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a b s t r a c t 

This study is concerned with finite element/volume modelling of contraction–expansion axisymmet- 

ric pipe flows for thixotropic and non-thixotropic viscoelastic models. To obtain solutions at high 

Weissenberg numbers ( Wi ) under a general differential form W i 
∇ 
τp = 2( 1 − β) D − f τp , both thixotropic 

Bautista–Manero micellar and non-thixotropic EPTT f -functionals have been investigated. Here, three key 

modifications have been implemented: first, that of convoluting EPTT and micellar Bautista–Manero f - 

functionals, either in a multiplicative ( Conv ∗) or additive ( Conv + ) form; second, by adopting f -functionals 

in absolute form (ABS- f -correction); and third, by imposing pure uniaxial-extension velocity-gradient 

components at the pure-stretch flow-centreline (VGR-correction). With this combination of strategies, 

highly non-linear solutions have been obtained to impressively high Wi [ = O(50 0 0 + )]. 

This capability permits analysis of industrial applications, typically displaying non-linear features such 

as thixotropy, yield stress and shear banding. The scope of applications covers enhanced oil-recovery, in- 

dustrial processing of plastics and foods, as well as in biological and microfluidic flows. The impact of 

rheological properties across convoluted models (moderate-hardening, shear-thinning) has been observed 

through steady-state solutions and their excess pressure-drop ( epd ) production, stress, f -functional field 

structure, and vortex dynamics. Three phases of vortex-behaviour have been observed with rise in elas- 

ticity, along with upstream–downstream Moffatt vortices and plateauing epd -behaviour at high- Wi levels. 

Moreover, enhancement of positive-definiteness in stress has improved high- Wi solution attenuation. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The theme of this study is particularly concerned with exploring

redictive solutions for thixotropic worm-like micellar systems

nder medium to high elasticity conditions. To achieve this goal,

onvoluted hybrid constitutive models have been developed and

mbellished upon, utilising base Bautista–Manero (MBM) models

o accommodate the dynamic micellar response, and grafting

hese upon exponential Phan–Thien–Tanner (EPTT) models for

ubber-network response. The class of time-dependent MBM

odels follow those developed in [1–5] . In contrast, the time-

ndependent network-based EPTT models were first proposed in

6] , though more widely used today for many polymeric systems

ue to their inherently robust numerical characteristics. The work

oncentrates on the axisymmetric contraction–expansion flow 

roblem, of geometric ratio 4:1:4 with rounded contraction-cap
nd recess-corners. 

∗ Corresponding author. 
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The issue of extraction of highly-elastic numerical prediction

s tackled in a number of different directions. First, convolution

f MBM and EPTT models is proposed, through their network-

tructure ( f -) functionals, of multiplicative and additive forms. Sec-

nd, and based on physical grounds, by appealing to only absolute

alues in structure-function dependency (ABS- f -correction), which

ontrols non-linear response (see [5] ). Third, through the problem

pproximation and its discretisation, via the imposition of consis-

ent velocity gradient representation along the pure-stretch cen-

reline of the flow (VGR-correction). The many relevant factors in-

uencing the determination of particularly high elastic solutions

and their limitation in strain-hardening context) are discussed

n depth in [5] . These aspects touch on: the numerical technique

nd discretisation for independent variables (stress, velocity, pres-

ure, velocity-gradient); possible loss of IVP (Initial Value Problem)

volution and lack of positive definiteness retention (leading to

tress-subsystem eigenvalue ( s i ) analysis, s i –N 1 centreline relation-

hip); the complex flow problem itself (sharp stress boundary lay-

rs, flow singularities); and the particular constitutive equation of

hoice [5] . 

http://dx.doi.org/10.1016/j.jnnfm.2016.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2016.03.004&domain=pdf
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Worm-like micelle solution systems are a versatile family of

fluids, composed of mixtures of surfactants and salts. Typi-

cal surfactants are cetyltrimethylamonium bromide (CTAB) or

cetylpyridinium chloride (CPyCl); common salts are sodium salicy-

late (NaSal) in water [4,7] . These components interact physically,

depending on concentration, temperature and pressure conditions,

to form elongated micelles. Such elongated constructs entangle

and provoke mechanical interactions, stimulating breakdown and

formation of internal structure [4] . This has consequences on

the material properties of viscosity and elasticity. This complex

constitution spurns highly complex rheological phenomena [7] ,

and manifests features associated with thixotropy [1] , pseudo

plasticity [1–5] , shear banding [8–13] and yield stress [14,15] .

These systems have been coined ‘smart materials’ , as their rheol-

ogy dynamically adjusts to conform to prevailing environmental

conditions. Such features render these systems as ideal candidates

for varied processing and present-day applications. Examples of

such application include use as drilling fluids in enhanced oil-

reservoir recovery (EOR), additives in house-hold-products, paints,

cosmetics, health-care products, and as drag reducing agents [4,7] . 

On wormlike micellar modelling, many approaches have been

pursued to describe micellar flow behaviour. The original Bautista–

Manero–Puig (BMP) model [1–2] consisted of the upper-convected

Maxwell constitutive equation to describe the stress evolution,

coupled to a kinetic equation to account for structural flow-

induced changes and, was based on the rate of energy dissipation.

Subsequently, Boek et al. [3] corrected the BMP model for its un-

bounded extensional viscosity in simple uniaxial extension – thus

producing the base-form MBM model employed in the present

analysis. This model has been implemented in complex flows such

as in 4:1 contraction flow [16] and 4:1:4 contraction–expansion

flow [4] . Therein, inconsistency has been exposed in excess pres-

sure drop ( epd ) predictions at the Stokesian limit. Subsequently,

this anomaly has been overcome [4] by including viscoelastic-

ity within the structure construction-destruction mechanism. Two

such model-variants have appeared, with energy dissipation given:

(i) by the polymer contribution exclusively (NM_ τ p model, as

adopted in the present article), and (ii) by the combination of the

polymer and solvent contributions (NM_T model). These consid-

erations have introduced new physics into the material response,

by explicitly coupling thixotropic and elastic properties. Moreover,

new key rheological characteristics have also been introduced, such

as declining first normal stress difference in simple shear flow [4] . 

For completeness from the micellar literature, one may cite

other alternative modelling approaches, though these have largely

focused on simple flows and the shear-banding phenomena. The

VCM (Vasquez–Cook–McKinley) model, based on a discrete version

of the ‘living polymer theory’ of Cates, has been tested in simple

flows, where rheological homogeneity prevails [17] , and under

conditions of shear-banding. VCM predictions captured the linear

response of experimental shear data for CPyCl/NaSal concentrated

solutions under small amplitude oscillatory shear and small ampli-

tude step-strain experiments [18] . Moreover, Zhou et al. [19] found

reasonable agreement with experimental data of Taylor–Couette

and microchannel geometries and VCM predictions. Another ap-

proach consists of using the Johnson–Segalman model, modified

with a diffusion term in the polymeric extra-stress equation

(the so-called d-JS model) [20] . This model was found to predict

shear-bands in cylindrical Couette flow. The Giesekus model has

also been used in the representation of wormlike micelles under

simple shear scenarios, whilst using the non-linear anisotropy

coupling parameter to introduce shear-banding conditions [21] .

Here under large amplitude oscillatory shear, a straightforward

method was proposed to estimate the Giesekus non-linear pa-

rameter. Consequent Giesekus predictions were then found to lie
n quantitative agreement with data for low-concentration CTAB

ormlike-micellar solutions. 

Paper overview – in this article, convoluted equations of state

re proposed based on the non-thixotropic network-based PTT

nd thixotropic micellar MBM parent models. Here, two con-

olution options have been devised, with additive ( Conv + ) and

ultiplicative ( Conv ∗) f -functionals. Their rheometric response , via

hear and extensional data, has been correlated to that within ax-

symmetric 4:1:4 contraction–expansion complex flow solutions.

n this respect, streamline patterns, N 1 -fields, f -functional and

ressure-drops have been analysed. Moreover, High-Wi solutions

 Wi = O(50 0 0 + )] are reported, achieved via ABS- f -correction and

GR-correction. Vortex activity has revealed a number of indepen-

ent phases of interest. In this, upstream vortex enhancement has

een identified at low elasticity levels, followed by complete sup-

ression, somewhat reflecting strain-hardening/softening response.

t high elasticity levels, a second stage of upstream–downstream

ortex enhancement has been observed, along with secondary

offatt vortices, of form suppressive-upstream and enhancing-

ownstream. The ABS-VGR correction (implying the simultaneous

se of both ABS- f and VGR-corrections) delays any loss of posi-

ive definiteness, observed through reduced negativity of the sec-

nd eigenvalue of the stress-subsystem, corresponding to the con-

ormation tensor at the centreline. This has been correlated with

-functional values across the flow-field (now, f ≥ 1), which grow

s elasticity rises, thus ensuring positive viscosity estimation. Ex-

ess pressure-drop ( epd ) data asymptote to a plateau at high- Wi

 Wi = O(10 3 )]. At very high- Wi ( Wi > 10 3 ), epd -data degenerate due

o inconsistencies in inner-field to flow-outlet conditions. These in-

onsistencies are dealt with by imposing periodic boundary condi-

ions at the inlet and outlet regions. 

. Governing equations, constitutive modelling and theoretical 

ramework 

.1. Governing equations and constitutive models 

The present flow context of interest is that of steady flow, under

ncompressible and isothermal conditions. In a non-dimensional

ramework, whilst assuming implied 

∗notation on dimensionless

ariables (see on), the governing equations for mass conservation

nd momentum transport equations for viscoelastic flow become:

 · u = 0 , (1)

e 
∂u 

∂t 
= ∇ · T − Re u · ∇u − ∇p. (2)

Here, t represents time, an independent variable; the spatial

radient and divergence operators apply over the problem domain;

eld variables u , p and T represent fluid velocity, hydrodynamic

ressure and stress contributions, respectively. Moreover, the to-

al stress ( T ) is split into two parts: identifying, a solvent compo-

ent τs (viscous-inelastic τs = 2 βD ) and a polymeric component τp .

hen, D = ( ∇u + ∇u 

T )/2 is the rate of deformation tensor, where

he superscript ‘T’ denotes tensor transpose. Adopting appropriate

cales below, corresponding dimensionless variables are defined

s: 

x ∗ = 

x 

L 
, u 

∗ = 

u 

U 

, t ∗ = 

U 

L 
t, D 

∗ = 

L 

U 

D , 

p 
∗ = 

τp 

( ηp0 + ηs ) 
U 
L 

, p ∗ = 

p 

( ηp0 + ηs ) 
U 
L 

. 

A reference viscosity may be taken as the zero shear-rate vis-

osity ( ηp0 + ηs ). Here, ηp 0 is the zero-rate polymeric-viscosity and

s is the solvent-viscosity. Then, from this the solvent-fraction can
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1 Wi crit is the largest Wi number for which stable numerical solutions are 

obtained. 
e defined as β = ηs / ( ηp0 + ηs ) . The non-dimensional group num-

er of Reynolds may be defined as Re = ρUL/ ( ηp0 + ηs ) , where the

aterial density is ρ . In the above, characteristic scales are U on

uid velocity (mean velocity, based on volume flow rate) and L on

patial dimension (based on minimum contraction-gap dimension).

his provides a rate-scale of U / L , and the conventional common

caling on stress and pressure. 

A second non-dimensional group number of Weissenberg ( W i =
1 U/L ), governs elasticity, representing the product of a character-

stic material relaxation time ( λ1 = 

ηp0 

G 0 
), and a characteristic rate

 U / L ). Then, a general differential statement for the stress equation

f state, provides the constitutive model as: 

 i 
∇ 

τp = 2 ( 1 − β) D − f τp . (3)

Here, the notation implies use of the upper-convected deriva-

ive of extra-stress, 
∇ 

τp = 

∂ τp 

∂t 
+ u · ∇ τp − ∇ u 

T · τp − τp · ∇u . The

etworked nature of the fluid is then imbued through the

 -functional. 

With reference to the modelling of wormlike micellar systems,

ecently a new version of the MBM-model has been devised [4] ,

ith the novel inclusion of viscoelasticity within its thixotropic

ake-up – that is, responsive within the destruction mechanics

f the fluid network structure. Commencing from the Bautista–

anero–Puig (BMP) model [1,2] , and its Modified Bautista–Manero

MBM) model counterpart [3] , a non-linear dimensional differen-

ial structure equation for the fluidity ( φp = η−1 
p ) has emerged. It

s from such fluidity that the polymeric viscosity function ηp may

e extracted. Then, it is the distribution of the evolving space–

ime fluidity that generates the construction–destruction dynamics

f the fluid network-structure. Typically, this may begin from

 fully structured-state to be converted to one of a completely

nstructured-state, using the energy dissipated by the material

nder flow. 

The present paper appeals to a specific version of this class of

odels, that of NM_ τ p , which combines the viscoelasticity into

he thixotropic dependency. This model variant drives structure

estruction in the flow using the energy dissipated by the poly-

eric stress alone (see [4] for other options). Herein, dependency

n fluidity ( φp = η−1 
p ) arises through the dimensionless functional

 , whose evolution is dictated by the generalised differential equa-

ion for structure: 

∂ 

∂t 
+ u · ∇ 

)
f = 

1 

ω 

( 1 − f ) + ξG 0 W i τp : D . (4)

The dimensionless functional f is defined as f = ( ηp0 / ηp ) , using

p 0 as a viscous scaling factor on the fluidity. The dimensionless

odel parameters, which appear in the corresponding mechanistic

erms, account for network-construction ( ω = λs U/L ) and network-

estruction [ ξG 0 
= ( k/ η∞ 

) G 0 ( ηp0 + ηs ) ]. 

At steady-state form, Eq. (4) collapses into its equivalent alge-

raic form, 

f NM _ τp 
= 1 + ω ξG 0 W i τp : D . (5)

Note, in this form it is clear that the dissipation function is

he driving influence in departure from Oldroyd behaviour ( f =1);

nd that this is modulated by the product of the construction and

estruction thixotropic-parameters with the Weissenberg number.

hus far, the dissipation function has adopted its natural sign –

dentified as the so called ‘natural-signed’ NM_ τ p model. 

The present study also calls upon the well-known exponential

han–Thien/Tanner (EPTT) model, which finds its origin in rubber

etwork-theory [6] : 

f EPT T = exp 

(
ε PT T 

1 − β
W itr τp 

)
. (6) 
The constant, non-dimensional PTT parameter ε PTT ≥ 0 largely

ictates severity in strain-hardening, with smaller values limiting

o zero, offering the greater extremes in extensional viscosity re-

ponse (larger Trouton ratios). In the limit of vanishing tr τp or ε PTT ,

 EPTT tends to unity and classical Oldroyd-B behaviour is recovered.

ith such PTT models, tr τp is the function responsible for depar-

ure from Oldroyd-B form and represents the stored elastic energy

f the material, see [22] . 

The EPTT model was selected given its bulk rheological shear-

hinning and strain-softening properties, in common with micellar

odels (steady-state). The PTT model itself, was conceived to rep-

esent such bulk flow behaviour in rubber-network systems, based

n a time-independent material-system construction [6] . Hence,

n their combination with wormlike micellar networks, appropri-

te representation can be captured with time-dependent consider-

tions built into the structural makeup. Under flow, these complex

aterials behave similarly to polymer solutions and melts; hence

heir naming ‘living polymers’ [23] . 

.1.1. Convoluted models 

In this work, and specifically with the aim of extracting high- Wi

olutions in complex flow with rich rheological response, NM_ τ p 

nd EPTT steady-state f -functionals are combined to produce two

ew hybrid forms: (a) by product ( Conv ∗), and (b) by summation

 Conv + ), viz.: 

f Con v ∗ = f EPT T ∗ f NM _ τp 
, (7) 

f Con v + = 

1 

2 

( f EPT T + f NM _ τp 
) . (8) 

These combinations are conceived from the realisation that

tronger f-Wi -functionalities render larger critical Wi numbers 1 

 Wi crit ) in complex flow [5] . This has been confirmed earlier

n [4] , with Conv ∗ for the same flow problem, where solutions

or Wi crit =O(10 2 ) were attained without hints of numerical in-

ractability. Models provided in [4] , initiated our preliminary at-

empts (only multiplicative) in creating convoluted model-forms,

ut without the inclusion of the ABS- f and VGR corrections. Never-

heless, in [4] solutions were only report up to Wi crit =300 + , whilst

ere the much wider range of high- Wi (50 0 0 + ) is covered. 

Moreover, the strategy of convolution employed is quite general

n application, and can be extended equally over many other candi-

ate classes of constitutive model. For example, one may contrast

M_ τ p form [with a linear f - Wi relationship and Wi crit =4.9, see

q. (5) ], against that for EPTT [with an exponential f - Wi relation-

hip and Wi crit =210, see Eq. (6) ] [4] . The aim of the present pa-

er is to capture such properties, calling upon hybrid models that

nherit the functional strength of the EPTT model, alongside the

hixotropic constructs of these wormlike-micellar models. This is

trengthened by appealing to ABS- f and VGR-corrections described

elow, to extract solutions at ultra-high- Wi (demonstrated through

icellar, LPTT and EPTT parent models [5] ). 

.1.2. ABS- f -correction 

Following [5] , here a second approach adopted to increase

i crit -levels, is to embrace ABS-correction. This is based on provid-

ng positive f -functional values during flow evolution (time) and

hroughout the spatial domain in any single or mixed flow de-

ormation. This is achieved by applying the absolute-value oper-

tion to those variable-components which trigger departure from

ldroyd-B response. Such correction was first proposed for micel-

ar Bautista-Manero models [5] . Here across the domain during

ow, the f -functional is a dimensionless fluidity that should remain
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Fig. 1. f -functional in (a) simple shear and (b) uniaxial extensional flows, against 

Wi ; EPTT, NM_ τ p , Conv ∗ and Conv + ; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) ηShear , ηExt , (b) N 1Shear and (c) τ rz against deformation rate; EPTT, NM_ τ p , 

Conv ∗ and Conv + ; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 
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positive above unity, to avoid negative viscosity arising. Hence in

steady-state form, the ABS- f -correction to NM_ τ p of Eqs. (4) and

(5) yields (NM_ τ p _ABS): 

f ABS 
NM _ τp 

= 1 + ω ξG 0 W i | τp : D | . (9)

In Eq. (9) , the absolute-value sign is applied to every con-

stituent component of the scalar dissipation-function (likewise for

tr τp in EPTT). This concept may be generalised by implication to

Conv ∗ and Conv + f -functionals. In addition, the motivation for and

consequences of the f -ABS functional-correction are enumerated as

follows: 

(a) In terms of thermodynamic arguments – it is intended to

preserve positive dissipation acting on the material-structure

f -functional and to drive non-linear response [5] . For these

micellar fluids, the f -functional is explicitly related to the

material viscosity. Hence, as demonstrated in [5] , by avoid-

ing negative dissipation-function values in the structure

equation, one avoids the occurrence of non-physical negative

viscosities. 

(b) Moreover computationally, this f -functional correction aids

in eliminating stress overshoot-undershoot, that frequently

occur around regions of abrupt solution adjustment, such

as near the contraction-tip and geometry-walls [4] . These

sudden and localised solutions fluctuations have been corre-

lated to ultimate intractability of steady-state solutions (and

hence, attainment of high Wi crit ) [5] . 

(c) Finally, under ideal viscometric flow where only variable

magnitudes apply, such f -functional correction is rendered

redundant [5] . 
t  
.1.3. Material functions 

In Figs. 1 and 2 , material function response for the parent

M_ τ p and EPTT models considered are reported [4] . The solvent-

raction level and EPTT model ε PTT -parameter considered in this

ork are { β , ε PTT } = {1/9, 0.25}, as a standard benchmark. Against

his, the resulting micellar extensional viscosity is matched. The

icellar NM_ τ p construction and destruction parameters, match-

ng EPTT extensional viscosity peak, are ω =4.0 and ξG0 =0.1125,

espectively [4] . Accordingly, and specifically for the convoluted

onv ∗ model, the destruction parameter requires adjustment for

atching to ξG0 =0.001. Note, for Conv + , ξG0 =0.001 is retained for

omparison across convoluted models. 

Ideal flow data may be classified by solving the f -functional

quation under specific homogeneous deformation conditions. Un-

er the generalised differential constitutive model of Eq. (3) ,

he dimensional shear viscosity is ηShear = ηs + 

ηp0 

f 
and the first
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Table 1 

{Critical, first-failure} Weissenberg numbers { Wi crit , Wi fail } across models. 

Wi crit , ( Wi fail ) 

Model f Natural Sign ABS ABS_VGR 

NM_ τ p 1 + ω ξG 0 W i τp : D 4.9, (5) 39, (40) 370, (380) 

EPTT exp ( εWi 
1 −β

tr τp ) 210, (220) 40 0 0, (4250) 4250, (4500) 

Conv ∗ f EPTT ∗ f NM _ τp 
224, (225) 2500, (2750) –, (50 0 0 + ) 

Conv + 1 
2 
( f EPTT + f NM _ τp 

) 67, (68) 30 0 0, (3250) –, (50 0 0 + ) 
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2 As a function of z -spatial variable, in uniaxial extension along the flow centre- 

line. 
ormal stress difference in shear-flow is N 1 Shear = 

2 λ1 ηp0 ̇ γ
2 

f 2 
. As a

onsequence in simple shear-flow, the dimensional algebraic Conv ∗

nd Conv + f -equations become, respectively: 

f 2 Con v ∗ ln 

[ 

f Con v ∗

1 + λs 
k 

η∞ 
G 0 λ1 

ηp0 ̇ γ
f Con v ∗

] 

− 2 ε PT T λ
2 
1 ˙ γ

2 = 0 , (10)

f 2 Con v + ln 

[
2 f Con v + −

(
1 + λs 

k 

η∞ 

G 0 λ1 

ηp0 ˙ γ

f Con v + 

)]
− 2 ε PT T λ

2 
1 ˙ γ

2 = 0 . 

(11) 

As a counterpart and within simple uniaxial extension, the ex-

ensional viscosity is derived as ηExt = 3 ηs + 

3 ηp0 f 

( f−2 λ1 ̇ ε )( f+ λ1 ̇ ε ) 
, and

he Conv ∗ and Conv + f -equations become, respectively: 

n 

⎡ 

⎣ 

f Con v ∗

1 + 

3 λs 
k 

η∞ G 0 λ1 ηp0 ̇ ε 2 f Con v ∗

( f Con v ∗ −2 λ1 ̇ ε ) ( f Con v ∗ + λ1 ̇ ε ) 

⎤ 

⎦ ( f Con v ∗ − 2 λ1 ˙ ε ) ( f Con v ∗ + λ1 ˙ ε ) 

− 6 ε PT T λ
2 
1 ˙ ε 

2 = 0 , (12) 

n 

{ 

2 f Con v + −
[ 

1 + 

3 λs 
k 

η∞ 
G 0 λ1 ηp0 ˙ ε 

2 f Con v + 

( f Con v + − 2 λ1 ˙ ε ) ( f Con v + + λ1 ˙ ε ) 

] } 

×( f Con v + − 2 λ1 ˙ ε ) ( f Con v + + λ1 ˙ ε ) − 6 ε PT T λ
2 
1 ˙ ε 

2 = 0 . (13) 

In the above, the parent EPTT algebraic equation may be recov-

red, via either adopting λs =0 in the micellar construction term,

r k ∞ 

= ( k / η∞ 

) = 0 as the destruction parameter. 

In Fig. 1 , f -functional response is provided against deformation

ate, for Conv ∗ and Conv + model representations. This response

s contrasted against parent NM_ τ p and EPTT data under simple

hear flow ( Fig. 1 a) and simple uniaxial extensional flow ( Fig. 1 b). 

One observes that f -functional slopes under uniaxial extension

 Fig. 1 b; in expanded-scale) are steeper than those under simple

hear flow ( Fig. 1 a). Both forms display analogous rising trends

ith deformation-rate rise. 

In simple shear flow ( Fig. 1 a) and the range 10 −1 ≤ λ1 ˙ γ ≤ 1,

he initial slope of f - Conv + proves to be the shallowest, followed

y NM_ τ p , and finally overlapping response of EPTT and Conv ∗.

ote, f -NM_ τ p response continually increases in slope and inter-

ects EPTT and Conv ∗ curves at λ1 ˙ γ ∼ 2.5 ( Fig. 1 a). In contrast be-

ond λ1 ˙ γ ≥1.5, EPTT, Conv + and Conv ∗ data ultimately run paral-

el to one another. Consistently, and at any fixed deformation-rate,

onv + data display smaller f -values with respect to those of Conv ∗,

M_ τ p and EPTT. These observations are analogous to simple uni-

xial extension ( Fig. 1 b), but apply at earlier strain-rates. 

In Fig. 2 shear and extensional data is provided, in the form of

Ext , ηShear , N 1Shear and τ rz . In Fig. 2 a, ηExt -data provides the most

ignificant departure across models, whilst differences in ηShear re-

ponse are less evident. Note, the drop at onset of shear-thinning

or Conv + ηShear starts at slightly larger shear-rates. 

The Conv + ηExt -peak is the largest and most prominent (at

7 units), whilst EPTT, NM_ τ p and Conv ∗ extrema attain about 6

nits. These discrepancies in ηExt -extrema correlate with the lev-

ls of f -functional response. Note in particular, Conv + response

ith the largest ηExt -peak, provides the smallest f -functional re-

ponse across the strain-rate range, and lies closest to the f = 2 λ1 ˙ ε 
eference-line in Fig. 1 b. Recall, this reference-line illustrates the

 -pole, at which unbounded extensional viscosity results. 

In the range 1 ≤ λ1 ˙ ε ≤ 10, Conv + ηExt displays the largest over-

hoot and steepest decline in strain-softening (common to all mod-

ls), intersecting with EPTT at λ1 ˙ ε ∼4 units, whilst Conv + ηExt and

onv ∗ ηExt practically unite thereafter. For 4 ≤ λ1 ˙ ε ≤10 3 , EPTT re-

ponse dominates. 
The first-normal stress-difference in shear ( N 1Shear ) is provided

n Fig. 2 b. Here and at high shear-rates, both convoluted mod-

ls inherit the limiting NM_ τ p plateau behaviour, but at rela-

ively larger N 1Shear -levels than for raw NM_ τ p . In contrast, EPTT-

 1Shear monotonically rises with shear-rate. Throughout the range

 ≤ λ1 ˙ γ ≤ 50 + , Conv + dominates in N 1Shear response (see above in

Ext ); so that at λ1 ˙ γ ∼50 + , EPTT and Conv + data-curves intersect,

nd EPTT domination succeeds. 

By way of contrast, shear stress data ( τ rz ) are recorded in

ig. 2 c, using a zoomed-view for enhanced feature exposure.

hroughout the range 1 ≤ λ1 ˙ γ ≤ 100, τ rz - Conv + dominate; NM_ τ p 

rovides the minimum response for λ1 ˙ γ ≥ 3 (intersecting with

PTT- Conv ∗ below this level); EPTT and Conv ∗ response overlap and

re trapped between these two extremes. Note at very high shear-

ates, the trend is to asymptote to a common τ rz -behaviour. 

.2. Centreline VGR-correction, boundary conditions, critical 

eissenberg number ( Wi crit ) and fe–fv scheme 

The concept behind VGR-correction on the centreline [5] is

o eliminate noise proliferation, which may provoke numerically

olluted solutions and thereby premature solution breakdown. In

ontraction–expansion flow on the symmetry centreline, uniaxial

inhomogeneous) pure-extension applies; on the contraction-wall

inhomogeneous) pure-shear flow prevails. Conventionally, along 

he contraction-wall, the so-called stick-boundary (rest) condition

s assumed. Entry and exit flow conditions are then periodic in

ynamics ( ∇u ), stress ( τp ) and velocity ( u ) – noting the shear-

hinning profile form and using feedback and feedforward in inlet

nd outlet regions for ∇u and τp at high limits of Wi ≥ 500 + (to

reserve fully-developed flow). There is only necessity to set pres-

ure at flow-exit, to impose a pressure level and remove pressure

ndeterminacy. 

The VGR-correction is imposed only on the centreline, where

pecific analytical restrictions on the deformation gradients

merge. This enforces: (i) shear-free flow, to ensure 1D-extensional

eformation ( Eq. (14a) ); (ii) a pure uniaxial extension relation-

hip between the normal deformation-gradients ( Eq. (14b) ); and

iii) nodal-pointwise continuity imposed exactly, in discrete form

 Eq. (14c) ). 

Assuming ˆ ˙ ε = 

∂ u z 
∂z 

, 2 for extension-rate on the centreline in the

xial direction, then the following identities may be established

nd imposed via VGR-correction: 

∂ u z 

∂r 
= 

∂ u r 

∂z 
= 0 , (14a) 

∂ u r 

∂r 
= −1 

2 

∂ u z 

∂z 
= −1 

2 

ˆ ˙ ε, (14b) 

u r 

r 
= −

(
∂ u z 

∂z 
+ 

∂ u r 

∂r 

)
= −1 

2 

ˆ ˙ ε. (14c) 

Table 1 records the various levels of critical Weissenberg num-

er attained in the simulations presented. Under the natural-signed
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Table 2a 

Mesh characteristics and Wi crit . 

Level of Elements Nodes D.O.F. a R min Wi crit 
b Densities c 

refinement ( u, p, τ ) 

Coarse 1080 2289 14,339 0 .0099 50 0 0 + 20 

Medium 1672 3519 22,038 0 .0074 50 0 0 + 33 

Refined_A 2112 4439 27,798 0 .0058 50 0 0 + 40 

Refined_B 5760 11,935 74,698 0 .0037 50 0 0 + 80 

a Degrees of freedom. 
b Mesh-refinement study conducted with Conv + model under the parameters set- 

tings of { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4, 0.001}. 
c Number of elements around the constriction. 

Table 2b 

N 1 @ centreline, mesh-refinement study. 

Level of refinement N 1 @ centreline a 

Wi 10 100 250 500 

Coarse 0 .713 0 .189 0 .085 0 .019 

Medium 0 .700 0 .188 0 .085 0 .019 

Refined_A 0 .699 0 .187 0 .084 0 .018 

Wi 5 10 25 

Coarse 0 .157 0 .713 0 .177 

Medium 0 .132 0 .700 0 .169 

Refined_A 0 .132 0 .699 0 .169 

Refined_B 0 .130 0 .693 0 .163 

a Sampling position around the constriction ( z ∼0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Centreline- N 1 against Wi ; mesh-refinement; (a) moderate-to-high Wi = {10, 

10 0, 250, 50 0}, (b) low-to-high Wi = {5, 10, 25}; Conv + { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 

4.0, 0.001}. 
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configuration, Conv ∗ W i Con v ∗
crit 

= 224 is larger than those for the pri-

mary model solutions, that is NM_ τ p W i 
NM _ τp 

crit 
= 4 . 9 and W i EPT T 

crit 
=

210 . In contrast, Conv + W i Con v + 
crit 

= 67 is significantly smaller com-

pared to that of EPTT ( W i EPT T 
crit 

= 210 ), but still larger than that

of NM_ τ p ( W i 
NM _ τp 

crit 
= 4 . 9 ). This diminished Conv + Wi crit correlates

with the larger Conv + - ηext peak relative to the Conv ∗ response in

ideal flows (see Fig. 2 ), and the smaller Conv + f -functional response

( Fig. 1 ). 

Under ABS correction exclusively, Wi crit is now significantly el-

evated, with respect to those for the natural-signed solutions. In-

deed for Conv ∗, the Wi crit rise recorded is from 224 to 2500 (rep-

resenting a single order-of-magnitude change), whilst Conv + solu-

tions reflect two orders-of-magnitude change, from 67 to 30 0 0. 

Under combined and enhanced ABS_VGR correction, Wi crit is

still further advance to be located beyond Wi = 50 0 0 for both Conv ∗

and Conv + solutions. 

In addition, a rigorous mesh-refinement study has been per-

formed. This examination has been performed under the more

stringent Conv + -model, enforcing ABS- f and VGR corrections simul-

taneously, under the parameters settings of { β , ε PTT , ω, ξG0 } = {1/9,

0.25, 4, 0.001}. Mesh characteristics and their corresponding criti-

cal Weissenberg number Wi crit are listed in Table 2a . Interestingly,

Wi crit for the four meshes considered is located beyond Wi = 50 0 0.

This may be understood in complex flow through Wi -rise, as a con-

sequence of the practical attainment of so-called second Newto-

nian viscosity plateaux, in the rate-decade 10 2 < Wi < 10 3 . Corre-

spondingly in viscometric flow and for these convoluted models at

high deformation-rates, plateaux are displayed in ηShear , ηExt and

N 1Shear response for 10 2 < Wi < 10 3 (see Figs. 1 and 2 ). In addition,

Fig. 3 a displays N 1 -profiles at the pure-extensional flow-centreline,

covering data across three mesh-refinement levels for the relatively

high-elasticity levels of Wi = {10, 10 0, 250, 50 0}. Hence, at each Wi -

level in a sampling position about the constriction ( z ∼ 0), the vari-

ance in N 1 more refined-mesh solutions across meshes (see Table

2b ), shows a percentage deviation of the order of ∼0.1%. Moreover

with Wi -rise, these pure-extension centreline N 1 -profiles follow

patterns of rising peak-intensification in the range 0.1 ≤ Wi ≤1 (not
hown), and decline for Wi > 1. Such solution data may be corre-

ated with the strain-hardening/softening features provided in sim-

le uniaxial extension ( Fig. 2 a), and the gradual attainment of sec-

nd Newtonian plateaux is exposed through vanishing centreline-

 1 profiles with Wi -rise. In Fig. 3 b, further evidence for solu-

ion mesh-convergence is provided, through centreline N 1 -solution

ata over four successively-refined meshes and elasticity levels

f Wi = {5, 10, 25}. This information draws upon solution data

or an additional finer mesh (Refined_B; see Table 2b ), with half

he minimum mesh-spacing provided by the so-called Refined_A

esh. Here, over the more critical rising solution states, satisfac-

ory solution mesh-convergence is gathered with mesh-refinement,

s required. Beyond such Wi -levels as illustrated in Fig. 3 a,

he prevailing rheology provides only declining and merging so-

ution trends, hence less stringent to pursue under the stronger

efinement imposition of Refined_B mesh. One notes in passing

nd concerning algorithm convergence-rate, that previously a spa-

ial convergence-rate of second-order has been reported for this

mplementation [24,25,29] . 

Hybrid finite element/finite volume scheme : The discrete approx-

mation method is that of a hybrid finite element/volume scheme,

s used elsewhere [26–29] . Such a scheme is a semi-implicit, time-

plitting, fractional three-staged formulation, which invokes finite

lement ( fe ) discretisation for velocity–pressure (Q2–Q1) approxi-

ation and cell-vertex finite volume ( fv ) discretisation for stress,

ence, combining the individual advantages and benefits offered

y each approach. 

Galerkin fe -discretisation is enforced on the embedded Navier–

tokes system components; the momentum equation at stage-1,

he pressure-correction equation at stage-2 and the incompress-

bility satisfaction constraint at stage-3 (to ensure higher order

recision). On solvers this leads to, a space-efficient element-

y-element Jacobi iteration for stage-1 and -3; whilst for the
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Fig. 4. (a) Streamlines against Wi = [0.5, 150]; ABS_VGR: Conv ∗ and Conv + ; { β , ε PTT , 

ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. (b) Streamlines against Wi = [200, 1000]; ABS_VGR: 

Conv ∗ and Conv + ; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 
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Table 3 

Vortex intensity ( min = −min 
∗ ×10 −3 ) against Wi; Conv ∗ , Conv + { ε PTT , 

ω, ξG0 } = {0.25, 4.0, 0.001}. 

Wi min = −min 
∗ ×10 −3 

Conv ∗ Conv + 

Natural ABS_VGR Natural ABS_VGR 

0.1 Upstream 1.36 1.30 1.38 1.34 

Downsteam 0.96 0.94 0.97 0.96 

0.5 Upstream 2.17 1.79 2.24 2.24 

Downsteam 0.40 0.46 0.39 0.39 

1 Upstream 3.41 2.47 3.93 3.21 

Downsteam 0.23 0.30 0.21 0.27 

2 Upstream 6.23 4.68 9.38 7.39 

Downsteam 0.11 0.16 0.10 0.14 

5 Upstream 5.10 4.15 9.93 8.20 

Downsteam 0.08 0.07 0.09 0.08 

10 Upstream 0.91 0.94 1.90 1.92 

Downsteam 0.10 0.04 0.23 0.08 

15 Upstream 0.86 0.86 1.39 1.51 

Downsteam 0.11 0.11 0.17 0.11 

20 Upstream 0.34 0.32 0.49 0.47 

Downsteam 0.11 0.03 0.15 0.06 

50 Upstream 0.01 ∼0 0.01 0.01 

Downsteam 0.09 0.04 0.07 0.05 

75 Upstream ∼0 ∼0 ∼0 a ∼0 

Downsteam 0.14 0.17 0.08 0.17 

100 Upstream ∼0 ∼0 ∼0 

Downsteam 0.19 0.33 0.33 

150 Upstream ∼0 ∼0 ∼0 

Downsteam 0.58 0.88 0.46 

200 Upstream 0.01 ∼0 ∼0 

Downsteam 1.27 1.64 1.13 

250 Upstream 0.17 b 0.13 0.05 

Downsteam 1.70 2.41 2.01 

300 Upstream 0.58 ( −7.65 ×10 −3 ) 0.36 ( −1.93 ×10 −2 ) 

Downsteam 3.15 2.91 

400 Upstream 1.90 ( −3.37 ×10 −3 ) 1.74 ( −8.68 ×10 −3 ) 

Downsteam 4.47 4.35 

500 Upstream 3.29 ( −3.29 ×10 −4 ) 3.14 ( −5.66 ×10 −3 ) 

Downsteam 5.59 5.24 ( −5.10 ×10 −3 ) 

750 Upstream 7.06 7.84 

Downsteam 7.62 ( −6.71 ×10 −3 ) 7.65 ( −2.65 ×10 −2 ) 

10 0 0 Upstream 9.25 10.10 

Downsteam 9.12 ( −1.49 ×10 −2 ) 9.37 ( −3.92 ×10 −2 ) 

20 0 0 Upstream 13.60 14.48 

Downsteam 11.94 ( −3.61 ×10 −2 ) 12.34 ( −7.11 ×10 −2 ) 

30 0 0 Upstream 15.43 14.66 

Downsteam 13.13 ( −4.89 ×10 −2 ) 13.34 ( −9.93 ×10 −2 ) 

40 0 0 Upstream 15.45 15.66 

Downsteam 13.72 ( −6.50 ×10 −2 ) 13.49 ( −1.1 ×10 −2 ) 

50 0 0 Upstream 15.79 16.34 

Downsteam 13.80 ( −7.07 ×10 −2 ) 13.77 ( −1.1 ×10 −2 ) 

a Wi crit =67. 
b Wi crit =224. 
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ressure-correction stage-2, a direct Choleski solution method is

tilised. In addition, a sub-cell cell-vertex fv -scheme is imple-

ented for extra-stress, constructed on fluctuation-distribution

or fluxes (upwinding) and median-dual-cell treatment for source

erms. 

Quadratic velocity interpolation is imposed on the parent fe

riangular - cell, alongside linear interpolation for pressure. In con-

rast, the sub-cell fv -triangular-tessellation is constructed within

he parent fe -grid by connecting the mid-side nodes. In such

 structured tessellation, stress variables are located at the ver-

ices of fv -sub-cells (cell-vertex method, equivalent to linear

nterpolation). 

. Vortex activity and streamline data: ABS_VGR inclusion, 

onv ∗ and Conv + 

The streamline patterns in Fig. 4 , highlight in particular, the

pstream and downstream vortex activity gathered, with re-

pect to Wi -elevation, whilst covering the low to high range

.5 ≤ Wi ≤ 10 0 0 + . This affords rheological comparison in response

cross the two model variants of Conv ∗ and Conv + , under the

ombined ABS_VGR construct. Counterpart data is also included in

able 3 and vortex intensity trend plots of Fig. 5 , where the limita-

ions of ABS_VGR removal are indicated under Natural-model ver-

ions. This reveals the consequent premature Wi crit -levels reached,

nd the appearance of Moffatt vortices (see Table 3 – quantities

n brackets). Here, at Wi = 5 ( Fig. 4 a), one notes larger and more

ctive upstream vortex response with Conv + over Conv ∗, a feature

hich may be correlated with the larger Conv + ηext -peak, apparent

n Fig. 2 a. More generally, there is a first phase, of upstream vor-

ex growth and downstream vortex suppression observed through-

ut the range 0.1 ≤ Wi ≤ 5 (patterns in Fig. 4 a; intensity in Fig.

 ). Conv ∗ min -data peaks at Wi = 2 ( −min = 4.68); whilst Conv + 

min -data peaks at Wi = 5 ( −min = 8.20). 

Beyond this phase and for 5 < Wi ≤ 50 ( Fig. 4 a), upstream vor-

ex suppression is apparent (softening/thinning effect), leading to

ractical vortex disappearance (by Wi = 50 with Conv ∗, by Wi = 75

ith Conv + ; sustained to Wi = 200); in contrast, downstream vor-

ex growth is just beginning (due to hardening, nb. also counter-

art N 1 pattern below). In the range 0.1 ≤ Wi ≤ 50, both Conv + and

onv ∗ display downstream vortex suppression ( Figs. 4 a and 5 ). The

nly departure noted between downstream solution-data is over
he restricted range 4 ≤ Wi ≤ 50, where Conv + is less suppressive

ith Wi -rise than found for Conv ∗ ( Fig. 5 ). One notes however,

nder Conv ∗, that suppression is so strong in this range, that the

ownstream vortex disappears by Wi = 50. 

These upstream vortex trends continue up to Wi = 200, where

or Conv + the upstream vortex has now been completely sup-

ressed ( Fig. 4 b), whilst Conv ∗ provides the first hints of appear-

nce of a second contraction-frontface upstream vortex, located

owards the contraction-cap. At this stage, both Conv + and Conv ∗

rovide considerably elongated downstream vortices. 

At the further advanced stage of 50 ≤ Wi ≤ 10 0 0 + and beyond,

ownstream vortex growth persists, this proving relatively rapid

nd matching with both Conv + and Conv ∗ ( Figs. 4 a, b and 5 ). Sec-

ndary Moffatt-vortices appear by Wi = 500 ( Conv + ) and Wi = 750

 Conv ∗), and strengthening subsequently ( Fig. 4 b; Table 3 – quan-

ities in brackets). For both Conv + and Conv ∗, this is accompanied

ith a secondary spurt of upstream vortex enhancement, after
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Fig. 5. (a) Upstream and (b) downstream vortex intensity against Wi; Conv ∗ and 

Conv + , VGR_ABS; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 

Fig. 6. N 1 against Wi ; ABS_VGR: Conv ∗ and Conv + ; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 

0.001}. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. f -functional against Wi ; (a) Conv + : natural and ABS_VGR; (b) ABS_VGR: 

Conv ∗ and Conv + ; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 
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Wi = 200 ( Figs. 4 b, and 5 ). In this upstream zone, the secondary

Moffatt-vortex that appears by Wi = 300, subsequently dies away

by Wi = 500, to be suppressed by Wi = 750 + . By Wi = 10 0 0 + and

above, intense, enlarged and concave upstream and downstream

streamline perimeters are observed ( Fig. 4 b). Hence, secondary-

upstream Moffatt-vortices are ultimately suppressive, whilst those

downstream are expansive (and stronger for Conv + ; Fig. 4 b;

Table 3 – quantities in brackets). 

4. N 1 fields and vortex-like structures 

Analysing Wi-increase under ABS_VGR : From the N 1 -fields in

Fig. 6 and at Wi = 5, Conv + displays a more intense vortex-like

structure upstream of the contraction, corresponding to its rel-

atively higher ηext -peak (see Fig. 2 a), and tying in with the

streamline patterns above. For both convoluted solutions, a single
ed-positive zone is observed that crosses the contraction-plane,

rom upstream of the contraction with origin on the centreline, to

ownstream of the contraction with expansion outwards to reach

he downstream contraction-wall. This mixed shear-extension,

ed-zone is pinched by two disjoint blue-negative zones; one

pstream of the contraction, with base in the front-face of the

ontraction and bordering the upstream vortex-zone, and the

ther downstream of the contraction-plane with base on the cen-

reline. This pattern is held to be representative of the prevailing

ontraction–expansion flow dynamics. 

Next, switching attention to the relatively high elasticity level of

i = 200 above that at Wi = 5, the N 1 -fields have shifted dramati-

ally. Firstly, the red-positive region appears more squeezed about

he contraction region, and now both of its tails (upstream and

ownstream) are connected to the contraction wall. By contrast,

he blue-negative-valued N 1 -regions have shrunk (due to shear-

hinning); upstream of the contraction-cap and downstream over

he centreline. Its downstream zone has become separated from

he positive-red region and been further convected downstream,

eflecting a relatively smaller size and intensity than at Wi = 5.

ere, Conv + is consistently more intense still than with Conv ∗,

s justified by ηext -peak of Fig. 2 a in the downstream-centreline

xtension-zone, and by N 1Shear -peak of Fig. 2 b in the upstream-cap

hear-zone. 

Upon reaching the still more advanced stage of Wi = 400, such

rends are continued through Wi -elevation, with the red-positive

egion now becoming even smaller; Conv ∗ also shows disconnec-

ion from the upstream-wall. The downstream blue-negative re-

ion is further convected-downstream; it loses intensity and size,

s does the contraction-cap zone (justified as above). 

The largest extreme of elasticity considered is that of

i = 10 0 0 + , N 1 red-positive regions have shrunk dramatically, as

ave the blue-negative zones (due principally to shear-thinning,

train-softening effects). Downstream of the contraction-plane, the

 1 red-positive zone almost vanishes under Conv ∗, and disconnects

rom the downstream-wall under Conv + . The strong blue-negative

one at the centreline has almost disappeared downstream, by

onvection and through loss of intensity (strain-softening). This

lso applies to the strong blue-negative zone at the contraction-

ap, but decline here is due to shear-thinning. 

Natural vs ABS_VGR f-fields, Conv + , Wi = 0.5 : Under such com-

arison of Fig. 7 a, there are obvious shape changes to observe

rom rounded-red high f -values for Natural Conv + , to that for

onv + (ABS_VGR). The key feature to highlight is the removal of the

ownstream negative-blue zone on the centreline with the Nat-
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Fig. 8. (a) f -functional , (b) τ zz , and (c) τ rr , @ centreline against Wi; Conv + natural 

and VGR_ABS; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 
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Fig. 9. (a) s 2 , (b) N 1 , (c) �zz , (d) �rr @ centreline against Wi; Conv + natural and 

VGR_ABS; { β , ε PTT , ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 

Table 4 

N 1 maxima against Wi; Conv ∗ , Conv + { ε PTT , ω, ξG0 } = {0.25, 4.0, 0.001}. 

N 1 

Conv ∗ Conv + 

Wi Natural ABS_VGR Natural ABS_VGR 

0 .1 8 .25 7 .41 8 .59 8 .07 

0 .5 7 .87 6 .61 9 .67 8 .39 

1 5 .75 4 .97 7 .24 6 .45 

2 3 .75 3 .35 4 .68 4 .31 

5 1 .98 1 .82 2 .41 2 .25 

10 1 .18 1 .11 1 .41 1 .33 

15 0 .87 0 .82 1 .02 0 .97 

20 0 .70 0 .66 0 .81 0 .77 

50 0 .34 0 .32 0 .39 0 .37 

100 0 .19 0 .18 1 .07 a 0 .21 

200 0 .11 0 .10 0 .12 

250 0 .10 b 0 .09 0 .10 

300 0 .07 0 .08 

400 0 .06 0 .06 

500 0 .05 0 .05 

750 0 .03 0 .04 

10 0 0 0 .03 0 .03 

20 0 0 0 .01 0 .02 

30 0 0 0 .01 0 .01 

40 0 0 0 .01 0 .01 

50 0 0 0 .02 0 .02 

a Wi crit = 67. 
b Wi crit = 224. 

u  

s  

t  

j  

s  

c  

e  

W  

c  

o  

{

ral model version, and replacement with the positive-red zones

f the Conv + (ABS_VGR) variant, along with larger f -extrema (as in

able 5 ). 

This evidence is further supplemented by the Conv + -plots

or rising Wi towards Wi crit , with Natural vs VGR_ABS centreline-

rofiles of f -values and { τ zz , τ rr }-values of Fig. 8 ; and in Fig. 9 ,

ith second stress-subsystem eigenvalue ( s 
eig 
2 

), N 1 -values and

onfiguration-tensor components { �zz , �rr }. Kramers’ rule iden-

ifies the relationship between stress and configuration tensor as:

= τp + 

ηp0 

λ1 
I. The choice here is for the Conv + -option, which

s more dramatic in its data representation and with smaller

i crit -levels than the Conv ∗-option. Fig. 8 illustrates the fact that

he ABS -version ensures f ≥ 1 at all Wi -values, and hence retains

ositive viscosity levels (physically realistic), with correspond-

ng N 1 -values smaller in size (see Table 4 ) and smoother in

rofile-shape than for the Natural-signed version. Fig. 9 conveys

he trends with rising Wi in possible loss-of-solution evolution

hrough loss of positive-definiteness in the corresponding individ-
al configuration-tensor components. The superior VGR_ABS -option

tability-wise performance over the Natural -option is apparent in

he progressive states of second stress-subsystem eigenvalue ( s 
eig 
2 

);

ust breaking the positivity requirement for the Wi -continuation-

tep of Wi = 5 (note, not in true-time IVP-evolution, hence not

atastrophic), but picking up subsequently. ( s 
eig 
2 

)-trends are more

xaggerated in negativity for the Natural -option. Moreover, at each

i -value, the configuration-tensor components (of Fig. 9 c and d;

entreline), relate directly to ( s 
eig 
2 

), dependent upon the sign switch

f N 1 (as gathered from Fig. 9 b), with { �zz } = ( s 
eig 
2 

) if N 1 > 0, and

 �rr } = ( s 
eig 
2 

) if N 1 < 0 (see [5] ). 
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Table 5 

f -functional maxima against Wi; Conv ∗, Conv + { ε PTT , ω, ξG0 } = {0.25, 4.0, 0.001}. 

f 

Conv ∗ Conv + 

Wi Natural ABS_VGR Natural ABS_VGR 

0 .1 1 .15 1 .24 1 .08 1 .13 

0 .5 2 .49 2 .60 2 .09 2 .14 

1 4 .10 4 .23 3 .54 3 .60 

2 6 .80 7 .02 6 .14 6 .18 

5 13 .43 13 .58 12 .30 12 .52 

10 23 .14 23 .51 21 .23 21 .48 

15 32 .47 32 .88 29 .86 29 .95 

20 41 .48 41 .98 38 .58 38 .35 

50 98 .25 94 .90 96 .97 87 .96 

100 196 .08 179 .86 130 .25 a 168 .70 

200 393 .88 342 .70 323 .64 

250 433 .75 b 421 .98 404 .22 

300 499 .90 485 .72 

400 653 .40 648 .39 

500 811 .27 809 .95 

750 1216 .22 1214 .11 

10 0 0 1621 .54 1618 .23 

20 0 0 3254 .83 3248 .77 

30 0 0 5988 .04 10157 .40 

40 0 0 1 .21 ×10 5 25019 .30 

50 0 0 5 .56 ×10 10 1 .26 ×10 14 

a Wi crit = 67. 
b Wi crit = 224. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. epd against Wi ; (a) low-to-moderate Wi , (b) high Wi ; all models; { β , ε PTT , 

ω, ξG0 } = {1/9, 0.25, 4.0, 0.001}. 

Fig. 11. epd against Wi ; very high- Wi Wi > 10 3 ; all models; { β , ε PTT , ω, ξG0 } = {1/9, 

0.25, 4.0, 0.001}. 
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Comparison across models, Conv + and Conv ∗, Wi = 10: The com-

parison in Fig. 7 b, displays a high-red f -zone under Conv ∗ that

connects to the contraction-wall, both upstream and downstream.

This is also relatively larger in f -maxima than under Conv + (see

Table 5 for f -maxima comparison). In contrast, Conv + solution

displays a red f -zone distribution pattern that is strictly confined

about the contraction-plane with smaller values. This finding

lies consistently in agreement with the relatively larger Conv ∗

f -values in simple-shear and simple uniaxial-extension (see Fig.

1 ). Moreover in N 1 -maxima ( N 1max ; see Table 4 ), Conv + data rise

in the range 0.1 ≤ Wi ≤ 0.5, and then decline for Wi > 0.5; whilst

Conv ∗ N 1max simply decline from Wi ≥ 0.1. Here, Conv + somewhat

reflects its relatively more exaggerated extensional viscosity fea-

tures ( Fig. 2 a). Compared against Conv ∗ in the range 0.1 ≤ λ1 ˙ ε ≤ 1,

Conv + provides a more prominent strain-hardening response; then

followed in λ1 ˙ ε -rise by a steeper decline in strain-softening. 

5. Excess pressure drop ( epd ) 

5.1. Low-to-moderate Wi -levels, 0 ≤ Wi ≤ 50 

At low elasticity levels ( Wi < 1; Fig. 10 a), all epd data-curves for

the five models follow the same declining trend, much attributed

to the strong shear-thinning influence at this level of solvent-

fraction of β =1/9 and the level of N 1 over the range of rates con-

sidered (interpreted from larger solvent-fraction data elsewhere,

see [4] ). 

As rates increase and for Wi > 1, Conv + data lies consistently

above that for all other models, with most shallow slope of de-

cline, prior to asymptoting to the high-rate plateau (which itself

is dictated by the β-level). From these larger epd - Conv + values,

one can argue that this effect is due to ηext -over-estimation in this

moderate rate range , whilst correspondingly ηshear has less variation

across models (see Fig. 2 ). Moreover, N 1 is strengthened not weak-

ened for Conv + -response; hence, would contribute a more suppres-

sive effect on epd (see [30] , for earlier justification argument). One

also notes, the matching of epd -EPTT with epd - Conv ∗ on account
f matching rheology in { ηext , ηshear , N 1 } within the moderate rate

ange. 

.2. High Wi -levels, 50 ≤ Wi ≤ 750 

In this exposition at high-deformation rates up to Wi ∼750

 Fig. 10 b), there is clear evidence for the ultimate take up of the

pd plateau at epd ∼0.15. This is borne out by the plateaux in ma-

erial functions of Fig. 2 ; bar in EPTT- N 1 , which displays a limiting

olution level of Wi =220. At even more extreme and very high
crit 
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i- levels beyond 10 0 0 + ( Fig. 11 ), one notes that fully-developed

xit conditions become increasing more difficult to satisfy, with a

equirement of ever longer exit zones. Shorter exit zones than nec-

ssary may impact upon the epd -measures, degrading them below

he plateau level ( Fig. 11 a, non-periodic bc). Imposition of peri-

dic boundary conditions (bc) on { u , ∇u , τp }, with entry-exit zone

eedback-feedforward on ∇u and τp as stated above, has been

ound to overcome this practical issue ( Fig. 11 b; see inset for so-

utions up to Wi = 50 0 0 + with periodic bc). 

. Conclusions 

Here, additive ( Conv + ) and multiplicative ( Conv ∗) convoluted

odels have been proposed, based on the thixotropic micellar

BM model and the non-thixotropic network-based EPTT model.

olutions at extremely high- Wi ( Wi = 50 0 0 + ) and solvent-fraction

=1/9 have been attained – through the combination of ABS- f and

GR-corrections. In addition, consistency with mesh-refinement

as also been addressed in this stringent highly polymeric-context,

hilst covering an extensive range of elasticity levels. The main

chievements in this work are borne out through – (i) an explo-

ation of convoluted-model variants, via new combinations of f -

unctionals with some more well-known constitutive models; (ii)

he exposition of necessity for periodic boundary conditions, in

he capture of accurate and consistent pressure-drops at ultra-high

i > 10 0 0; (iii) the extraction of epd -plateau predictions at high-

i > 10 0 0 ; and (iv) the prediction of new and rich vortex dynamics

or these material systems. Such vortex dynamics reveals, both up-

tream and downstream, enhancement and suppression, and Mof-

att vortices at high- Wi . This information correlates closely with

deal viscometric response for these models (i.e. through exten-

ional viscosity and N 1Shear ). On EPD-plateau capture, this feature

s attributed to attainment of second Newtonian-plateaux, as re-

ected in viscometric flow at high deformation-rates, via N 1Shear ,

hear viscosity and extensional viscosity. 

On vortex dynamics and within the widely extended Wi -range,

hree distinct phases are detected in vortex dynamics: (i) upstream

ortex enhancement and downstream vortex suppression in the

ange 0.1 ≤ Wi ≤ 5; (ii) upstream vortex suppression and down-

tream vortex enhancement for 5 < Wi ≤ 200; and (iii) upstream

nd downstream vortex enhancement 200 ≤ Wi ≤ 1000 + . In the

rst stage , larger and more active upstream vortices are observed

nder Conv + response, which correlates with its larger ηext -peak.

n the second stage , upstream vortex suppression is apparent due

o softening-thinning effects. This leads to upstream vortex disap-

earance (sustained to Wi = 200). In contrast, downstream vortex

rowth begins. In the last stage , rapid downstream vortex growth

ccurs and is accompanied by a second stage of upstream vor-

ex enhancement, under both Conv + and Conv ∗. Moreover, sec-

ndary downstream Moffatt-vortices appear by Wi = 500 ( Conv + )
nd Wi = 750 ( Conv ∗), which strengthen with further Wi -rise. As

 counterpart and in the range 200 ≤ Wi ≤ 500, upstream Moffatt-

ortices are apparent that behave in a suppressive manner with

i -rise. 

N 1 -field- data correspond with the streamline patterns at rela-

ively low elasticity levels ( Wi = 5). Here, an upstream vortex-like

tructure is recorded, more intense under Conv + , corresponding to

ortex presence and its relatively higher ηext -peak. At Wi = 200,

 1 -fields dramatically change. Across convoluted models, Conv + 

 1 -field- data is still more intense than in Conv ∗ solutions, con-

istent with stronger Conv + ηext -peak (associated with extension-

ominated centreline trends) and with larger N 1 -peaks at medium-

o-high shear-rates (associated wall shear-dominated zone). At ex-

reme levels of Wi = 10 0 0 + , N 1 values decline due principally to

hear-thinning and strain-softening effects. 
On f-functional and positive definiteness – the ABS model-version

nsures f ≥ 1 ∀ Wi -values, and hence retains positive viscosity,

ith corresponding smaller N 1 -values and smoother centreline

rofile-shape than for the Natural-signed version. Across mod-

ls, larger Conv ∗ f -maxima are recorded, which correlate with

arger Conv ∗-Wi crit . Moreover, the VGR_ABS -option performs in a

uperior manner (stability-wise) to the Natural -option, observed

hrough the second eigenvalue ( s 
eig 
2 

) of the stress-subsystem for

he conformation-tensor. Here, VGR_ABS solutions only marginally

onflict with the positivity-retention requirement (to avoid ensu-

ng loss of IVP-evolution in time), whilst transcending the Wi -

ontinuation-step at Wi = 5, but subsequently recovering at larger

i -levels. In contrast, Natural -signed s 
eig 
2 

-trends are more exagger-

ted in exposure to such negativity in ( s 
eig 
2 

). 

On excess pressure-drop and at low elasticity levels ( Wi < 1), all

pd data-curves decline, much attributed to strong shear-thinning

exaggerated at this solvent-fraction β =1/9 and N 1Shear levels). At

arger Wi > 1, Conv + data dominates, with most shallow slope of

ecline. This may be correlated to ηext -over-estimation in the mod-

rate rate range, as ηShear -data barely change across models. In the

igh- Wi range of 200 ≤ Wi ≤ 10 0 0 , epd -asymptotes to the plateau-

evel of epd ∼0.15, which may be associated with the plateaux ob-

erved in material functions at high deformation-rates. At very

igh- Wi levels [ Wi = O(50 0 0 + )], fully-developed exit conditions be-

ome more difficult to satisfy. Here, application of periodic bound-

ry conditions at the inlet and outlet flow regions become more

ppropriate. 
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