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Abstract This study is concerned with the modelling of
thixotropic and viscoelastoplastic material systems, con-
trasting two approaches in the development of such consti-
tutive models. Accordingly, departure from Oldroyd-B-
like behaviour is engineered through, first, a new micellar
viscoelastic–thixotropic model (NM_τp_ABS), under the
Bautista–Manero framework, and second, a De Souza model.
This NM_τp_ABSmodel, is based on the energy dissipated by
a micellar material to change its internal structure, whilst
equivalently, the De Souza model employs the second invari-
ant of stress. These models are compared and contrasted in
their response through counterpart numerical solutions for
axisymmetric contraction–expansion flow. Here, solution fea-
tures of yielded–unyielded regions, total pressure drop, stress
fields and vortex dynamics are analysed under scaling based
on the second-Newtonian viscosity-plateau (ηs). With the
NM_τp_ABS model, yield-stress features are identified
through solvent-fraction β-variation. In contrast, for the De
Souza model, counterpart yield-stress features are exposed
through yield-stress τ0d-variation. With either yield-stress in-
crease or rise in elasticity, NM_τp_ABS solution response ap-
pears symmetrical about the contraction-plane axis, whilst De
Souza patterns prove asymmetrical. Under solvent-fraction
decrease, NM_τp_ABS response provides yielded-region
shrinkage, upstream and downstream vortex suppression,

and non-zero N1-region growth. Moreover, under elasticity
rise, fading non-zero N1-regions, size-invariant yield-fronts
and non-zero N1-regions are observed. In contrast under τ0d
increase or rise in elasticity, De Souza solutions manifest en-
hancement in vortex activity, and non-zero N1-region-intensi-
fication and expansion. Furthermore, τ0d-rise provokes De
Souza yielded-region shrinkage, whilst elasticity does the op-
posite. On total pressure drop (Δp), for NM_τp_ABS and with
polymeric-fraction increase at fixedWi, both monotonic rise at
low-Wi and decline at higher-Wi are gathered. In contrast, only
a monotonic rising trend is recorded with De Souza Δp-solu-
tions for fixed Wi under τ0d-rise. Furthermore, with Wi-rise
and at any fixed τ0eff-level, both models concur in a declining
Δp-trend.
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Introduction

This study addresses the topic of modelling complex flow
of viscoelastoplastic fluids in the axisymmetric 4:1:4 con-
traction–expansion benchmark flow problem. Here, two
thixotropic viscoelastic models are considered, both capa-
ble of displaying plastic behaviour, the NM_τp_ABS model
(López-Aguilar et al. 2014, 2015a) and the De Souza
model (De Souza 2011; De Souza 2009). The former,
NM_τp_ABS model (López-Aguilar et al. 2014, 2015a), is
based on the Bautista–Manero constitutive modelling ap-
proach (Bautista et al. 1999; Manero et al. 2002; Boek
et al. 2005). This family of time-dependent thixotropic
viscoelastoplastic fluids drive the non-linear non-
Newtonian features based the energy dissipated by the
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fluid in a structure equation (via τp :D). Here, construction
and destruction of the fluid’s structure is accounted for in
an extra equation for the f-functional, which explicitly in-
cludes the viscoelasticity (through the relaxation time λ1 or
the Weissenberg number Wi) for the NM_τp_ABS version.
Moreover, relatively low-solvent fractions and high-
elasticity levels are accessible. This is achieved through a
correction to the constitutive equation for these polymeric
Bautista–Manero models, based on physical arguments for
fluidity, in which absolute values of the dissipation function
are adopted in complex flow (López-Aguilar et al. 2015a). In
contrast, the second thixotropic model considered is that con-
structed byDe Souza (De Souza 2011; De Souza 2009), which
bases its non-linear behaviour on the second invariant of poly-
meric stress, presented through an additional differential equa-
tion for a structure parameter λ. Similarly to the Bautista–
Manero models, this De Souza structure equation involves
construction and destruction terms, but it is devoid of explicit
reference to viscoelasticity (via λ1 or Wi).

Constitutive models

Many approaches have been pursued to model wormlike mi-
celle flow behaviour. A family of models, originating from the
Bautista–Manero–Puig (BMP) model (Bautista et al. 1999;
Manero et al. 2002), consist of an upper-convected Maxwell
constitutive equation for stress-evolution, coupled to a kinetic
equation for structural change. Such structural change is
flow-induced, involving construction–destruction and is
based on the fluidity and rate of energy dissipation. This
model can represent viscoelastoplastic characteristics in
the limiting ideal-state of infinite zero-shear viscosity
(Calderas et al. 2013). In a first reformulation, the modified
Bautista–Manero (MBM) model was proposed by Boek
et al. (2005), specifically to circumvent the BMP unbounded
extensional viscosity predictions. This reformulation was
achieved through stress-splitting and fluidity-elimination from
the destruction component of the structure equation. More
recently, a variant of such micellar models has been proposed
that interconnects viscoelasticity with the mechanical struc-
ture construction–destruction mechanism (López-Aguilar
et al. 2014, 2015a). This variant model deals with MBM-
solution anomalies in the Stokesian limit for enhanced
pressure drop (epd) estimation in contraction–expansion
flow (López-Aguilar et al. 2014) and viscosity estimation
across the flow field. Most significantly, this model is also
able to capture highly-elastic solutions in complex flow
(López-Aguilar et al. 2015a). In addition, two variants for
this model have been proposed—with energy dissipation
given by the following: (i) only the polymer contribution
(NM_τp model) and (ii) polymer and solvent contributions
combined (NM_T model). Such considerations introduce
novel physics into the representation, by explicitly

coupling the thixotropic and elastic nature of these fluids,
alongside new key rheological characteristics, viz. declin-
ing first normal stress difference in simple shear flow
(López-Aguilar et al. 2014).

In the context of viscoelastoplastic materials, an alternative
thixotropic–viscoelastoplastic model was proposed by (De
Souza 2011; De Souza 2009), in which non-linear non-
Newtonian features are introduced in the destruction-term of
the structure equation, dependent upon the second invariant of
extra-stress. In a subsequent model-variant published by De
Souza and Thompson (2013), such an invariant contribution is
taken as unity. This second De Souza model-version has been
shown to be capable of displaying both apparent and true
yield-stress response. This particular constitutive equation
has been used effectively, in ideal simple and complex flow
situations, to represent thixotropic and viscoelastoplastic char-
acteristics; see for example, an overview of models
representing viscoelastoplasticity (De Souza and Thompson
2012); and flow in an expansion setting (Link et al. 2015).

Applications

The Bautista–Manero constitutive equation was originally
devised to model a versatile family of fluids composed of
mixtures of surfactants—typically of cetyltrimethylamonium
bromide (CTAB), or cetylpyridinium chloride (CPyCl)—and
salts, sodium salicylate (NaSal), in water (Bautista et al. 1999;
López-Aguilar et al. 2014; Yang 2002). These components
interact physically to form elongated micelles, the rate of
which formation depends upon concentration, temperature
and pressure conditions. These micelle networks entangle
and provoke changes in viscosity, elasticity, and breakdown-
formation of internal structure (López-Aguilar et al. 2014,
2015a). Such complex system constitution generates highly
complex rheological phenomena, which manifest features as-
sociated with thixotropy (Bautista et al. 1999), pseudo plas-
ticity (Bautista et al. 1999; Manero et al. 2002; Boek et al.
2005; López-Aguilar et al. 2014, 2015a), shear banding
(Bautista et al. 2000) and yield stress (Calderas et al. 2013;
López-Aguilar et al. 2015b). Advantage may be taken of these
features to render micelle solutions as ‘smart-fluids’ for varied
processing and present-day applications—as in, drilling fluids
for enhanced oil-reservoir recovery (EOR) (López-Aguilar
et al. 2014), and additives in household-products, paints,
cosmetics, health-care products, drag reducing agents
(López-Aguilar et al. 2014; Yang 2002). In contrast, the
De Souza model is intended to model viscoelastoplastic thixo-
tropic materials (De Souza 2009, 2011; De Souza and
Thompson 2013), such as those processing fluids used within
the oil industry.

The current contraction–expansion flow problem under
study is a standard benchmark in experimental and computa-
tional rheology (Binding et al. 2006; Aguayo et al. 2008;
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Walters andWebster 2003; Rothstein andMcKinley 2001). Its
commending features relate to its vortex dynamics (re-entrant/
salient), stress fields, flow kinematics and pressure-drop mea-
surement (López-Aguilar et al. 2014). Here, diverse solution
response may be found, relating to vortex dynamics and
stress-field evolution (extensional viscosity, N2-effects), struc-
ture formation and numerical tractability (sharp-rounded
corners) (Aboubacar et al. 2002a, b). One notes that pressure
drop, which reflects the energy expended in a flow, is often
studied through total pressure-drop measurement (Binding
et al. 2006; Aguayo et al. 2008), the accurate capture of which
itself offers a significant challenge to computational prediction
(Binding et al. 2006).

Flow problem, modelling and discretisation

In this section, two constitutive approaches for thixotropic
viscoelastoplastic fluids are presented. The first of them is con-
ducted via the Bautista–Manero fluid family, for which the
NM_τp_ABS model (López-Aguilar et al. 2014, 2015a and
b) is chosen. This consti tutive equation reflects
viscoelastoplastic features through solvent-fraction β-variation
in the range 10−2≤β≤0.9. In contrast, the De Souza model (De
Souza 2011) provides viscoelastoplastic characteristics through
yield-stress τ0d-variation in the range 0.02≤ τ0d ≤1.

The viscosity scaling used in this study is based on the
solvent viscosity ηs. Here, polymeric viscosity, stress and pres-
sure dimensionless variables are defined as follows:

ηp
* ¼ ηp

ηs
; τp

* ¼ τp

ηs
U

L

; τ s
* ¼ τ s

ηs
U

L

; p* ¼ p

ηs
U

L

;

with U being a characteristic velocity scale (mean velocity,
based on volume flow rate), and L a spatial-scale (based on
minimum contraction-gap width). The dimensionless vari-
ables for spatial coordinates, velocity, time and rate-of-
deformation are as follows:

x* ¼ x
L
; u* ¼ u

U
; t* ¼ U

L
t; D* ¼ L

U
D:

The governing equations under transient, incompressible
and isothermal flow conditions may be expressed through
those for mass conservation and momentum transport,
coupled to a viscoelastic constitutive law for stress. Such a
space-time partial differential equation system may be
expressed in non-dimensional form as follows:

∇⋅u ¼ 0; ð1Þ

Re
∂u
∂t

¼ ∇⋅T‐Reu⋅∇u−∇p; ð2Þ

T ¼ τ s þ τp; ð3Þ

τ s ¼ 2D; ð4Þ

Wiτ
∇
p ¼ 2ΓD− f τp: ð5Þ

Note, in these governing equations (1–5), the * notation on
dimensionless variables is discarded for concise-form repre-
sentation, retained by implication only. Here, field-dependent
variables, u, p and T, represent fluid velocity, hydrodynamic
pressure and total stress contributions; (x, t) represent space–
time independent variables; and the gradient and divergence
operators apply over the spatial domain. The stress (T) is split
into a solvent (viscous) contribution τs, and a polymeric-
contribution τp (thixotropic–viscoelastoplastic). In addition,
D= (∇u+∇u†)/2 is the rate of deformation tensor, with tensor
transpose superscript notation †.

The Reynolds group number may be defined as Re=ρUL/
ηs with ρ representing a material density parameter. In all
solutions presented creeping flow approximation is assumed
with Re≤10−2. A dimensionless viscosity ratio Γ=ηp0/ηs is
obtained in the rhs of constitutive Eq. (5). Here, Γ modulates
the dissipative-term contribution to the polymeric stress equa-
tion. Moreover, an elastic Weissenberg group number, defined
asWi=λ1U/L, is introduced as a second dimensionless group
number, specified through a characteristic material relaxation
time, λ1=(ηp0/G0), and a characteristic process rate,U/L. Here,
G0 represents the elastic modulus of the material.

NM_τp_ABS model

Next, the generalised functional f in Eq. (5) must be spec-
ified, to imbue a thixotropic networked nature to the fluid
system. Recently, a new constitutive equation, based on the
MBM model, has been proposed for modelling wormlike mi-
cellar systems, that of NM_τp. This model has the novel inclu-
sion of viscoelasticity within the destruction mechanics of the
fluid-network structure and corrects for MBM-epd undershoot
at low deformation rates (López-Aguilar et al. 2014).Moreover,
this formulation has been further developed to capture highly-
nonlinear solutions in complex flows (López-Aguilar et al.
2015a), at large-Wi or low-β (translating in high polymer con-
centrations). The present analysis appeals to a sub-version of
this class of models, NM_τp_ABS, which in addition to the
foregoing uses the absolute value of the dissipation function
(guaranteeing positive viscosity; López-Aguilar et al. 2015a),
and considers only the energy dissipated by the polymer
constituent (τp) in the structure breakup. As such, dependency
on fluidity (ϕp=ηp

−1) arises through its equivalent dimension-
less structure functional f, of generalised differential form
(López-Aguilar et al. 2014, 2015a),

∂
∂t

þ u⋅∇
� �

f ¼ 1

ω
1− fð Þ þ ξηsG0

Wi τp : D
�� ��: ð6Þ
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Here, the dimensionless functional f is defined as f=(ηp0/ηp),
using ηp0 as a viscous scaling factor on fluidity. The dimension-
less micellar parameters, which account for structural construc-
tion (ω=λsU/L) and destruction (ξ

ηs
G0

¼ kG0 ), appear in Eq. (6),

in the corresponding terms for these dynamic mechanisms.

De Souza model

This model consists of a dimensional total-stress form, coupled
with a differential equation describing the material structure λ
evolution (De Souza 2011). This structure parameter λ explic-
itly affects the viscosity and shear modulus. To establish a com-
mon basis with NM_τp_ABS, the De Souza stress equation is
re-written in a split form (Τ=τs+τp). Here, τs=2D and τp are
the Newtonian-solvent and non-linear polymeric stress contri-
butions, respectively. Moreover, the polymeric stress equation
may be rearranged to obtain:

Wiτ
∇
p ¼ 2

Γ
λm D− f τp; ð7Þ

where the f-functional is defined as f ¼ 1
λm ηp0=ηp
� �

, the poly-

meric viscosity is ηp λð Þ ¼ ηp0
ηs

� �λ
−1, and structural modulus is

Gs λð Þ
G0

¼ 1
λm . In addition, the structure equation is given by:

∂
∂t

þ u⋅∇
� �

λ ¼ 1

ωDS
1−λð Þa þ 1−λssð Þa λ

λss

� �b IIτp

ηp λð Þ
ηs

þ 1
h i

IID

0
@

1
A

c2
4

3
5:

ð8Þ

Here, ωDS= teqU/L is a dimensionless time of change of λ;

ΙΙτp ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
2 trτ

2
p

q
and ΙΙD ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 trD

2
q

are the second invariants

of polymeric stress and rate-of-deformation, respectively; a, b,
c and m are dimensionless positive constants. Additionally,
the steady-state structure parameter λss is defined as:

λss I IDð Þ ¼ lnηss I IDð Þ−lnηs
lnηp0−lnηs

; ð9Þ

and the expression for the steady-state viscosity ηss is:

ηss I IDð Þ ¼ 1−exp −
I ID
τ0

� �� 	
τ0−τ0d
IID

exp −
IID
γ0d

� �
: þ τ0d

IID
þ KIID

n−1
� 	

þ 1:

ð10Þ

Above, τ0 and τ0d are the dynamic and static yield-stress
parameters, respectively; γ

:
0d is the shear-rate that marks the

transition from τ0 to τ0d. Finally, K and n are consistency and
power law indexes, respectively.1

Material functions

In Fig. 1, the matching is provided across NM_τp_ABS and
De Souza constitutive models for (a) shear (ηShear) and exten-
sional (ηExt) viscosities and (b) shear-stress (τrz). Here, the
solvent-fraction (β) is set to the relatively high polymeric val-
ue of 1/9, a frequent benchmark setting. Fluids with moderate
hardening features are characterised with NM_τp_ABS pa-
rameters of {ω, ξG0}={4.0, 1.0} and De Souza parameters
of {ωDS, K, n, τ0, τ0d, γ

:
0d , β}={1.0, 0.1, 0.5, 0.2, 0.2, 0.3,

1/9}. It may be gathered that insignificant differences are ob-
served across models in ηShear, ηExt and τrz (Fig. 1a, b). In
contrast, first normal stress difference (N1Shear) (Fig. 1c) does
display some interesting disparities in the moderate-to-high
shear-rate range. There, a plateau is observed in
NM_τp_ABS N1Shear data, as opposed to that provided with
the De Souza model, which first undulates at moderate shear
rates, manifesting local extrema, to finally rise monotonically
at large shear rates. One notes, for instance at λ1γ

: =105, the De
Souza N1Shear level is some six times larger (N1Shear ∼3) than
that of NM_τp_ABS (N1Shear ∼5×10−1).

In Fig. 2a–d, shear data is provided in the form of τrz and
N1Shear, where one may compare and contrast the
viscoelastoplastic features of both NM_τp_ABS and De
Souza models. Overall, NM_τp_ABS τrz-representation
(Fig. 2a) reflects a branched pattern, with its fingers providing
effective yield-stress τ0eff-levels (intercepts of τrz-curves at λ1

γ:→0 ), whilst equivalently De Souza data curves (Fig. 2c, at
expanded scale) render a closed-form shape. Firstly, solvent-
fraction β-decrease is used in order to display NM_τp_ABS
yield-stress features. In Fig. 2a, b, τrz and N1 data are plotted
under solvent-fraction β-variation, with the base thixotropic
parameter set of {ω, ξG0}={4.0, 1.0} (López-Aguilar et al.
2015b). Here, with β-decrease of β={0.9, 1/9, 10−2, 10−3},
the τ0eff-level rises through τ0eff = {0.01, 0.1, 1.0, 10}, whilst
the high shear-rate N1shear plateaux elevate through
Ν1Shear∼ {0.4, 4, 50, 500}.

In contrast, De Souza yield-stress features are exposed
through yield-stress τ0d-variation (where τ0= τ0d). A data
sample of τrz and N1 is provided in Fig. 2c, d, under parame-
ters sets of τ0d= {0.1, 0.2, 0.5, 1.0, 2.0} and {K, n, γ:0d ,
β}={0.1, 0.5, 0.3, 1/9}. Now, De Souza τrz-curves intercept
the vertical-axis as λ1γ

:
→0 at τrz∼10−1 (Fig. 2c). Notably, the

τ0eff-level is dictated by τ0d. This coincides with the location
of the first vertex of the centre of curvature2 of each τ0d-curve,
as indicated. Subsequently, for moderate shear rates, both
NM_τp_ABS and De Souza τrz-curves decline away from
their prior linear slopes. Here, De Souza τ0d-curves appear
less flat and smaller in plateau level, than comparably for

1 Note, care in solution must be taken numerically with possible zero-
variable denominators appearing in Eqs. 7–10, as in 1

λm of Eq. 7, λss
− 1 of

Eq. 8, and ΙΙD
− 1 of Eqs. 8, 10. Here, a simple shift with unity suffices.

2 In the geometry of planar curves, a vertex is a point where the first
derivative of curvature is zero. This is typically a local maximum, a local
minimum, or a stationary point of inflection of curvature.
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NM_τp_ABS response under solvent-fraction decrease. Such
De Souza response has fixed width per τ0d-level, of one-and-
half decades, covering in total the three-decade rate-range of

10−1≤λ1γ
:≤102 for the span of τ0d-values. Note, with rising

τ0d, the range of τrz gradually shifts through larger values. The
NM_τp_ABS response widens with β-decrease: this range is

restricted for β=1/9 to 100≤λ1γ
:≤5*101 at minimum; whilst

for β = 10−3, the range expands out to 100≤λ1γ
:≤103 at

maximum. Finally, at larger shear rates, all τrz-curves re-join,
supporting a rising linear trend. In terms of De Souza N1Shear-
representation for rising deformation rate, there is initial rise in
N1Shear, prior to location of an inflection point at moderate shear
rates (Fig. 2d). With τ0d-rise, this inflection point consistently
elevates, whilst being shifted to larger shear rates. Beyond this
inflection point, these N1Shear-curves decline at moderate-to-
high shear rates, to finally rise again at high shear rates.

Counterpart viscous response under NM_τp_ABS and De
Souza is provided, covering ηShear in Fig. 3a, c and ηExt in
Fig. 3b, d. Under β-decrease, NM_τp_ABS viscoelastoplastic
features are reflected in the low deformation-rate viscosity-
plateau levels of Fig. 3a, b. Here, and with β={0.9, 1/9,
10−2, 10−3}, ηShear and ηExt first-Newtonian viscosity-plateaux
elevate, to ηShear = {1.11, 9, 100, 1000} and ηExt = {3.33, 27,
300, 3000}, respectively. Such viscosity-plateau elevation ex-
aggerates the extent of the drop to the second-Newtonian vis-
cosity-plateau, due to exposure to shear-thinning in ηShear and
strain-softening in ηExt. Moreover, the second-Newtonian
viscosity-plateaux ultimately unite to share a common level
∀β. In contrast for De Souza in Fig. 3c, d, the initial ηShear- and
ηExt-drops are shifted to larger deformation rates with τ0d-rise.
Conspicuously, τ0d=1.0 ηExt-curve is the only instance in
which both strain hardening and softening features are cap-
tured. Now, as the De Souza solvent-fraction level is fixed at
β=1/9, the first- and second-Newtonian-viscosity plateaux
are common in each viscometric instance considered.

Problem specification and discretisation

The schematic representation of the 4:1:4 axisymmetric,
rounded-corner contraction–expansion flow problem, along-
side its corresponding mesh data, is reported elsewhere
(López-Aguilar et al. 2014; Aguayo et al. 2008). See
Aguayo et al. (2008) for further detail on this problem, which
provides a full mesh refinement analysis for some typical case
studies. Here, the lengths of the inlet and outlet regions are
taken as 19.5H, where H is the upstream geometry radius
divided by a factor of four. Symmetry is enforced at the
centreline. No-slip boundary conditions are enforced on the

Fig. 1 Material functions against dimensionless rate. a Shear (ηShear) and
extensional (ηExt) viscosities. b τrz. c N1Shear; β= 1/9. NM_τp_ABS: {ω,
ξG0} = {4.0, 1.0}, De Souza: {K, n, τ0, τ0d, γ

:
0d , β, ωDS} = {0.1, 0.5, 0.2,

0.2, 0.3, 1/9, 1.0}
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bounding wall. Entry flow kinematics is determined compu-
tationally for the equivalent entry-channel problem. These
may be imposed through the time-stepping procedure, either
as steady-state, or via a smooth transient build-up. Then, fully
developed outflow conditions are established ensuring no
change in streamwise and vanishing cross-stream kinematics.
Once fully developed entry flow kinematic is known, stress
may be determined in a pointwise fashion through the derived
corresponding ODE system for stress.

Hybrid finite element/finite volume scheme

The discrete method of approximation is that of a hybrid
finite element/volume scheme, as used elsewhere (Matallah
et al. 1998; Belblidia et al. 2008; Webster et al. 2005,
Wapperom and Webster 1998). Such a scheme is a semi-im-
plicit, time-splitting, fractional three-staged formulation,
which draws upon finite element discretisation for velocity-
pressure approximation and cell-vertex finite volume
discretisation for stress. This scheme combines the individual
advantages and benefits offered by each approach (see
Matallah et al. 1998; Belblidia et al. 2008; Webster et al.
2005, Wapperom and Webster 1998). A sub-cell cell-vertex
fv-scheme is implemented for extra-stress, founded upon

fluctuation-distribution for fluxes (upwinding) and median-
dual-cell treatment for source terms. In addition, Galerkin
fe-discretisation is imposed on the embedded Navier–Stokes
system components; the momentum equation at stage-1,
the pressure-correction equation at stage-2 and the
incompressibility satisfaction constraint at stage-3 (to ensure
higher order precision). The sub-cell fv-triangular-tessellation
is then constructed from the parent fe-triangular-grid by
connecting the mid-side nodes. Such a tessellation is struc-
tured in nature. Stress variables are located at the vertices of
fv-sub-cells (cell-vertex method, equivalent to linear interpo-
lation). In contrast, quadratic velocity interpolation is
enforced on the parent fe-cell, alongside linear pressure inter-
polation. A direct Choleski solution method is utilised for the
fe pressure-correction stage-2; whilst for velocity-stages (1,3)
under fe-components, a space-efficient element-by-element
Jacobi iteration is chosen.

Vortex dynamics results: (a) NM_τp_ABS, β
and Wi-variation

In Fig. 4a, NM_τp_ABS streamline patterns are displayed,
with solvent concentration (β) decrease and elasticity (Wi)

NM_ p

rz

De Souza

N1
Fig. 2 τrz and N1Shear against
shear-rate; top-NM_τp_ABS(β-
decrease) {ω, ξG0} = {4.0, 1.0},
β= {0.9, 1/9, 10−2, 10−3};
bottom-De Souza(τ0d-increase)
{K, n, γ:0d , β, ωDS} = {0.1, 0.5,
0.3, 1/9, 1.0}, τ0d= {0.1, 0.2, 0.5,
1.0, 2.0}
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increase. Such data are analysed: (i) by observing the effects
on streamline patterns of adjustment in polymer concentration
at fixed elasticity (Wi) levels; and likewise, (ii) through the
effects of elasticity increase at fixed solvent-fraction level.

For β-decrease at fixed Wi=1 (where elastic and viscous
stresses balance), vortex suppression (upstream–downstream)
is observed as polymer concentration is elevated. Hence, at
Wi=1, evolution is observed from two well-developed up-
stream and downstream vortices at β=0.9, to vortex removal
at β=1/9; see vortex intensity values in Table 1 and upstream–
downstream vortex-intensity trend graphs in Fig. 4b–e. Such
vortex suppression correlates with relatively stronger yield-
stress features as polymer concentration increases. These are
reflected in larger τ0eff, τrz- and N1Shear-plateaux with β-de-
crease (Fig. 2a, b), in addition to larger ηShear and ηExt first-
Newtonian viscosity-plateaux (Fig3a, b). At higher elasticity
levels (Wi={5, 10}), such trends in vortex suppression are
still further amplified, whilst also displaying asymmetry in
size about the contraction. In contrast toWi=1 states, as elas-
ticity is decreased to Wi=0.1 and at each β-level, vortices
recover greater strength and size, and upstream–downstream
symmetry is even more apparent.

UnderWi-variation at fixed (β) polymer concentration, the
additional data of vortex-intensity trend graphs (in Fig. 4b, c,

plotted against (1-β) for consistency in trend direction across
model comparison; or against Wi, in Fig. 4d, e), reveal the
strong fall-off in intensity between 1/9≤β≤0.5, which be-
comes more exaggerated with Wi-rise. This aspect is present
in both upstream and downstream vortex response. In visco-
metric flows, this vortex intensity loss may be correlated
through deformation-rate rise, with the prominent drop in
ηShear- and ηExt-data of Fig. 3a, b. Here, the ηShear-decline
may be attributed to the prevailing shear-thinning, whilst the
ηExt-drop is due to strain-softening. Note also, at β=0.5, there
is both vortex-suppression and some slight enhancement. In
upstream vortex activity, three different phases of response
may be identified over Wi={0.1, 1.0, 5.0, 10.0}: (phase-
one, high-solvent, β = 0.9), only vortex-enhancement;
(phase-two, medium-solvent, β=0.5), a first stage of vortex-
suppression for 0.1≤Wi ≤5; followed by vortex-enhancement
for 5≤Wi ≤10; and (phase-three, high-solute, β={0.3, 1/9}),
where only vortex-suppression is observed (see Table 1,
Fig. 4d). Notably, at β=1/9 high-solute level, no vortex struc-
tures can be graphically distinguished for Wi ≥ 1.0.
Downstream vortex activity (Fig. 4e), rather mirrors the up-
stream response, bar the final-Wi stages at β=0.3, where sup-
pression is stronger in the upstream case. Such observations of
trends in vortex inhibition are consistent with our prior

De Souza 

NM_ p

Shear Ext

Fig. 3 ηShear and ηExt against
deformation-rate; top-NM_τp_
ABS(β-decrease) {ω, ξG0} = {4.0,
1.0}, β= {0.9, 1/9, 10−2, 10−3};
bottom-De Souza(τ0d-increase)
{K, n, γ:0d , β, ωDS} = {0.1, 0.5,
0.3, 1/9, 1.0}, τ0d= {0.1, 0.2, 0.5,
1.0, 2.0}
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Fig. 4 Streamlines and vortex intensity against β and Wi; NM_τp_ABS {ω, ξG0} = {4.0, 1.0} β-variation β= {0.9, 0.5, 0.3, 1/9}
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viscoelastoplastic studies for yield-stress increase, where only
viscous yield-stress components were considered via a
Papanastasiou regularisation (see López-Aguilar et al. 2015b).

Vortex dynamics results: (b) De Souza model, yield
stress τ0d-variation

In Fig. 5a, counterpart De Souza streamlines are displayed at
different levels of yield-stress τ0d={0.02, 0.2, 0.5, 1.0} and
elasticityWi={0.1, 1.0, 5.0, 10.0}, alongside vortex intensity
values in Table 2 and upstream–downstream vortex-intensity
trend graphs in Fig. 5b–e. Note in particular here that results
are analysed: (i) under τ0d-variation at fixed Wi and (ii) with
Wi-variation at fixed τ0d. Conspicuously, both τ0d-elevation
and Wi-elevation promote vortex activity, upstream: via en-
hancement in strength and growth in size; downstream: via
suppression in strength and shrinkage in size.

With τ0d-increase at fixed Wi=1.0, and in contrast to
NM_τp_ABS response, De Souza upstream vortex dynamics
are now not suppressed with τ0d-increase, but to the contrary
are notably enhanced. Indeed, the upstream vortex is signifi-
cantly enlarged and more active at τ0d={0.02, 0.2, 0.5, 1.0}
(see Table 2, Fig. 5b). Furthermore, the downstream vortex
continually shrinks as τ0d is elevated, and consistently appears
significantly smaller than its counterpart upstream vortex.
Such upstream vortex enhancement and downstream vortex
suppressionmay be correlated with the largerN1Shear-response
with τ0d-rise at fixed-Wi level (Fig. 2d). As such and through
τ0d, this asymmetric response about the contraction may be
associated with the influence of plasticity. Moreover, note at
Wi=5, the latter stages of τ0d-increase between τ0d={0.5,
1.0}, reveal a rapid decline in downstream vortex intensity
(see Fig. 5c).

Moreover, at fixed τ0d=0.2 and under Wi-rise, the elastic
asymmetries stimulated are more exaggerated than noted
above under NM_τp_ABS(β=0.9). Here, as Wi-rises, up-
stream vortices become dramatically larger, more intense
and more concave; whilst counterpart downstream vortices
show more extreme trends in shrinkage. These asymmetries

in upstream–downstream vortices may be associated with the
pronounced trend in risingN1Shear with increasing shear rate in
pure shear flow (Fig. 2d). Notably, with still further elevation
in τ0d-value, the downstream vortex practically disappears at
{τ0d=1.0, Wi=5}. Then, consistently and with τ0d-rise, this
downstream vortex removal may be correlated with the larger
N1Shear-local-maximum (Fig. 2d). In addition, in the specific
range {0.02≤ τ0d ≤0.5; 5≤Wi ≤10}, even downstream vortex
enhancement is noted. Such trends are clearly depicted in the
plots Fig. 5b–e.

Yield fronts: yielded–unyielded regions, first normal
stress difference N1

Considering the magnitude and influence of yield stress, it is
instructive to examine the division between yielded and
unyielded regions. To this end, yield fronts are provided in
Fig. 6a for NM_τp_ABS solutions, and in Fig. 6b for De
Souza solutions. Here, the yield-stress cut-off criterion is
based on the magnitude of stress (derived from its second
invariant) falling below the yield stress. In addition, counter-
part N1-fields are provided in Fig. 7, again per model.

Effective yield-stress τ0eff-elevation

At relatively low yield-stress levelswith {NM_τp_ABS(β=0.9),
De Souza(τ0d=0.2)}, both NM_τp_ABS data in Fig. 6a (top-
row) and De Souza data in Fig. 6b (second-row down), dis-
play a single red-yielded X-shaped region. Such regions
are interconnected throughout the flow-domain across the
full range of Wi-values considered. This flowing-region is
impinged upon by central blue-unyielded regions, located
upstream and downstream of the contraction. There are
additional relatively smaller unyielded regions confined
in the recess zones, roughly corresponding to the recircu-
lation zones identified above. The shape of these recess
zones differs with model solution, so that NM_τp_ABS
provides convex unyielded regions, whilst De Souza re-
sponse is concave (relative to the salient corner).
Consistently, with a relatively lower yield stress of De
Souza(τ0d = 0.02), in the top-row of Fig. 6b, the fields
mostly contain yielded material. Here, slender upstream
and downstream blue-unyielded regions are apparent, lo-
cated at the longitudinal axis on the flow centreline.
Moreover, there are some hints of small blue-unyielded
regions to be observed in the upstream and downstream
recess corners. With Wi-rise, these isolated solid regions
appear detached from the walls and become asymmetrical
about the axis in the contraction plane. Switching attention
next to N1-field data and under these relatively less de-
manding flow conditions, NM_τp_ABS N1-fields of
Fig. 7a (top-row, β= 0.9) display a small yellow-positive

Table 1 Vortex intensity (Ψmin=−Ψmin
* x10−4) against β andWi;

NM_τp_ABS {ω, ξG0} = {4.0, 1.0}

Ψmin=−Ψmin
* x10−4

Wi= 0.1 Wi= 1.0 Wi= 5.0 Wi= 10.0

β Ups Dns Ups Dns Ups Dns Ups Dns

0.9 4.89 4.36 5.92 3.62 6.91 2.76 7.55 3.52

0.5 6.94 7.48 3.43 1.94 2.23 1.05 2.87 1.54

0.3 3.86 4.20 0.71 0.52 0.14 0.26 0.011 0.26

1/9 0.63 0.35 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
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Fig. 5 Streamlines and vortex intensity against τ0d andWi; De Souza {K, n, γ:0d , β,ωDS} = {0.1, 0.5, 0.3, 1/9, 1.0} τ0d-variation τ0d= {0.02, 0.2, 0.5, 1.0}
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region (symmetric about the centreline), mainly confined
within the contraction-gap ∀Wi. In contrast in Fig. 7b (top-
row, τ0d= 0.02), De Souza N1-fields commence from rela-
tively small symmetrical (now about contraction plane,

centreline) non-zero N1-regions at Wi= 0.1. This difference
in the N1-intensity may be correlated with the solvent-fraction
level strategy per model, decreasing for NM_τp_ABS solu-
tions and fixed for De Souza data. Top-rowNM_τp_ABS-data
in Fig. 7a illustrate solvent-dominated β= 0.9 conditions,
whilst De Souza solutions belong to a higher polymer-
concentration conditions of β=1/9.

As the effective yield-stress τ0eff is increased, either by
NM_τp_ABS(β-decrease) of Fig. 6a, or De Souza(τ0d-in-
crease) in Fig. 6b, the blue-unyielded regions expand out-
wards and space-occupy the whole upstream and downstream
flow sections, reaching the bounding pipe walls and engulfing
the recess zones. In both solutions, this isolates a trapped red-
yielded region within and about the contraction-gap alone,
which shrinks with increasing τ0eff. The shape of this red-
yielded gap-region is again model-solution dependent. This
is one of a symmetrical-about-centreline split-doughnut form

Table 2 Vortex intensity (Ψmin=−Ψmin
* x10−4) against τ0d and Wi;

De Souza {β, K, n, γ:0d , ωDS} = {1/9, 0.1, 0.5, 0.3, 1.0}

Ψmin=−Ψmin* x10−4

Wi= 0.1 Wi= 1.0 Wi= 5.0 Wi= 10.0

τ0d Ups Dns Ups Dns Ups Dns Ups Dns

0.02 7.37 6.78 9.43 3.17 36.67 1.71 72.38 2.21

0.2 12.18 10.95 27.44 2.69 309.75 0.25 548.58 0.86

0.5 11.17 10.06 44.30 1.93 540.08 0.16 817.24 0.96

1.0 11.44 9.70 50.83 1.55 840.75 ∼0 – –

a) 

b) 
De Souza

NM_ p_ABS
Fig. 6 Yield fronts against τ0eff
and Wi. a NM_τp_ABS {ω,
ξG0} = {4.0, 1.0} β-variation
β= {0.9, 0.3, 1/9, 5 × 10−2}. b De
Souza {K, n, γ:0d , β, ωDS} = {0.1,
0.5, 0.3, 1/9, 1.0} τ0d-variation
τ0d= {0.02, 0.2, 0.5, 1.0}
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for NM_τp_ABS(β-decrease). Its wings are symmetrical
about the contraction plane, which shrink with increasing
τ0eff, as the narrow blue-unyielded centreline-band of material
expands. Finally, by β=5×10−2, these flowing regions have
dramatically shrunk to those around the contraction-tip alone,
so that they have almost disappeared. In contrast for De
Souza(τ0d-increase), the red-yielded gap-region shape is one
of a four-leaf clover (shamrock-like), that contracts with in-
creasing τ0eff. NM_τp_ABS N1-fields under β-decrease and
fixed-Wi (Fig. 7a, Wi=1), now provide significant growth
with increasing τ0eff, in size and intensification, into eight-
winged butterfly patterns, symmetrical about the centreline
and anti-symmetrical about the contraction plane.
Rheologically, this growth increase, in size and intensification,

may be correlated through β-decrease, with the rise in τ0eff,
N1shear-, ηShear- and ηExt-plateaus in the material functions
(Fig. 2a, b and Fig. 3a, b). In comparison, De Souza N1-fields
under τ0d-increase (Fig. 7b, Wi={0.1, 1}), now render only
intensification of the non-zeroN1-regions, without the accom-
panying space expansion of NM_τp_ABS. Here, the absence
of apparent growth in N1-patterns, with τ0d-rise at fixed and
low Wi={0.1, 1}, may be attributed to the constancy in first-
plateaux of ηShear- and ηExt- across the low-deformation rate
regime (Fig. 3c, d). Moreover at fixed-Wi={5, 10}, some
degree of growth and asymmetry (about the contraction-
plane) is observed with τ0d-rise in the crab-like N1-patterns
(Fig. 7b). With τ0d-rise at fixed-Wi= {5, 10}, these size-
growth and asymmetric features may be associated with the

a) 

b) De Souza

Fig. 7 N1 against τ0eff and Wi.
a NM_τp_ABS {ω, ξG0} = {4.0,
1.0} β-variation β= {0.9, 0.3, 1/9,
5 × 10−2}. b De Souza {K, n, γ:0d ,
β, ωDS} = {0.1, 0.5, 0.3, 1/9, 1.0}
τ0d-variation τ0d= {0.02, 0.2, 0.5,
1.0}
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increasing N1Shear- and τrz-levels at equivalent fixed shear
rates in material functions (Fig. 2d). Unfortunately, numerical
solution forWi=10 and τ0d=1 was unattainable due to lack of
tractability under this more severe setting (Fig. 7b). As noted
earlier, ηExt-data for τ0d=1 is the only instance to provide
pronounced strain-hardening features at moderate rates
(Fig. 3d).

Elasticity Wi-elevation

In the NM_τp_ABS yield fronts of Fig. 6a, the (Wi=0.1)-
dataset yielded-regions appear relatively larger in space-occu-
pation, with respect to the dataset at Wi=1. In addition, N1-
fields at Wi=0.1 display relatively smaller and more intense
patterns than those at Wi=1. These Wi=1 patterns appear
larger but less intense (Fig. 7a). This N1-growth in space oc-
cupation correlates through shear-rate elevation, with the
N1Shear- and τrz-rising response at low shear rates (Fig. 2a,
b). The intensity loss may be accounted for through
deformation-rate rise, and the drop in ηShear- and ηExt-data of
Fig. 3a, b, from their corresponding low-deformation-rate pla-
teau-values. The drop in ηShear-data is a consequence of the
prevailing shear-thinning (effective in the strong-shear zone
about the contraction tip); whilst the drop in ηExt-data is due to
the impact of strain-softening (effective in the strong-
extensional zone about the gap centre, at centreline). Yield-
front fixed-β datasets in the range 1≤Wi≤10 of Fig. 6a prove
invariant withWi-rise and at any β-setting. Consistently, coun-
terpartN1-fields (Fig. 7a) reflect the symmetrical butterfly-like
patterns about the contraction plane, which lose intensity with
Wi-rise, but retain shape–size. The constancy of size of the
symmetrical butterfly-like patterns, in the range 1≤Wi≤10
of Fig. 2b, may be associated with the attainment of the
N1Shear-plateau levels. Moreover, the continual loss of intensi-
ty with Wi-rise, is due to both shear-thinning and strain-
softening properties (Fig. 3a, b).

In contrast to the foregoing, De Souza yield fronts (Fig. 6b)
and corresponding N1-fields (Fig. 7b), become asymmetrical
about the contraction as Wi rises, a distinct elastic response
with display of downstream convection. This phenomenon is
illustrated in De Souza N1-fields, which dramatically change
from symmetrical patterns at relatively small τ0d andWi levels
(Fig. 7b), to asymmetrical crab-like positive-regions with sat-
ellite blue-negative spots for Wi≥5.0 and τ0d≥0.5. The up-
stream–downstream asymmetry and intensification of fan-like
wings about the contraction tip (shear-dominated zone) with
Wi-rise, may be correlated with the rise in viscometric N1Shear-
response (see Fig. 2d); whilst the downstream convection and
asymmetry it creates may be associated with extensional in-
fluence from strain-softening-response about the gap centre
near the centreline. Likewise, there is significant De Souza
yield-front response (Fig. 6b) at τ0d=0.5, across the range
0.1≤Wi≤10. There, the Wi=0.1 symmetrical yielded-region

Fig. 8 Total pressure drop against Wi; NM_τp_ABS(β-decrease) {ω,
ξG0} = {4.0, 1.0}, De Souza(τ0d-increase) {K, n, γ

:
0d , β, ωDS} = {0.1,

0.5, 0.3, 1/9, 1.0}

Table 3 Total pressure drop (Δp) against β andWi; NM_τp_ABS {ω,
ξG0} = {4.0, 1.0}

Δp

β Wi= 0.1 Wi= 5.0 Wi= 1.0 Wi= 10.0

0.9 12.78 12.25 11.99 11.94

0.5 14.41 10.61 9.04 8.48

0.3 17.29 10.84 8.17 7.19

0.2 19.66 11.41 7.91 6.70

1/9 25.52 13.05 7.72 6.21

0.05 – 14.44* 7.56 5.75

0.01 – – 8.43 5.54

*β=0.06
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gap-pattern, gives way to the Wi=5 central gap pattern. At
Wi=5, elastic asymmetry is observed in the yielded regions

about the contraction plane, with a mushroom-like shape
downstream, and a fish-tail-like shape upstream, both
expanding with Wi-rise. This effect is also translated to solu-
tion at {τ0d=1, Wi=5}, but with excessive squeezing up to-
wards the contraction plane. As noted above and at any fixed
Wi-level, yielded regions are consistently suppressed with rise
in τ0d. Moreover, at τ0d=0.5 and across the range 5≤Wi≤10,
a new predominantly unyielded-zone feature begins to appear
upstream and downstream of the contraction, where red-
yielded regions appear attached to the walls at Wi=5, and
which at Wi=10, connect up with the central red-yielded re-
gion downstream mushroom-headed and upstream fish-like-
tail, thus forming oddly-shaped blue-unyielded regions that
elongate downstream from the upstream recess corners.

De Souza2 & De Souza2+

Fig. 9 aN1Shear, b ηExt, c f-functional, and d τrz against deformation-rate. De Souza2 vsDe Souza2+; {K, n, γ:0d , τ0, τ0d, β, ωDS} = {0.1, 0.5, 0.3, 1.0, 1.0,
1/9, 1.0}

Table 4 Total pressure drop (Δp) against τ0d andWi; De Souza {β, K,
n, γ0d , ωDS} = {1/9, 0.1, 0.5, 0.3, 1.0}

Δp

τ0d Wi= 0.1 Wi= 5.0 Wi= 1.0 Wi= 10.0

0.02 63.54 60.75 57.33 58.50

0.2 82.53 76.32 72.36 72.27

0.5 91.53 84.87 80.55 82.26

1.0 100.89 90.45 85.77 –
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Total pressure-drop results

In Fig. 8a (Table 3), the NM_τp_ABS total pressure drop
Δp is plotted against polymeric fraction (1-β), representing
data curves for Wi= {0.1, 1.0, 5.0, 10.0}. With Wi-rise, the
Δp-level drop at any fixed polymer concentration, thus
reflecting enhanced elasticity effects that broaden with in-
crease in polymer concentration. At one extreme of fixed
Wi= 0.1, where diffusive forces dominate elastic forces, the
Δp data curve follows a monotonically rising trend from
{1-β, Δp}∼{0.1, 12.75} up to {1-β, Δp}∼{8/9, 20.0}. At
the other fixed extreme ofWi= 10.0,Δp response follows a
monotonically declining trend from {1-β,Δp}∼{0.1, 11.9}
to {1-β,Δp}∼{0.99, 5.5}. Intermediate states are extracted
in-between.

The equivalent De Souza total pressure dropΔp is plotted
against τ0d-rise in Fig. 8b (Table 4). Note here that the
pressure-drop levels are somewhat higher than those obtained
under NM_τp_ABS (across all fourWi–instances). Here, only
monotonic rise is gathered with τ0d-increase for each value of
Wi, as noted against NM_τp_ABS findings under polymeric-
fraction (1-β) increase. Generally,Δp-levels drop withWi-rise
at any particular τ0d-value; as observed likewise for
NM_τp_ABS(Δp, fixed β).

Conclusions

Viscoelastoplastic solutions have been extracted through two
thixotropic constitutive models, NM_τp_ABS and De Souza

models, where each adopts a different approach to introduce
plastic response. First, NM_τp_ABS yield-stress features are
analysed under solvent-fraction β-decrease, according to
polymer concentration increase. Then, second, counterpart
De Souza predictions are studied, under dynamic (τ0d) and
static (τ0) yield-stress variation.

In these solutions, significant differences have been ob-
served in vortex dynamics. First, for NM_τp_ABS with
solvent-fraction β-decrease and elasticity Wi-increase, vor-
tex suppression is generally observed with no asymmetry
about the contraction. That is, even to the point of being
visually absent. Second, De Souza vortex activity is stim-
ulated and grows asymmetrical, with either yield-stress
τ0eff increase or elasticity Wi-increase. Consistently, in vis-
cometric flows, NM_τp_ABS reflects a relatively more
drastic response to solvent fraction β-variation: with larger
NM_τp_ABS τ0eff-, N1Shear-, low-deformation-rate ηShear
and ηExt plateaux; as opposed to that of De Souza with
τ0d-variation, which only provides elevation in τ0eff- and
N1Shear-response. Here, NM_τp_ABS τrz-curves provide a
flatter and wider response (three orders of magnitude at
maximum) in its non-linear range, alongside larger τ0eff-
values with β-decrease. In contrast, De Souza data curves
have a fixed width at each τ0d-level (one and a half orders-
of-magnitude), which gradually shifts to larger values with
τ0d-increase. These characteristic features are reflected in
first normal stress-difference N1-fields and yield fronts.
Here, NM_τp_ABS with β-decrease (τ0eff-elevation), pro-
vides intensification and growth of non-zero N1-regions,
and confinement of yielded regions about the contraction.

BMP & BMP+ 

Fig. 10 ηShear, ηExt and N1Shear and against deformation-rate; BMP vs BMP+; {ω, ξG0, β} = {4.0, 1.0, 10
−3}
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With Wi-rise, the initial size-growth and further size-
constancy of non-zero N1-regions, correlates with pattern
change in simple-shear N1Shear under shear-rate rise.
Viscometric N1Shear first rises at low shear rates, and then
finally plateaus at large rates. In addition, the intensity of
these symmetrical butterfly-like N1-regions diminishes
with Wi-increase, due to prevailing shear-thinning and
s t r a in - so f t en ing in f luence . Consp icuous ly, fo r
NM_τp_ABS, no asymmetry is recorded in N1-data and
yield fronts, as viscoelasticity (through Wi) or plasticity
(through β) are increased. In contrast, De Souza solutions
reveal N1-intensification and confinement with τ0d-in-
crease, in accordance with its rising N1Shear-response. In
addition and through Wi-rise, asymmetries are observed
as viscoelasticity is emphasised, through crab-like N1-
fields and mushroom-like yielded-regions.

In the micellar NM_τp_ABS solutions, there are dis-
tinct effects in total pressure drop (Δp) with polymeric-
fraction (1-β)-increase and Wi-rise. At low extremes of
fixed Wi = 0.1, Δp rises monotonically with polymer
concentration, whilst at larger levels of fixed Wi= 10,
Δp declines. In contrast, De Souza Δp-solutions under
τ0d-rise and for fixed Wi, provide a simpler but relative-
ly larger response in magnitude, where only a monoton-
ic rising trend is recorded. Furthermore, with Wi-rise
and at any fixed τ0eff-level, De Souza Δp-solutions
agree in declining trend with those of NM_τp_ABS.
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Appendix A—reformulation of De Souza model

More recently, a reformulated model (De Souza2) has ap-
peared (De Souza and Thompson 2013), through changes
given in the definitions for Gs(λ), ηp(λ), λss, τp and λ. The
theoretical benefits claimed for this model lie in its ability
to reflect both ‘apparent’ and ‘true’ yield stress function-
ality, via its representation of shear viscosity at low shear
rates. ‘True’ yield stress refers to a material for which
ηp0→∞ and, hence, λ0→∞; whilst for fluids with an ‘ap-
parent’ yield stress, ηp0 and λ0 are large but finite (De
Souza and Thompson 2013). Then, the corresponding De
Souza2 dimensionless identities and equations now be-
come:

Gs λð Þ
G0

¼ e
m 1

λ−
1
λ0

� �h i
; ðA:1Þ

ηp λð Þ ¼ eλ−1; ðA:2Þ
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The material functions for this model are provided in

Fig. 9 under τ0d = 1, where f ¼ ηp0
ηp
exp m 1

λ −
1
λ0

� �h in o
:

With respect to the primary De Souza model (Fig. 2c, d
and Fig. 3c, d), De Souza2 N1Shear- and ηExt-data are the
only components that differ. Notably and at high shear
rates, De Souza2 N1Shear-data provides declining trends
(F ig . 9a ) , so tha t e las t i c e f fec t s wi l l be los t .
Furthermore, in De Souza2 ηExt-data, there is evidence
of unbounded extensional response at a finite strain-rate
of λ1ε

: ∼0.6 (Fig. 9b). In the present complex flow, these
singularities in extensional viscosity predictions will stim-
ulate early numerical-intractability. Moreover with Wi-
rise, N1Shear-declining trends at high deformation-rates
will generate shrinking non-zero N1-regions (yielded
stress zones), with loss of intensity and upstream-vortex
suppression. Hence, counterpart De Souza2 solutions are
not anticipated to display any further interesting and in-
creased elastic effects, but more closely reflect the solu-
tion response for NM_τp_ABS.

To avoid extensional viscosity singularities, a revision of
De Souza2 in the form of De Souza2+ f+-functional, may be
derived as follows. Passing first through the analysis for the
uniaxial extensional viscosity pole f −2λ1ε

:Þð under De
Souza2 viz.:

f −2λ1ε
:Þ ¼ ηp0

ηp
exp m

1

λ
−

1

λ0

� �� 	
−2λ1ε

:
;

 
ðA:6Þ

and observing that this quantity must remain positive (i.e. f −
2λ1ε

:
> 0 ) to generate finite extensional viscosity (so, f must

not cross the value of 2λ1ε
: ). Rearranging Eq. (A.6) under this

restriction, one may gather:

1

2λ1ε
:ð Þ

� �
f > 1: ðA:7Þ

From Eq. (A.7), one can extract valuable information to
define a more suitable f-functionality. Note in this case, that
the inequality in (A.7) may be violated when:

2λ1ε
:
> f and > 0 so; withrisingλ1ε

:Þ:ð

Normally, one might expect that f≥ 1, which is true for
these shear-thinning materials, as here.
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Assuming λ1ε
: ≥0, by considering only rate magnitude, and

by extraction of a factor with (2λ1ε
: ), then one may propose

the alternative functional form (f+) 3:

f þ ¼ 1þ 2λ1ε
:Þ f :ð ðA:8Þ

Then, considering what is necessary to satisfy the pole-
avoidance condition f þ−2λ1ε

:Þ > 0ð , this implies that
f 1þ 2λ1ε

:Þ−2λ1ε
:ð g > 0f , o r s i m p l y ,

f þ 2λ1ε
:
f −1ð Þg > 0



.

Such a condition can be met, independently of 2λ1ε
: (so

also, rate), whilst:

f ≥1→ f −1ð Þ≥0 ;
a base and standard requirement to be satisfied by the f-func-
tional. This holds here for De Souza2 shear-thinning models
(and even Oldroyd-B for that matter). Clearly, such adjust-
ment in standard forms of f-functional may be applied equally
in more general constitutive context, with the objective of
achieving boundedness in extensional response.

The consequences of such a correction are reflected in the
trends of uniaxial extension f-functional against strain rate of
Fig. 9c. Here, it is demonstrated that, as opposed to De
Souza2, De Souza2+ f+-functional data do not meet the
extensional-viscosity pole of f −2λ1ε

:Þð . Accordingly, finite
extensibility is observed for De Souza2+, as illustrated in the
extensional viscosity trends of Fig. 9b. Conspicuously,
DeSouza2 ηExt locates unboundedness at smaller extension
rates, whilst De Souza2+ displays pronounced strain-
softening features. Moreover, it is noteworthy that such
correction only becomes active in flow situations with exten-
sional deformation (ε: >0), and therefore is rendered non-
contributory in pure-shear flow (see N1Shear and τrz –data in
Fig. 9a and d). Unfortunately, in this form, N1Shear does not
supply an ultimate upturn, as desired for enhanced elastic
effects (Fig. 9a) (see comments in Appendix B below under
BMP+). Pursuit of N1Shear ultimate upturn is left to further
study under the De Souza2+ formulation.

Appendix B—reformulation of BMP model

Within the framework of Eq. (3)–(5), a micellar model capable
of providing ultimate rise in N1Shear with shear rate is that of
Bautista et al. 1999 (BMP-version):

∂
∂t

þ u⋅∇
� �

f ¼ 1

ω
1− fð Þ þ ξ

ηp0
η∞

− f
� �

T : D: ðB:1Þ

In this form, the destruction term now accommodates the f-
functional as well, where f= (ηp0/ηp). Here, ξ ¼ kηs

U
L is the

corresponding dimensionless destruction parameter. Notably,
alongside providing a high shear-rate upturn in N1Shear

(Fig. 10b), this model also predicts unbounded extensibility

at finite rates, when the f-functional attains the value
ηp0
η∞

(Fig. 10a, when ηp reaches η∞). To make progress at the time
of creation for the BMP-version and to overcome the deficien-
cy in extensional response, Boek et al. 2005 suggested to
simply discard the f–contribution to the destruction term (gen-
erating the so-called MBM model). Unfortunately, this prac-
tice had the drawback of also suppressing the high shear-rate
upturn in N1Shear.

An alternative approach to recapture boundedness in exten-
sional viscosity, whilst retaining ultimate upturn in N1Shear,
which produces a revision of BMP in the form of BMP+,
may be conceived as follows. The f-functional may be
amended for use in Eq. (B.1), then replacing f with the new

form f þ ¼ ηp0
ηpþη∞

, (BMP+). Here the shift, provided in the

denominator of f+ with η∞, avoids the otherwise null factor
clash at the second-Newtonian plateau. One notes that the

inverse of the factor
ηp0
η∞
− f þ

� �
also appears in the expression

for extensional-viscosity. Hence, finite extensibility is recov-
ered under BMP+ (Fig. 10a), with no change in ηShear- and
N1Shear-response. Hence, the ultimate upturn in N1Shear is en-
sured, as desired for sustained elastic response.

One notes that these new model-variants, as described in
Appendix A (De Souza2+) and Appendix B (BMP+), are
currently being implemented in complex flow, for correspond-
ing findings to be published subsequently.

References

Aboubacar M, Matallah H, Tamaddon-Jahromi HR,Webster MF (2002a)
Numerical prediction of extensional flows in contraction geome-
tries: hybrid finite volume/element method. J Non-Newton Fluid
Mech 104:125–164

Aboubacar M, Matallah H, Webster MF (2002b) Highly elastic solutions
for Oldroyd- B and Phan-Thien/Tanner fluids with a finite volume/
element method: planar contraction flows. J Non-Newton Fluid
Mech 103:65–103

Aguayo JP, Tamaddon-Jahromi HR,WebsterMF (2008) Excess pressure-
drop estimation in contraction and expansion flows for constant
shear-viscosity, extension strain hardening fluids. J Non-Newton
Fluid Mech 153:157–176

Bautista F, de Santos JM, Puig JE, Manero O (1999) Understanding
thixotropic and antithixotropic behavior of viscoelastic micellar so-
lutions and liquid crystalline dispersions I The model. J Non-
Newton Fluid Mech 80:93–113

Bautista F, Soltero JFA, Pérez-López JH, Puig JE, Manero O (2000) On
the shear banding flow of elongated micellar solutions. J Non-
Newton Fluid Mech 94:57–66

Belblidia F, Matallah H, Webster MF (2008) Alternative subcell
discretisations for viscoelastic flow: velocity-gradient approxima-
tion. J Non-Newton Fluid Mech 151:69–88

3 Note that this alternative f+-form may be written in general-flow nota-

tion, taking ε: ¼ 3 I IID
IID

� �
and k= 2 (under uniaxial extension), as:

f þ ¼ 1þ k 3 I IID
I ID

� �
λ1

h i
f . Here, IID and IIID are the second and third

invariants of D, respectively.

Rheol Acta (2016) 55:197–214 213



Binding DM, Phillips PM, Phillips TN (2006) Contraction/expansion
flows: the pressure drop and related issues. J Non-Newton Fluid
Mech 137:31–38

Boek ES, Padding JT, Anderson VJ, Tardy PMJ, Crawshaw JP, Pearson
JRA (2005) Constitutive equations for extensional flow of wormlike
micelles: stability analysis of the Bautista-Manero model. J Non-
Newton Fluid Mech 126:29–46

Calderas F, Herrera-Valencia EE, Sanchez-Solis A, Manero O, Medina-
Torres L, Renteria A, Sanchez-Olivares G (2013) On the yield stress
of complex materials. Korea-Aust Rheol J 25:233–242

de Souza PR (2009) Modeling the thixotropic behaviour of structured
fluids. J Non Newton Fluid Mech 164:66–75

de Souza PR (2011) Thixotropic elasto-viscoplastic model for structured
fluids. SoftMatter 7:2471–2483

de Souza PR, Thompson RL (2012) A critical overview of elasto-
viscoplastic thixotropic behaviour modeling. J Non-Newton Fluid
Mech 187–188:8–15

de Souza PR, Thompson RL (2013) A unified approach to model elasto-
viscoplastic thixotropic yield-stress materials and apparent yield-
stress fluids. Rheol Acta 52:673–694

Link FB, Frey S, Thompson RL, Naccache MF, de Souza PR (2015)
Plane flow of thixotropic elasto-viscoplastic materials through a 1:
4 sudden expansion. J Non-Newton Fluid Mech 220:162–174

López-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O
(2014) A new constitutive model for worm-like micellar sys-
tems—numerical simulation of confined contraction-expansion
flows. J Non-Newton Fluid Mech 204:7–21

López-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O
(2015a) High-Weissenberg predictions for micellar fluids in
contraction-expansion flows. J Non-Newton Fluid Mech 222:
190–208

López-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O
(2015b) Numerical modelling of thixotropic and viscoelastoplastic
materials in complex flows. Rheol Acta 54:307–325

Manero O, Bautista F, Soltero JFA, Puig JE (2002) Dynamics of
worm-like micelles: the Cox-Merz rule. J Non-Newton Fluid
Mech 106:1–15

Matallah H, Townsend P, Webster MF (1998) Recovery and stress-
splitting schemes for viscoelastic flows. J Non-Newton Fluid
Mech 75:139–166

Rothstein JP, McKinley GH (2001) The axisymmetric contraction–ex-
pansion: the role of extensional rheology on vortex growth dynam-
ics and the enhanced pressure drop. J Non Newton Fluid Mech 98:
33–63

Walters K, Webster MF (2003) The distinctive CFD challenges of com-
putational rheology. Int J Numer Meth Fluids 43:577–596

Wapperom P, Webster MF (1998) A second-order hybrid finite-element/
volume method for viscoelastic flows. J Non-Newton Fluid Mech
79:405–431

Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2005) Time-
dependent algorithms for viscoelastic flow: finite element/volume
schemes. Numer Meth Part Differ Eq 21:272–296

Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr
Opin Colloid Interface Sci 7:276–281

214 Rheol Acta (2016) 55:197–214


	A comparative numerical study of time-dependent structured fluids in complex flows
	Abstract
	Introduction
	Constitutive models
	Applications

	Flow problem, modelling and discretisation
	NM_τp_ABS model
	De Souza model
	Material functions

	Problem specification and discretisation
	Hybrid finite element/finite volume scheme

	Vortex dynamics results: (a) NM_τp_ABS, β and Wi-variation
	Vortex dynamics results: (b) De Souza model, yield stress τ0d-variation
	Yield fronts: yielded–unyielded regions, first normal stress difference N1
	Effective yield-stress τ0eff-elevation
	Elasticity Wi-elevation

	Total pressure-drop results
	Conclusions
	Appendix A—reformulation of De Souza model
	Appendix B—reformulation of BMP model
	References


