 

o  

r  

s  

e  

p  

l  

n  

c  

r  

t  

r  

W  

r  

f  

a  

1  

α  

e  

c  

r  

a  

H  

b

e  

w  

v  

v  

a

 

R  

F  

r  

t  

a  

i  

a  

t  

f  

a  

n  

s  
he salient corner-vortex experiences a sharp rise in its rotational

trength, before its disappearance at De > 3.7 [elastic corner-vortex

omination identified, 4.5 < De ≤ 17.4 ( Figs. 6 b and 11 c)]. There is

o-existence of a salient-corner and lip-vortex for 2.5 ≤De ≤ 4.5

 Fig. 11 b). Here, an increase of 260% in vortex intensity is observed

ia { �sal , De }, from {0.003, 2.57} to {0.010, 3.68}. Note, there are

imilar trend patterns observed downstream, although these are

omewhat delayed in deformation-rate; with lip-vortex appearance

t De = 3.8, and elastic corner-vortex domination for De > 4.4. 

Such De -ranges are affected by aspect ratio reduction from α = 10

o α = {6,8} , becoming narrower in width and lower in start-

ng value. For α= 6 ( Fig. 9 ) - (a) salient-corner vortex asym-

etry: De < 1.5; (b) lip-vortex appearance: De = 1.5; and vortex

o-existence: 1.5 ≤De ≤ 1.7; and (elastic corner-vortex domination:

.7 < De ≤ 2.8. For α= 8 ( Fig. 10 ) - (a) salient-corner vortex asym-

etry: De < 2, (b) lip-vortex appearance: De = 2; and vortex co-

xistence: 2.0 ≤De ≤ 2.8, and (c) elastic corner-vortex domination:

.8 < De ≤ 9. One notes the elongation of the salient corner-vortex

concavity), observed at relatively low Q -levels (part a) of Figs. 9–

1 , is a key factor governing lip-vortex formation. Such elonga-

ion and further lip-vortex growth are enhanced by the relatively

onger front and back wall-faces of the α = 10 geometry. Hence, as

-increases, the strength and size of these emerging lip-vortices

ncrease. 

. On stress-to-vortex structure interdependence 

First normal stress ratio As proposed by Rothstein and McKin-

ey [9] , in their experimental study on aspect-ratio variation, there

 normal stress-ratio was used to depict the transition from lip-

ortex activity to elastic corner-vortex activity. Data on a variety
f fluids was provided, and each at a specified but different flow-

ate. Such a normal stress-ratio was defined as the relative mea-

ure of normal-stress in pure shear (as on walls), to that in pure

xtension (as on flow centreline). For large- α, these authors re-

orted on phases of elastic corner-vortex domination, which corre-

ated with relatively small normal stress-ratios; hence, with domi-

ation of extensional over shear normal-stress. Accordingly, Fig. 12

onveys representative and current findings on this normal stress-

atio. Here and for each α-instance in turn, treated in contrast

o the Rothstein and McKinley data [9] , normal stress-ratios are

eported at various deformation-rates, as flow-rate is increased.

ith α-rise, our averaged normal stress-ratio (taken across flow-

ate and indicated with a dash-dotted line), rises from ∼1.8 units

or α = 4, to ∼1.9 units for α = 6. For larger aspect-ratios, these

veraged-values subsequently decline sharply, to ∼{1.2, 0.9} for {8,

0}. In line with findings of Rothstein and McKinley [9] through

-rise, such a decline in normal stress-ratio would indicate larger

xtensional- N 1 relative to that in shear. This position reflects elastic

orner-vortex domination for α ≥ 6 at relatively high deformation-

ates. Moreover, extrema are observed in normal stress-ratio for

ll α ≥ 4; occurring at De ∼{0.8, 1.1, 4.8, 5} with α = {4, 6, 8, 10}.

ence and consistently α ≥ 6 aspect-ratio solutions produce more

alanced shear-extension normal-stress-ratios, revealing dominant 

lastic corner-vortex activity; whilst counterpart α = 4-solutions

ith larger normal-stress-ratios, provide exclusively salient-corner

ortex-activity. Phase transitions, from lip-vortex to elastic corner-

ortex are also indicated in Fig. 12 (by vertical dashed-lines), and

rise in the vicinity of extrema in normal stress-ratio. 

Vortex activity against normal stress differences, N 1 and N 2 ,

epresentative N 1 and N 2 field projections (3D) are compared in

ig. 13 against corresponding vortex transitions. Here, the most

esponsive case of aspect-ratio α = 10 is selected, covering Q -rise

hrough low-medium-high De of 0.35 ≤De ≤ 17.4. As such, vortex

ctivity may be directly correlated to the corner-patterns apparent

n N 1 –N 2 fields, observed through corner-to-lip vortices (structure

nd location, both upstream and downstream). One may infer from

his evidence that elasticity, through N 1 –N 2 , is responsible for the

ormation and evolution of these corner and lip-vortices. At rel-

tively low De = 0.35 ( Fig. 13 a), symmetric upstream-downstream

ormal-stress patterns are apparent, reflecting the presence of

alient-corner vortex-like structures. During the vortex co-existence
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Fig. 13. Normal stresses v streamlines against De; α = 10. 
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phase , when both lip- and salient-corner vortices are present

( Fig. 13 b, moderate- De ), three sample De -solutions are provided.

At De = 3.47 and upstream , salient-corner and lip-centred stress

patterns co-exist, whilst downstream , only isolated corner patterns

are apparent. At the incremented larger level of De = 4.24, a sin-

gle upstream pattern has formed upon merging of lip and cor-

ner forms, with locus centred nearby the re-entrant corner. Anal-

ogously at De = 4.24 and downstream , co-existent N 1 –N 2 structures

are also visible, capturing the corresponding vortex structures as

shown. Upon still further incrementation to De = 6.3, both stress-

patterns and vortex-structures are depicted as coalesced, reflect-

ing a strong single elastic-corner vortex; similar response is cap-

tured in both upstream and downstream zones. Covering the fi-

nal phase of elastic corner-vortex domination, captured here at

De = 17.4, large vortex-like stress-patterns emerge, both upstream

and downstream. At this stage, the streamline loci have detached

from the contraction front and back-faces. This position correlates

with the emergence of sharp negative N 1 -peaks around the same

wall-locations in the re-entrant corner vicinity (also appearing at

De = 6.3; being less apparent in N 2 -plots). 

Trends on vortex stress-maxima The associated trends in N 1max 

and N are plotted against rate-rise in graphical form within
2max 
ig. 14 , corresponding to values at the centre of the vortex-like

tress-patterns. Consistently, with Q -rise, the salient-corner N 1max 

nd N 2max of Fig. 14 a, reflect analogous trends to those observed

n vortex-intensity ( Fig. 6 a). Downstream response is always de-

ayed to that upstream, and N 2max represents a suppressed form

f N 1max (but constituting more than 50% of N 1max ). Beyond the

tation at which a lip-vortex appears, N 1max considerably strength-

ns, as noted both upstream and downstream; a feature present but

ess prominent in N 2max . Equivalently, on tracking the lip- to elastic

orner-vortex and normal-stress activity of Fig. 14 b, two phases of

ising N 1max may be identified. The first-phase corresponds to that

f lip-vortex formation, alongside its co-existence with the salient-

orner structure (here, N 1max and N 2max coincide); the second-phase

orresponds to that of domination from an elastic corner-vortex

transition indicated with a dashed-line). In N 2max -data, the on-

et of this second-phase is marked by an initial drop, that is then

ollowed by a subsequent rise (ultimately, contributing ∼80% to

 1max ). 

To help complete the picture, Fig. 15 compares and contrasts

iscometric equivalent normal stress field patterns, in both shear

centre) and extension (right), against present complex flow so-

utions (left) through the same phases of Fig. 13 . In sight of this
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Fig. 14. Vortex-structure N 1max and N 2max against De ; a) sv , b) lv - cv; α = 10. 
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Fig. 15. Vortex-structure v viscometric N 1Shear and N 1Ext against De; α = 10. 
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vidence, one may infer that preferential rheology to govern N 1 is

ndeed a crucial factor in controlling vortex activity, and from a

eld distributional perspective, is largely dictated by normal stress

esponse in shear . So, earlier suspicions, as expressed by Boger et

l. [5] and Rothstein and McKinley [9] , within a particular flow

onfiguration and at a specific rate, may now be qualified; that is

 ‘ whether it is extensional viscosity differences between fluids, or

ther influences such as their differences in normal-stress response

n shear , that ultimately prove responsible for the particular vor-

ex patterns that emerge’. Here, on the evidence supplied above,

e favour the normal-stress response in shear as the overriding so-

ution property, which consistently governs trends in flow patterns

nd distributions in stress/vortex activity within the vortex cells .

evertheless normal-stress maxima, recorded through normal-stress-

atio, correlate well with the vortex-phasing observed experimen-

ally. As such, one notes particularly the increased influence of ex-

ensional normal-stress contributions, that themselves dictate the

ominance of an elastic corner-vortex over a salient-corner vortex

see Fig. 12 ). 
. Conclusions 

In a recent study [10] , experimental epd and vortex-dynamics

ata were reported for the flow a Boger PAA/CS-based Boger fluid,

hilst changing contraction-ratio α = {2, 4, 6, 8, 10}. Despite the

ualitative agreement obtained, with a FENE-CR( β = 0.85, L ) model,

he precise capture of the experimental- epd data for α = 4 re-

ained somewhat lacking; gathering a maximum predicted- epd of

nly 30% at De ∼35 - that is, against an experimental target value

f 44% excess at much lower level of De ∼1.4. There, L = {3, 6, 10}

nd a fluid relaxation-time ( λ1 )-increase protocol was used. In the

resent paper, we have presented a major modelling advance in

losely-matching such experimental findings, whilst adopting the

ame flow configurations. This has only proved possible by appeal-

ng to the recently-proposed continuum-based swanINNFM model

24] ; whilst employing parameters of ( β = 0.9; L = 5; λD ) and un-

er a flow-rate ( Q )-incremental protocol (to replicate equivalent

rocedures as used in the experiments). 

Most notably here, precise matching of experimental-epd has

een obtained for all contraction-expansion geometric aspect-

atios tested; and this under an averaged single relaxation time

 λ1 ) approximation. For α ≥ 4, three main regions of experimen-

al epd -response have been captured with upper-lower windows of

issipative- λ -factor employing the swanINNFM(q) model. Under
D 
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close examination for each α and within such experimental zones,

characteristic epd -subsets have been identified and correlated with

averaged λD -values. These epd -subsets increase in number with α-

rise, providing an ever richer response. This has permitted the cap-

ture of epd -maximum levels, as in the experiments, of ∼{300, 144,

350, 550, 600}% for α = {2, 4, 6, 8, 10}. To our knowledge, such

matching is unprecedented in continuum mechanics for Boger-fluids

and circular contractions. An additional complication arose experi-

mentally, in that larger Q -levels (larger deformation-rates) were re-

quired with α-rise, to capture the full history of epd -rise. Hence

naturally, some λD -adjustment was found necessary to match the

corresponding experimental observations. Here , a complex non-

linear relationship has been constructed on λD against Q -rise, ex-

posed through a piece-wise step-function in epd -subsets. This pro-

vides evidence for the necessity of a multimode representation in

the dissipative φ( λD ˙ ε ) -functional. 

In addition, a detailed description of the ensuing Q -rise flow-

structure has been derived, related through counterpart vortex-

dynamics . The outcome agrees tightly with the experimental find-

ings of [10] across all contraction ratios, such that a change of

flow regime is captured numerically with swanINNFM(q) λD � = 0 so-

lutions at the deformation-rates reported experimentally . These tran-

sitions are observed for α ≥ 4, through epd -rise; and through kine-

matics, for α ≥ 6, with corner/lip-vortex coexistence, and subse-

quent elastic corner-vortex domination. With Q -rise and for α ≥ 6

( α = 10 being the most representative - largest extension-rates),

the complex vortex activity reflects three distinct phases. Firstly ,

at low Q -levels, Newtonian-like salient-corner vortex-enhancement

is apparent, with concave separation-lines; secondly , this phase

is then supplanted by lip-vortex formation and co-existence of

lip-with-salient-corner vortices at intermediate deformation-rates;

and finally , lip-vortex domination and prevalence towards a con-

vex elastic corner-vortex. In contrast, for α ≤ 4, only salient-corner

vortex enhancement is predicted, as in [10] . Moreover, these

vortex-growth patterns agree with previous experimental find-

ings for PIB/PB Boger fluids and flow through circular contrac-

tions [5] , where salient-corner and lip-vortices were found to

co-exist. Within the context of contraction-expansion flow and

PAA/CS Boger fluids, our predictions also reproduce the trends

found experimentally in [9] , on lip-vortex to elastic corner-vortex

formation. Consistently α ≥ 6-solutions, with more balanced shear-

extension normal-stress-ratios (greater extensional stress influ-

ence), reveal flow domination governed by an elastic corner-

vortex; whilst α = 4-solutions, with larger normal-stress-ratios,

provide exclusively salient-corner vortex-activity. The α = 2 solu-

tions remain an isolated case , with its experimentally large max-

ima in epd of ∼3, within a notably low and narrow Q -range (low

extension-rates generated). This position is reflected in epd , on

a single λD -prediction-window of outstandingly large λD -bounds

[ ∼O(10 2 ) upper]; and through its kinematics, producing a single

phase of symmetric salient-corner vortex-enhancement. 

Covering both upstream and downstream vortex activity, it is

increased elastic effects that are identified as the origin of salient-

to-lip vortex location and intensity, governing their presence, co-

existence, coalescence and evolution. This has been recognised

through flow response, in patterns of first and second normal

stress differences, N 1 –N 2 , and trends in N 1max - N 2max and first nor-

mal stress ratio. Vortex structures that reflect existence, location

and evolution, directly correlate with vortex-like patterns in N 1 –

N 2 fields. Consistently, the transition from the lip-vortex phase

to the elastic corner-vortex phase is reflected in N 1max - N 2max , and

N 1 –trends in particular. Hence, one may infer that N 1 preferential

rheology is a crucial factor in controlling vortex activity, largely

dictated by response from normal stress in shear . Here, shearing

normal-stress contributions are held chiefly responsible for the in-

ternal patterns supported within the vortex-cells ( salient; salient-
o-lip; lip-to-elastic ); whilst relative strength of extensional to shear

ormal stresses, is correlated with elected vortex-phasing, between

alient-corner vortex and elastic corner-vortex structures. As such,

his work helps clarify earlier statements made on the subject, see

oger et al. [5] , Rothstein and McKinley [9] . 
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ppendix A. Scaling factor between experimental and 

umerical data 

In the experimental work of Pérez-Camacho et al. [10] , the Deb-

rah number De is defined as follows: 

e = λ1 exp 
4 Q 

πR 

3 
c 

, (A.1)

hilst for numerical simulations, a measure of fluid viscoelasticity

s given by a Deborah group number De sim of the form: 

e sim = λ1 sim 

Q 

πR 

3 
c 

= λ1 sim 

U 

L 
. (A.2)

Note that λ1 sim 

is held at a unity level, and change in elastic-

ty is driven by Q -increase, mimicking closely experimental proto-

ols. Hence, equating experimental and computational characteris-

ic deformation-rates, one obtains: 

De 

4 λ1 exp 

= 

De sim 

λ1 sim 

, (A.3)

nd on introducing relevant physical quantities ( λ
1 exp 

= 0 . 174 s , as

rovided experimentally), one finally extracts: 

e = 

1 

1 . 44 

De sim . (A.4)
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