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Abstract The generalized Bose-Einstein condensation
(GBEC) theory of superconductivity hinges on three dis-
tinct new ingredients: (a) treatment of Cooper pairs as real
bosons, (b) inclusion of two-hole pairs on an equal foot-
ing with two-electron ones, and (c) insertion in the resulting
ternary ideal boson-fermion gas of boson-fermion vertex
interactions that drive formation/disintegration processes.
Besides subsuming both BCS and BEC theories as well as
the well-known crossover picture as special cases, GBEC
leads to several-orders-of-magnitude enhancements in the
critical superconducting temperature Tc. The crossover pic-
ture is applicable also to ultracold atomic clouds, both
bosonic and fermionic. But known low-density expansions
involving the interatomic scattering length a diverge term-
by-term around the so-called unitary zone about the Fesh-
bach resonance where a itself diverges. However, expanding
a in powers of the attractive part of the interatomic poten-
tial renders smooth, divergence-free low-density expansions
whose convergence can be accelerated with Padé approxi-
mants.
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Nacional Autónoma de México, Apdo. Postal 70-360, 04360
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1 Introduction

Since its theoretical prediction by Einstein in 1925 based
on the work in 1924 by Bose on photons, and after
many decades languishing as a mere academic exercise in
textbooks, Bose-Einstein condensation (BEC) was finally
observed in laser-cooled, magnetically-trapped ultra-cold
bosonic atomic clouds of 87

37Rb [1]. Within weeks, other
observations were reported, with 7

3Li [2], 23
11Na [3], 1

1H [4],
85
37Rb [5], 4

2He [6], 41
19K [7], 133

55 Cs [8], 52
24Cr [9] nuclei, and in

two-electron systems such as alkaline-earth and ytterbium
atoms 174

70 Yb [10–12] as well as with 84
38Sr [13]. It has also

been detected in fermionic atomic gases of 40
19K [14] and

6
3Li [15] as a result, presumably, of some of the fermions
Cooper-pairing [16] into bosons.

Sometime ago, Leggett [17] derived the two basic equa-
tions associated with the so-called BCS-Bose crossover
[18–20] picture at T = 0 for any many-fermion system of
particles of mass m whose pair interactions are described
by the S-wave scattering length a. Specifically, he obtained
two zero-temperature dimensionless

(i) Number equation

4/3 = ∫ ∞
0 dε̃

√
ε̃
[
1 − (̃ε − μ̃)/

√
(̃ε − μ̃)2 + Δ̃2

]

where the tildes signify in units of the Fermi energy
EF ≡ �

2k2
F /2m of the ideal Fermi gas, with μ and

Δ being the zero-T fermionic chemical potential and
energy gap, as well as

(ii) A gap equation

π/kF a = ∫ ∞
0 dε̃

[
1/

√
ε̃ − √

ε̃/
√

(̃ε − μ̃)2 + Δ̃2
]
.

An alternate derivation of these two equations has been
reported in ref. [21].

Expansions of a in powers of the strength of the attrac-
tive part of a number of two-fermion potentials have been
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determined numerically [22]. We argue how this is an ideal
way of treating the unitarity region around a Feshbach res-
onance where a diverges. This divergence is then entirely
averted in low-density expressions that depend not on a but
rather on the attractive part of the interatomic interaction.
This is equivalent to expanding not about the ideal (boson or
fermion) gas but about the associated purely repulsive gas
in order to generate low-density expansions without a being
explicit but now as a power series in the attractive part of the
interatomic potential. The convergence of these power series
can be accelerated via Padé approximants as surveyed, e.g.,
in ref. [23].

2 Generalized BEC Equations

Boson-fermion (BF) models of superconductivity (SC) as
a Bose-Einstein condensation (BEC) go back to the mid-
1950s [24–27], pre-dating even the BCS-Bogoliubov theory
[28, 29]. Although BCS [30] theory only envisions the
presence of “Cooper correlations” of single-electron states,
BF models [24–27], [31–40] posit the existence of actual
bosonic Cooper pairs (CPs). With a single exception [41],
however, all BF models neglect the explicit effect of hole
CPs included on an equal footing with electron CPs to give
the “complete” BF model at the heart of the generalized
Bose-Einstein condensation (GBEC) theory. The GBEC
theory [41–43] leads to three coupled transcendental equa-
tions for the three functions determining the phase diagram
of thermodynamic equilibrium associated with three con-
densed phases, in addition to the normal phase of the ideal
ternary gas [41]. The condensed phases are two pure GBEC
phases, one for 2e-CPs the other for 2h-CPs, and a mixed
phase. The three functions for which one solves numer-
ically based on the above-mentioned three equations are
the electron chemical potential μ(T ) along with the 2e-CP
and 2h-CP GBEC densities n0(T )and m0(T ), respectively.
Among those three equations is a “number equation” which
guarantees charge conservation and therefore gauge invari-
ance [44] (in contrast with BCS [30] theory which does not)
and two are “gap-like” equations [41]. Specifically,

2
√

n0[E+(0) − 2μ] =
∞∫

0

dεN(ε)
Δ(ε)f+(ε)

E(ε)

[

1 − 2

exp[βE(ε)] + 1

]

(1)

and

2
√

m0[2μ − E−(0)] =
∞∫

0

dεN(ε)
Δ(ε)f−(ε)

E(ε)

[

1 − 2

exp[βE(ε)] + 1

]

(2)

where μ(T ) are the chemical potential of unpaired elec-
trons, E±(0) are the energy of bosonic 2e-CP and 2h-CP,
respectively, with center-of-mass momentum K = 0 and
β = 1/kBT with kB the Boltzmann constant. Here, E(ε) ≡√

(ε − μ)2 + Δ2(ε) is the familiar gapped Bogoliubov
fermionic dispersion relation, and Δ(ε) = f+

√
n0(T ) +

f−
√

m0(T ) with f±(ε) the boson-fermion interaction
strength as defined in ref. [41]. Note the explicit presence of
a Fermi-Dirac distribution function.

The number density is

n = 2n0(T )+2nB+(T )−2m0(T )−2mB+(T )+nf (T ) (3)

where n = N/V , N the total number of particles, V the
volume of the system, nf (T ) corresponds to the unpaired
electrons, while n0(T ) and m0(T ) are, respectively, the
number densities of 2e- and 2h-CPs in bosonic conden-
sates and nB+(T ) and mB+(T ) are, respectively, the number
densities of 2e- and 2h-CPs in excited bosonic states, i.e.,
noncondensed. The latter turn out to be

nB+(T ) ≡
∞∫

0+
dεM(ε)

(
exp β[2Ef + δε − 2μ + ε] − 1

)−1

and mB+(T )≡
∞∫

0+
dεM(ε)

(
exp β[2μ+ε−2Ef +δε]−1

)−1

where M(ε) is bosonic density of states. And here, one notes
explicit Bose-Einstein distribution functions, as expected.
The number density nf (T ) of unpaired electrons at any T

turns out to be

nf (T )=
∫ ∞

0+
dεN(ε)

[

1− ε − μ

E(ε)

(

1− 2

exp[βE(ε)] + 1

)]

(4)

where N(ε) is the electronic density of states for one spin.

2.1 Crossover and GBEC Phases

GBEC theory is an extended crossover theory since it gives
two gap-like equations and a single number equation, all
to be solved self-consistently. It has three different stable
BEC phases that emerge when solving all three (1) to (3)
and is thus equivalent to a new, more general version of the
crossover, which leads to (i) a pure 2e-GBEC phase, solving
(1) and (3 ), (ii) a pure 2h-GBEC phase, solving (2) and (3),
and (iii) a mixed phase with different proportions of 2e- and
2h-CPs solving (1), (2), and (3). This is then a generalized
or extended crossover with a mixed phase of an ideal 50–50
proportion between 2e- and 2h-CPs, i.e., n0(T ) = m0(T )

and nB+(T ) = mB+(T ).
All possible GBEC phases are plotted in Fig. 1 at Tc nor-

malized with the Fermi temperature TF . Version (iii) of the
crossover corresponds to the blue shaded area (mixed phase)
along with the GBEC phase-boundary curves. Also plotted
is the ordinary BEC curve (dashed black). The red dot is the
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Fig. 1 Dimensionless Tc/TF versus n/nf for pure GBEC phases of
2h-/2e-CPs and the ordinary BEC in 3D (thick dashed curve). Note that
extrapolating to nf → 0 gives the familiar limit 0.218, as expected.
These results are displayed in a background with three horizontal
bands corresponding to conventional and exotic [45] empirical val-
ues and expected room-temperature values. Larger inset shows the
intersection between the pure phase 2e-CP and the pure phase 2h-CP
when n/nf = 1 which implies Tc/TF = 7.64 × 10−6 given by the
BCS Tc weak-coupling formula quoted in text using λ = 1/5 and
�ωD = 10−3EF where �ωD is the Debye energy of the lattice. Red dot
marks the critical BCS temperature. Blue thin dashed curve (online)
marked 50–50 corresponds to perfect symmetry between 2e-/2h-CPs,
i.e., n0(T ) = m0(T ) and nB+(T ) = mB+(T ). Symbols diamond-
suit, square, circle, and triangle are the limits of the two pure-phase
GBEC, 50–50 mixed phase and ordinary BEC curves, respectively,
when n/nf → ∞, i.e., when nf (Tc) → 0 implying not unpaired elec-
trons. Smaller inset shows number density of unpaired electrons nf (T )

(4) and its T = 0 limit nf (T → 0) ≡ nf

BCS critical temperature via the familiar weak-coupling for-
mula kBTc � 1.134�ωD exp(−1/λ). All results correspond
to the fixed BCS model-interaction parameter λ = 1/2 and
for �ωD = 10−3EF .

3 Ultracold Atomic Clouds

The ground-state equation-of-state for a many-boson gas of
identical bosons of mass m, number density n = N/V ,
and with pair interactions giving rise to an S-wave scatter-
ing length a, is known to be given by the exact low-density
expansion [46, 47]

E

N
=

na3<<1

2π�2

m
na

[
1 + C1(na3)1/2 + C2(na3) ln(na3)

+ C3(na3) + O(na3)3/2 ln(na3)
]

(5)

C1 ≡ 128

15
√

π
C2 ≡ 8

(
4

3
π − √

3

)

C3 = unknown.

Each expansion term contains the dimensionless small-
ness parameter na3 but diverges in the unitarity region, i.e.,
around the Feshbach resonance, due to the appearance of
a bound state there making a itself diverge. Obviously, the
entire low-density series will then diverge term by term in
this region as well.

For the simple two-body hard-core-square-well (HCSW)
potential v(r) = +∞ (r <c); −v0 (c < r < R); 0 (r < R)

where r is the interparticle separation, the scattering length

is exactly analytical [48] a/c = 1 + α
(

1 − tan
√

λ/
√

λ
)

,

α ≡ (R−c)/c, λ ≡ mv0�
−2(R−c)2. Calling the smallness

parameter (nc3)1/2 ≡ x some computer algebra gives for
the energy per boson the double series

E

N
≡ ε(x, λ) =

∑

i=0

εi(x)λi (6)

where the coefficients εi(x) would be known for x << 1.

Since dimensionless λ for the HCSW is proportional to the
attractive part of the two-boson interaction in vacuo, then
ε(x, λ = 0) is of precisely the same form as (5) with
a replaced by c. This represents the energy-per-boson not
of an ideal boson gas (which of course vanishes) but of
a boson gas of hard spheres of diameter c, with attraction
treatable perturbatively to any order. The series (6) is clearly
divergence-free even in the unitarity region.

For fermions, the expansion for the ground-state energy
per particle is given exactly through the low-density expan-
sion [49]

E

N
≡ 3

5

�
2k2

F

2m

[
1 + C1kF a + C2(kF a)2

+
(

1

2
C3

r0

a
+C4

A1(0)

a3
+C5

)

×(kF a)3+C6(kF a)4 ln |kF a|
+

(
1

2
C7

r0

a
+ C8

A′′
0(0)

a3
+ C9

)

×(kF a)4 + O
(
{kF a}5

)]
(7)

where kF is the Fermi wavenumber while r0 is the effec-
tive range of the two-fermion interaction having scatter-
ing length a, and the coefficients C1, · · · , C9 are known
[49]. It too diverges term by term in the unitarity region
since each term in the dimensionless smallness-parameter
kF a diverges there. Here, the fermion number density is
n = N/V = νk3

F /6π2 with ν the number of intrin-
sic degrees of freedom [50] if any, such as spin and
isospin.
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For the HCSW potential, the exact result for a/c expands
in powers of λ, e.g., with a computer-algebra program such
as MATHEMATICA [51], as

kF a = x

[

1 − α

(
1

3
λ + 2

15
λ2 + 17

315
λ3 + · · ·

)]

. (8)

For other interfermion potentials such as the Lennard-Jones
interatomic potential V (r) = 4ε

[
(σ/r)12 − (σ/r)6] , with

ε and σ convenient energy and length parameters, one can
separate them as a soft repulsive-core plus attractive part and
redefine the latter with the parameter λ. Coefficients such
as those in (8) have been determined numerically [22] for
a variety of two-body interatomic potentials in current use.
Note that these are not rational as in (8).

4 Conclusions

An extended BCS-Bose crossover theory can be extracted
from the ternary boson-fermion superconducting gas model
at the heart of the generalized Bose-Einstein condensation
(GBEC) theory. Assuming quadratically-dispersive two-
electron or two-hole Cooper pairs, it already leads to a phase
diagram with three condensed phases (two pure 2e-CP and
2h-CP GBECs plus a mixed phase) at temperatures cooler
than for the normal phase of the initial ideal ternary gas of
both types of CPs plus unpaired electrons. Enhanced Tcs
of several orders of magnitude emerge in comparison with
the BCS result for the same electron-phonon interaction
parameters.

For ultracold quantum gases, low-density expansions of
point particles, whether bosons or fermions, involving the
S-wave scattering length a associated with the free-pair
interaction, diverge term-by-term around the Feshbach res-
onance whenever the strength of the interaction attraction is
large enough to bind a pair and make a diverge. This diver-
gence can be averted altogether by redefining an expansion
related instead with purely-repulsive extended particles,
e.g., the hard cores of a hard-core-square-well potential or
the soft cores associated with interatomic potentials such as
the Lennard-Jones potential.
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