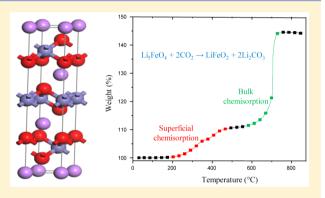
Analysis of the CO₂ Chemisorption in Li₅FeO₄, a New High Temperature CO₂ Captor Material. Effect of the CO₂ and O₂ Partial Pressures


Hugo A. Lara-García,[†] Pedro Sanchez-Camacho,[†] Yuhua Duan,[‡] José Ortiz-Landeros,[§] and Heriberto Pfeiffer^{*,†}

[†]Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P. 04510, Ciudad de México, Mexico

[‡]National Energy Technology Laboratory, United States Department of Energy, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States

[§]Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, IPN, UPALM, Av. Instituto Politécnico Nacional s/n, CP 07738, Ciudad de México, Mexico

ABSTRACT: Pentalithium ferrite (Li_5FeO_4) was tested as possible CO₂ captor, both by theoretical calculations and experimental measurements. The pristine Li_5FeO_4 compound with orthorhombic structure was synthesized via solid-state reaction and it was structural and microstructurally characterized. Later, sample was heat-treated at temperatures from room temperature to 900 °C under different CO₂ or CO₂-O₂ atmospheres. Li_5FeO_4 exhibits excellent CO₂ chemisorption abilities with a capture capacity about 12.9 mmol/g, which is outstanding in comparison to other previously reported ceramic captors. This material is able to react with CO₂ from 200 °C to approximately 715 °C showing a high kinetic of reaction even at CO₂ partial pressure values as low as 0.2. Additionally, results

suggest that oxygen addition does enhance the CO_2 chemisorption on Li_5FeO_4 at temperatures below 700 °C, although oxygen addition seems to favor the desorption process at higher temperatures.

INTRODUCTION

Carbon dioxide is the principal contributor to global warming among the different greenhouse gases (the amount of CO_2 is 80% of greenhouse gases),^{1,2} and the emission of this gas into the atmosphere keeps growing. Major CO_2 emission comes from the fossil fuels combustion, which usually has high temperatures. Therefore, carbon capture and storage (CCS) is considered as an option to control CO_2 emissions.³

CCS refers to a number of technologies available that capture CO_2 at some stage from the different processes. Nowadays, there are some available technologies for CCS which include postcombustion, precombustion, oxy-fuel combustion, and chemical looping combustion processes.⁴ As aforementioned, the major CO_2 emissions are in the form of flue gases from fossil fuel combustion; for that reason, postcombustion is the most studied technology. In this regard, in the last years several materials have been proposed as possible CO_2 captors: amines, hydrotalcites, zeolites, metal–organic frameworks (MOFs), and metal oxides, among others. Some of these materials are used in order to reduce the emissions. However, all of them have some advantages and disadvantages to be considered suitable materials for CCS.^{4–8} An ideal capture material should have

certain properties, such as large capacity of capture, adequate kinetics, thermal stability, and cyclability among others. 7

Lithium ceramics are materials that have been recently widely studied as possible CO₂ captors under different physicochemical conditions, where some of them satisfy the properties describe above, for example, lithium zirconates (Li₂ZrO₃, Li₆Zr₂O₇), ^{9–12} lithium silicates (Li₈SiO₆, Li₄SiO₄, Li₂SiO₃), ^{13–16} lithium aluminate (Li₅AlO₄),¹⁷ lithium cuprate (Li₂CuO₂),^{18–20} and lithium titanate (Li₄TiO₄).²¹ These ceramics are able to chemisorb CO₂ at high temperatures (400–800 °C), where the CO₂ chemisorption is carried out in two different stages, (i) superficial and (ii) bulk processes. Initially, carbon dioxide reacts with the superficial particles of the lithium ceramic, forming a product shell of lithium carbonate and different secondary phases, depending on the initial lithium ceramic core reacts with CO₂ through different processes but mainly depending of different diffusion mechanisms including the CO₂ diffusion through the external

Received:December 9, 2016Revised:January 20, 2017Published:January 23, 2017

The Journal of Physical Chemistry C

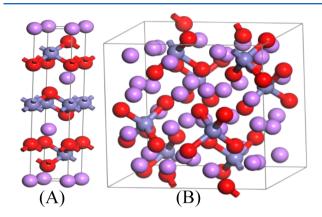
carbonate shell, as well as the lattice and grain boundary diffusion of lithium and oxygen. $^{\rm 22,23}$

On the other hand, the Li—Fe—O phase diagram reports three ternary compounds, LiFeO₂, LiFe₅O₈, and Li₅FeO₄.²⁴ These materials have been used for electrical applications, such as lithium-ion batteries,^{25–29} but there are only three reports where LiFeO₂ has been tested as CO₂ captor (reaction 1). These reports show that LiFeO₂ is able to chemisorb CO₂ between 200 and 500 °C. Nevertheless, it only captures small amounts of CO₂.^{30–32} Therefore, the aim of this work was to evaluate, theoretically and experimentally, a different lithium ferrite composition, the pentalithium ferrite (Li₅FeO₄), as a possible CO₂ material captor under different physicochemical conditions, according to the following reaction (reaction 2)

$$2\text{LiFeO}_2 + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + \text{Fe}_2\text{O}_3 \tag{1}$$

$$0.5\text{Li}_5\text{FeO}_4 + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + 0.5\text{LiFeO}_2$$
(2)

where the maximum CO_2 amount that Li_5FeO_4 can chemisorb is equal to 12.9 mmol of CO_2 per gram of ceramic. Of course, this value is importantly higher in comparison to the $LiFeO_2$ – CO_2 reaction system, where the maximum chemisorption is 5.2 mmol of CO_2 per gram of $LiFeO_2$.


EXPERIMENTAL SECTION

Pentalithium ferrite (Li₅FeO₄) was synthesized by solid state reaction using lithium oxide (Li₂O, Aldrich) and iron oxide (Fe₂O₃, Aldrich). Initially, the powders were mechanically mixed and pressed into pellets (15 MPa). Subsequently, the pellets were heated to 850 °C for 20 h. Twenty mol % of Li₂O excess was used due to its tendency to sublimate.

After the Li₅FeO₄ synthesis, the sample was structural and microstructurally characterized. For the structural characterization, X-ray diffraction (XRD) pattern was obtained from a diffractometer (Siemens D5000) coupled to a cobalt anode X-ray tube. Li₅FeO₄ crystalline phase was identified using the Joint Committee Powder Diffraction Standards (JCPDS) database. On the other hand, some microstructural features were determined by N₂ adsorption–desorption measurements, where the surface area was determined using the Brunauer–Emmett–Teller (BET) model. This analysis was performed using a Minisorp II instrument from Bel-Japan. The experiment was performed at 77 K, using a multipoint technique, where the sample was previously degassed at room temperature for 24 h in vacuum.

After the sample characterization, different thermal analyses were performed using a Q500HR instrument from TA Instruments. Initially, the Li₅FeO₄ sample was dynamically heated from room temperature to 850 at 5 °C/min, using different CO₂ or CO₂-O₂ partial pressures (CO₂ Praxair grade 3.0 and O₂ Praxair grade 3.0) N₂ balanced (Praxair, grade 4.8), where the total flow rate was 60 mL/min in all the cases. The $P_{\rm CO2}$ and $P_{\rm O2}$ were determined by their fraction of the total feed flow rate and the total pressure. Afterward, different isothermal analyses were performed between 350 and 800 °C, using different P_{CO2} and P_{O2} values N₂ balanced. For the isothermal experiments, each sample was heated to the corresponding temperature into a N2 flow. Then, once the temperature was reached, the gas was switched from N_2 to the different P_{CO2} and P_{O2} . Moreover, all the isothermal products were recharacterized by XRD in order to elucidate the different carbonation products.

To better understand the experimental results, the ab initio thermodynamic calculations, by combining density functional theory (DFT) with lattice phonon dynamics, were performed on the Li_5FeO_4 — CO_2 and $LiFeO_2$ — CO_2 systems. The detailed description of the calculation method can be found in previous studies.^{33–35} In addition, Figure 1 shows the

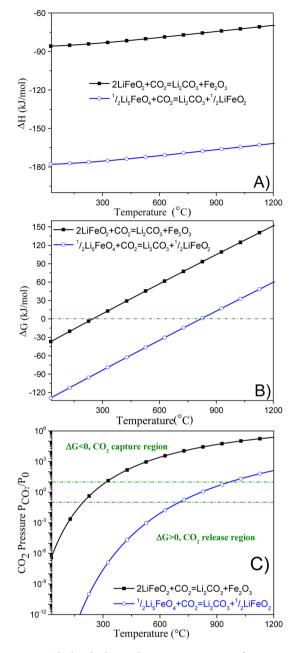


Figure 1. Li_5FeO_4 (A) and $LiFeO_2$ (B) crystal structures involved in the CO_2 carbonation process. Red ball stands for oxygen, purple stands for lithium, and gray stands for iron atoms (*c*-axis is vertical).

 Li_5FeO_4 (1-A) and $LiFeO_2$ (1-B) crystallographic structures used for the thermodynamic analysis: The Li₅FeO₄ orthorhombic structure with space group Pbca (#61) and the LiFeO₂ trigonal structure with space group $R\overline{3}mH$ (#166).^{36,37} The Vienna ab initio simulation package (VASP^{38,39}) was used to optimize the lithium ferrite structures in order to obtain their DFT energies. Then, the corresponding supercells were created for phonon calculations. In the phonon calculations, displacements of 0.03 Å of nonequivalent atoms were generated. After that, DFT calculations were performed again to obtain the force on each atom due to displacements. These forces are carried back to PHONON package⁴⁰ to calculate the phonon dispersions and densities from which the partition function can be carried out and used to obtain free energies and entropies. From the calculated DFT energy, phonon free energy, and entropy of each reactant and product, the thermodynamic properties ($\Delta H(T)$, $\Delta G(T)$, $\Delta S(T)$, and the temperature-CO₂ pressure relationship) can be obtained and used for evaluating the CO₂ capture reactions 1 and 2 by Li₅FeO₄ and LiFeO₂.

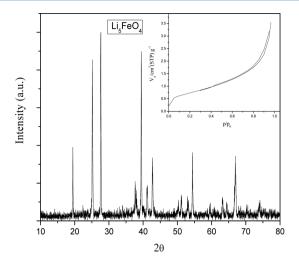
RESULTS AND DISCUSSION

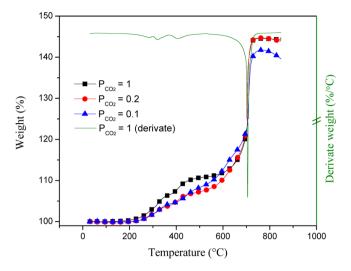
Figure 2 shows the calculated heat of reaction and free energy change of the reactions 1 and 2. Although both reactions are exothermic processes (Figure 2A) in the analyzed temperature range, when Li₅FeO₄ captures CO₂ it releases almost the double amount of heat in comparison to LiFeO2. Additionally, from the free energy change (Figure 2B) it can be seen that LiFeO₂ only can react with CO₂ under T < 250 °C, whereas Li₅FeO₄ can react with CO₂ up to 820 °C. All these data strongly support the Li₅FeO₄ carbonation process. Moreover, Figure 2C shows the relationship between the CO₂ pressure versus temperature for the same reactions. From this curves, it is clearly evident that at postcombustion conditions (P_{CO2} = 0.1) LiFeO₂ only can capture CO₂ below 192 °C whereas Li₅FeO₄ performs the carbonation process up to 700 °C. On the other hand, under precombustion conditions Li₅FeO₄ can capture CO₂ up to 970 °C, whereas LiFeO₂ only reacts up to

Figure 2. Calculated thermodynamic properties of reactions of Li_5FeO_4 and LiFeO_2 capturing CO_2 versus temperatures. (A) Heat of reaction, (B) free energy, and (C) the calculated vant' Hoff plots of the relationships among the free energy (ΔG), temperature (*T*,) and gas pressure (*P* in logarithmic scale) for Li_5FeO_4 and LiFeO_2 . Only $\Delta G = 0$ curves are shown explicitly. $P = P_{\text{CO}2}/P_0$, where P_0 is the reference pressure set to 1 bar. For each reaction above the $\Delta G = 0$ curve, the sorbent absorbs CO_2 and the reaction goes forward ($\Delta G < 0$ region) to form Li_2CO_3 , whereas below the $\Delta G = 0$ curve, the carbonate releases CO_2 and the reaction goes backward to regenerate the sorbent ($\Delta G > 0$ region).

340 °C. On the basis of these results calculated under different conditions, the Li_5FeO_4 is able to trap CO_2 chemically in a large temperature range, producing Li_2CO_3 and $LiFeO_2$, where $LiFeO_2$ does not present as convenient CO_2 capture conditions, at least thermally.

After the thermodynamic analysis, Li_5FeO_4 was synthesized, characterized, and evaluated as a possible CO_2 captor. Figure 3 shows the XRD pattern of the Li_5FeO_4 fitting with the 00-037-




Figure 3. XRD pattern and $\rm N_2$ adsorption–desorption curve (square inset) of the $\rm Li_5FeO_4$ sample synthesized by solid state reaction method.

1151 PDF file, the orthorhombic crystalline phase of the pentalithium ferrite. Moreover, the square inset of Figure 3 shows the N_2 adsorption–desorption isotherm for the Li_5FeO_4 sample corresponding to a type II isotherm, usually obtained in nonporous materials.⁴¹ Additionally, the surface area of the sample was estimated to be 2.6 m²/g using the BET model. This microstructural analysis is in good agreement with the solid-state synthesis method.

After the Li₅FeO₄ characterization, this material was evaluated as CO₂ captor varying different physicochemical conditions, such as temperature, P_{CO2} effect, and the oxygen addition effect into the gas mixture ($P_{CO2}-P_{O2}$). In this reaction, it has to be assumed that Li₅FeO₄ reacts partially with CO₂, where LiFeO₂ does not react with CO₂. In fact, previous papers have shown that LiFeO₂ is able to chemisorb very low quantities of CO₂ (<2 wt %) between 200 and 450 °C and after 460 °C the CO₂ desorption occurs.^{30–32} Moreover, the negligible LiFeO₂ reactivity was probed below during the XRD analysis performed to the Li₅FeO₄ isothermal products.

Therefore, Li₅FeO₄ is able to trap 12.9 mmol of CO₂ per gram of ceramic, considering that LiFeO₂ does not contribute to the CO₂ chemisorption. Figure 4 shows the dynamic thermogravimetric analysis of the Li₅FeO₄ in the presence of a saturated CO₂ atmosphere. As reported for other lithium and sodium ceramic,^{22,23} the CO₂ chemisorption was divided in two different temperature ranges, from 205 to 480 °C and from 600 to 715 °C. The first weight increment corresponds to the superficial CO₂ chemisorption process, where a complete Li₂CO₃–LiFeO₂ external shell is produced covering the Li₅FeO₄. Then, CO₂ chemisorption is only reactivated when different diffusion processes are thermally activated. Thus, the bulk CO₂ chemisorption is produced during the second weight increment observed in the dynamic thermogram.

Although the general behavior presented in the Li_5FeO_4 - CO_2 system was similar to other lithium-based materials, the superficial CO_2 chemisorption presented here showed some fluctuations as it was evidenced in the DTG curve. The formation of these variations may be attributed to different factors such as a partial sintering, the CO_2 chemisorption-desorption of LiFeO₂, and thermal Li_5FeO_4 phase transformation processes.

Figure 4. Dynamic TG and DTG curves of the Li_5FeO_4 in a saturated CO₂ atmosphere (60 mL/min). In addition, the dynamic TG curves of the of the Li_5FeO_4 using different P_{CO2} are presented.

All these effects may induce variations on the surface availability modifying the CO_2 capture and consequently the weight gained, qualitatively. In fact, these effects are in good agreement with the literature (LiFeO₂-CO₂ chemisorption-desorption³⁰⁻³²) or evidenced in the present work (sintering and phase transitions) during the isothermal analysis and the isothermal products characterization.

On the basis of the previous results other dynamic thermograms were performed with different P_{CO2} in the absence and presence of oxygen ($P_{O2} = 0.05$), all of them N₂ balanced. The same Figure 4 shows the CO₂ chemisorption dynamic thermograms with P_{CO2} of 0.1 and 0.2. It is clearly evident that these thermogram trends did not vary in comparison to the CO₂ saturated atmosphere curve. Perhaps, the main difference observed in these thermograms is that the superficial CO₂ chemisorption produced between 230 and 480 °C was not as efficient as in the CO₂ saturated atmosphere. Moreover, using the lowest P_{CO2} showed some thermal shift during the bulk CO₂ chemisorption process and the CO₂ desorption process was activated at lower temperatures. These effects may be attributed to CO₂ sorption-desorption equilibrium changes produced in the solid-gas interface due to the CO₂ concentration. Besides, the effect of the oxygen

addition was evaluated on the same thermal and CO₂ concentration conditions. Thus, Figure 5 shows the dynamic thermogravimetric curves with the CO₂ concentrated ($P_{CO2} = 1.0$) and with only a P_{CO2} of 0.2, both in the presence of a P_{O2} equal to 0.05. In these cases, the oxygen addition seemed to have a more evident effect when P_{CO2} was equal to 0.2. In this case, there were some temperature ranges (320–410 °C and 430 and 605 °C) where the CO₂ capture was qualitatively improved due to the oxygen addition. Both oxygen improvements seem to be at a superficial level, before the different diffusion process are activated. Therefore, in order to further analyze the P_{CO2} and $P_{CO2}-P_{O2}$ effects different isothermal analyses were performed.

Figure 6 shows the four isothermal sets where the carbon dioxide concentration is analyzed in the absence or presence of oxygen. The Li₅FeO₄ carbonation process into a saturated CO_2 atmosphere is shown in the Figure 6A and as it could be expected all the isotherms presented an exponential behavior. Nevertheless, isotherms were visually separated in two different groups, depending on temperature: from 350 to 650 °C and from 700 to 800 °C. The lowest temperature used was 350 °C, where the final weight increment was 6.4 wt %. Then, at 400 °C the final weight increment was not so different, 6.8 wt %, although the exponential trend did vary in comparison to the previous isotherm. At 400 °C, most of the weight increment was produced during the first reaction moments ($\sim 10 \text{ min}$), while at 350 °C the chemisorption was produced much more slowly. This chemisorption behavior confirmed that Li₅FeO₄-CO₂ reactivity is increased as a function of temperature, but as the diffusion processes have not been thermally activated the carbonation is limited to the initial surface area, being it the same in both cases. On the contrary, when temperature was increased to 500 $^\circ\mathrm{C}$ the carbonation seemed to be as fast as at 400 °C during the first reaction moments but the final weight increment was decreased to only 5 wt %. These results indicate a partial Li₅FeO₄ sinter during the initial heating process, diminishing the surface area and consequently the sample carbonation. Isotherms performed at 600 and 650 °C increased their final weight increments to 9.7 and 17.9 wt %, meaning that the diffusion process has been partially activated in this temperature range. Consequently, the Li₅FeO₄ sintering process is no longer important. Actually, after these temperature isotherms presented the second visual behavior, almost all the CO₂ chemisorption was produced in the first reaction moments and the final weight increments were high. Between

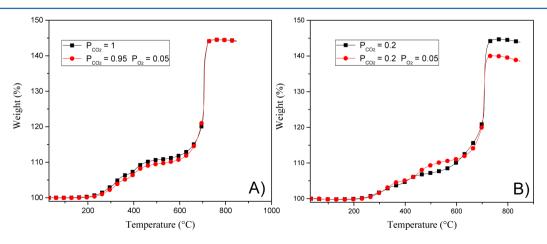


Figure 5. Dynamic TG curves of the Li₅FeO₄ using different CO₂-O₂ gas mixtures.

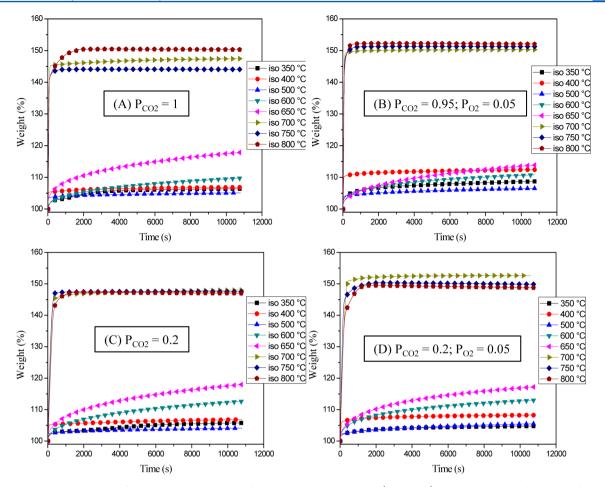


Figure 6. Isothermal TG curves of the Li_5FeO_4 using two different P_{CO2} partial pressures (1.0 or 0.2) in the presence and absence of oxygen (P_{O2} was 0 or 0.05).

700 and 800 °C, the final weight increments were 47.4, 44, and 50.3 wt %, although the variations observed in this temperature range could be attributed to different factors as the lithium carbonate melting process and the decarbonation equilibrium activation. In the first case, $\rm Li_2CO_3$ melting may favor the CO₂ diffusion, enhancing the $\rm Li_5FeO_4$ carbonation. On the contrary, the decarbonation activation must establish different $\rm Li_5FeO_4-CO_2$ carbonation–decarbonation equilibriums as a function of temperature.

All the other isothermal sets presented very similar general behaviors, as it is summarized in the Figure 7, where the final isothermal weight increments are presented. All the isothermal sets presented two different weight increment trends: between 350 and 650 °C and between 700 to 800 °C. Additionally, Li₅FeO₄ tends to sinter, diminishing its surface area, at around 500 °C. Nevertheless, there are some specific differences among the isothermal sets that must be pointed out. When the isotherms were performed using a $P_{CO2} = 0.2$ (Figure 6B), the CO2 chemisorption was very similar to that previously described for the $P_{CO2} = 1$, which means low concentration of CO₂ does not decrease the capture capacity in lithium ferrite, at least qualitatively. Moreover, if oxygen was added to the isotherms (Figure 6C,D) the final weight increments were improved, as can seen in Figure 7. In this figure, the final weight increments were higher in the isotherms performed in the oxygen presence at almost any temperature. Additionally, the kinetics seems to be highly improved as well, as it is evidenced during the first minutes of the isotherms performed at 400 °C

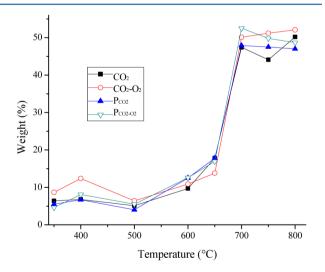
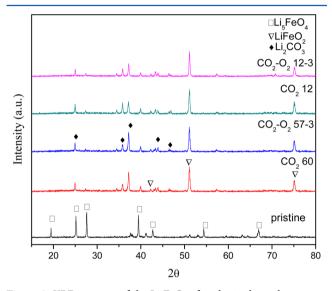



Figure 7. Evolution of the final weight increments observed after the Li_5FeO_4 carbonation process at different temperatures, varying the CO_2 and O_2 partial pressures.

(this assumption is going to be attested below). It is worth noting that using a $P_{CO2} = 0.2$ in the presence of oxygen the maximum capture is reached at 700 °C; after this temperature, the chemisorption decreases as a function of the temperature, which means that oxygen seems to favor the desorption process.

All these results clearly show that Li₅FeO₄ has a high CO₂ chemisorption capacity at high temperatures; specifically, this material presents very good CO₂ captures between 700 and 800 °C under different gas concentrations. Within this context, Li₅FeO₄ presents as high CO₂ chemisorption capacities as other alkaline ceramics, such as Li₈SiO₆,¹³ Li₄SiO₄,^{14–16} Li₆Zr₂O₇,⁴² Li₅AlO₄,¹⁷ Na₂ZrO₃,⁴³ and K₂Ti₂O₅,⁴⁴ among others. Moreover, the oxygen addition enhances the CO₂ chemisorption, which may be explained due to the following different factors: (1) oxygen may have been dissociated over the Li₅FeO₄, favoring the formation of carbonate formation or (2) oxygen may have reacted with Li₅FeO₄ producing Li₂O, which consecutively reacted with CO₂ producing the final Li₂CO₃ phase.

After the isothermal experiments, all the isothermal products were recharacterized by XRD. Figure 8 shows the XRD patterns

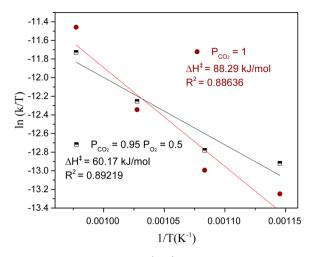
Figure 8. XRD patterns of the Li_5FeO_4 after the isothermal processes performed at 600 °C, varying the CO₂ and O₂ partial pressures. The pristine Li_5FeO_4 was included for comparison purposes.

of all the isothermal products obtained at 700 °C in addition to the pristine $\rm Li_5FeO_4$ sample for comparison purposes. All these isothermal products showed the formation of lithium carbonate (Li_2CO_3) and a different lithium ferrite (LiFeO_2) crystalline phase, which possesses a lower Li/Fe molar ratio than Li_5FeO_4. The LiFeO_2 phase was identified with the PDF card No. 00-17-0938. In fact, these products are in very good agreement with the proposed reaction 1. Therefore, 1 mol of Li_5FeO_4 does react with 2 mol of CO₂. These results confirmed that LiFeO₂ does not contributed to the CO₂ chemisorption, as it has been probed that LiFeO₂ only has a small CO₂ chemisorption–desorption process between 300 and 500 °C.^{30–32} Furthermore, these results are in good agreement with the thermodynamic data described above, where the LiFeO₂–CO₂ reactivity is limited to temperatures below 250 °C.

On the basis of the Li₅FeO₄–CO₂ reactivity results previously described and in order to further analyze the isothermal curves presented in Figure 6, the CO₂ saturated atmosphere data were fitted to the first order reaction model to respect to Li₅FeO₄, with and without oxygen. This model has been previously used for other alkaline ceramics, where several processes are being produced and therefore only the first moments of the whole mechanism are kinetically analyzed. In other words, only the superficial CO₂ chemisorption is analyzed.^{45–47} The rate first order reaction model can be assumed as follows

$$\ln[\operatorname{Li}_{5}\operatorname{FeO}_{4}] = -kt \tag{3}$$

where k is the reaction rate constant, t is the time, and $[Li_5FeO_4]$ corresponds to the molar concentration of the ceramic. The obtained *k*-values are presented in Table 1. In the $P_{\text{CO2}} = 1$ case, and as it could be expected, the k-values tend to increase as a function of temperature, except at temperatures equal or higher than 750 °C. In this temperature range, the CO₂ chemisorption-desorption equilibrium is active, as it was previously described. Thus, the reactivity should have been modified. Additionally, when oxygen ($P_{\Omega 2} = 0.05$) was added to the gas flow the k-values again increased as a function of temperature as in the oxygen absence. However, these k-values resulted to be slightly better than those obtained without oxygen. Moreover, only the 750 and 800 °C data presented lower *k*-values in the absence of oxygen. Finally, both sets of *k*values were fitted to the Eyring's model, which is used for heterogeneous reactions 4


$$\ln\left(\frac{k}{T}\right) = \frac{-\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R+C}$$
(4)

where are ΔH^{\ddagger} and ΔS^{\ddagger} are the activation enthalpy and entropy respectively, *T* is temperature, *k* is the rate constant, *R* is the universal gas constant, and *C* corresponds to a constant equation value.

Therefore, the *k* constant values obtained for the Li_5FeO_4 – CO_2 system in a certain temperature range were used to determine the activation enthalpy (ΔH^{\ddagger}), in presence and absence of oxygen. Figure 9 shows the corresponding ln k/T versus 1/T plots, where the ΔH^{\ddagger} values obtained were 88.29

Table 1. Kinetic Constant Values Obtained from the First Order Reaction Model for the CO_2 Chemisorption on Li_5FeO_4 into a CO_2 Saturated Atmosphere in the Presence or Absence of Oxygen

	$P_{\rm CO2} = 1.0$			$P_{\rm CO2} = 0.95$ and $P_{\rm O2} = 0.05$		
temp (°C)	$k (sec^{-1})$	error	R^2	$k (sec^{-1})$	error	R^2
350	0.00109	1.2823×10^{-5}	0.9974	0.00219	4.9507×10^{-5}	0.9858
400	0.00238	6.6881×10^{-5}	0.9844	0.00231	4.0635×10^{-5}	0.9920
500	0.00233	6.7492×10^{-6}	0.9997	0.00333	4.5013×10^{-5}	0.9954
600	0.00154	2.0361×10^{-5}	0.9968	0.00214	2.3336×10^{-5}	0.9978
650	0.00210	7.9017×10^{-5}	0.9777	0.00260	7.2143×10^{-5}	0.9878
700	0.00424	7.4181×10^{-5}	0.9933	0.00464	5.9921×10^{-5}	0.9963
750	0.01081	2.1963×10^{-4}	0.9909	0.00825	1.6675×10^{-4}	0.9923
800	0.00569	2.0501×10^{-4}	0.9783	0.00761	1.2336×10^{-4}	0.9934

Figure 9. Eyring-type plot of $\ln(k/T)$ versus 1/T for data obtained assuming a first-order reaction of Li₅FeO₄, using a CO₂ ($P_{CO2} = 1$) or CO₂-O₂ ($P_{CO2} = 0.95$ and $P_{O2} = 0.05$) atmospheres.

and 60.17 kJ/mol in the absence and presence of oxygen, respectively. These results indicate that the CO_2 chemisorption in Li_5FeO_4 becomes less thermal dependent when oxygen is present in the gas mixture.

On the basis of all these results, it can be said that oxygen addition does enhance the CO₂ chemisorption on Li₅FeO₄ at $T \leq 700$ °C. At higher temperatures than 700 °C, oxygen addition seems to favor the desorption process.

CONCLUSIONS

The CO₂ capture properties of Li₅FeO₄ were theoretical and experimentally demonstrated. Results regarding ab initio thermodynamic calculations on the Li₅FeO₄-CO₂ system show the capability of the material to chemically trap CO_2 in a wide range of temperatures under different CO₂ partial pressure conditions. According to theoretical results, thermogravimetric analyses of the capture process showed the high reactivity of the material with CO2 from 200 to 750 °C and CO2 partial pressure values from 0.2 to 1. Besides, TGA suggests that this material is able to capture CO₂ through the same mechanism of chemisorption-desorption reported previously for other lithium-containing ceramics captors, wherein diffusion is identified as the limiting step in the whole chemisorption process. Moreover, pentalithium ferrite would be considered as an interesting alternative for CO₂ capture due to its high capture kinetics as well as high capture capacity of about 12.9 mmol/g. Additionally, the chemisorption performance observed at low CO_2 partial pressure values (P_{CO2} around 0.2) suggest the capability of the sorbent to be used under postcombustion conditions. Finally, results showed that the presence of small quantities of oxygen may enhance the CO_2 chemisorption on Li₅FeO₄ at temperatures below 700 °C, whereas at higher temperatures oxygen addition seems to promote the desorption process.

AUTHOR INFORMATION

Corresponding Author

*E-mail: pfeiffer@iim.unam.mx. Phone: +52 (55) 5622 4627. Fax: +52 (55) 5616 1371.

ORCID 🔍

Heriberto Pfeiffer: 0000-0002-6217-3420

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

H.A.L.-G. and P.S.-C. thank to CONACYT for personal financial support. Authors thank to the projects SENER-CONACYT (251801) and PAPIIT-UNAM (IN-101916) for financial support and A. Tejeda for technical assistance.

REFERENCES

(1) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Post-combustion CO_2 capture using solid sorbents: A review. *Ind. Eng. Chem. Res.* **2012**, *51*, 1438–1463.

(2) Jo, H. G.; Yoon, H. J.; Lee, C. H.; Lee, K. B. Citrate sol-gel method for the preparation of sodium zirconate for high-temperature CO_2 Sorption. *Ind. Eng. Chem. Res.* **2016**, *55*, 3833–3839.

(3) Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O'Hare, D.; Zhong, Z. Recent advances in solid sorbents for CO₂ capture and new development trends. *Energy Environ. Sci.* **2014**, *7*, 3478–3518.

(4) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P. Carbon capture and storage update. *Energy Environ. Sci.* **2014**, *7*, 130–189.

(5) Kenarsari, S. D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A. G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. *RSC Adv.* **2013**, *3*, 22739–22773.

(6) Choi, S.; Drese, J. H.; Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. *ChemSusChem* **2009**, *2*, 796–854.

(7) Valverde, J. M. Ca-based synthetic materials with enhanced CO₂ capture efficiency. *J. Mater. Chem. A* **2013**, *1*, 447–468.

(8) Lu, X.; Jin, D.; Wei, S.; Wang, Z.; An, C.; Guo, W. Strategies to enhance CO₂ capture and separation based on engineering absorbent materials. *J. Mater. Chem. A* **2015**, *3*, 12118–12132.

(9) Ochoa-Fernández, E.; Rønning, M.; Grande, T.; Chen, D. Synthesis and CO_2 capture properties of nanocrystalline lithium zirconate. *Chem. Mater.* **2006**, *18*, 6037–6046.

(10) Nakagawa, K.; Ohasi, T. A novel method of CO_2 capture from high temperature gases. *J. Electrochem. Soc.* **1998**, 145, 1344–1346.

(11) Radfarnia, H. R.; Iliuta, M. C. Surfactant template/ultrasound assisted method for preparation of porous nanoparticle lithium zirconate. *Ind. Eng. Chem. Res.* **2011**, *50*, 9295–9305.

(12) Ochoa-Fernandez, E.; Rønning, M.; Yu, X.; Grande, T.; Chen, D. Compositional effects of nanocrystalline lithium zirconate on its CO₂ capture properties. *Ind. Eng. Chem. Res.* **2008**, *47*, 434–442.

(13) Durán-Muñoz, F.; Romero-Ibarra, I. C.; Pfeiffer, H. Analysis of the CO_2 chemisorption reaction mechanism in lithium oxosilicate (Li₈SiO₆): A new option for high-temperature CO_2 capture. *J. Mater. Chem. A* **2013**, *1*, 3919–3925.

(14) Quinn, R.; Kitzhoffer, R. J.; Hufton, J. R.; Golden, T. C. A high temperature lithium orthosilicate-based solid absorbent for post combustion CO_2 capture. *Ind. Eng. Chem. Res.* **2012**, *51*, 9320–9327. (15) Xu, H.; Cheng, W.; Jin, X.; Wang, G.; Lu, H.; Wang, H.; Chen, D.; Fan, B.; Hou, T.; Zhang, R. Effect of the particle size of quartz powder on the synthesis and CO_2 absorption properties of Li₄SiO₄ at high temperature. *Ind. Eng. Chem. Res.* **2013**, *52*, 1886–1891.

(16) Amorim, S. M.; Domenico, M. D.; Dantas, T. L. P.; José, H. J.; Moreira, R. F. P. M. Lithium orthosilicate for CO_2 capture with high regeneration capacity: kinetic study and modeling of carbonation and decarbonation reactions. *Chem. Eng. J.* **2016**, 283, 388–396.

(17) Avalos-Rendón, T.; Casa-Madrid, J.; Pfeiffer, H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO₂ and $Li_{5}AlO_{4}$): A new option for the CO₂ absorption. *J. Phys. Chem. A* **2009**, *113*, 6919–6923.

(18) Matsukura, Y.; Okumura, T.; Kobayashi, R.; Oh-ishi, K. Synthesis and CO_2 absorption properties of single-phase Li_2CuO_2 as a CO_2 absorbent. *Chem. Lett.* **2010**, *39*, 966–967.

The Journal of Physical Chemistry C

(19) Oh-Ishi, K.; Matsukura, Y.; Okumura, T.; Matsunaga, Y.; Kobayashi, R. Fundamental research on gas-solid reaction between CO_2 and Li_2CuO_2 linking application for solid CO_2 absorbent. J. Solid State Chem. **2014**, 211, 162–169.

(20) Lara-García, H. A.; Alcantar-Vazquez, B.; Duan, Y.; Pfeiffer, H. CO chemical capture on L_2CuO_2 , through a consequtive CO oxidation and chemisorption bifunctional process. *J. Phys. Chem. C* **2016**, *120*, 3798–3806.

(21) Ueda, S.; Inoue, R.; Sasaki, K.; Wakuta, K.; Ariyama, T. CO_2 absorption and desorption abilities of Li_2O-TiO_2 compounds. *ISIJ Int.* **2011**, *51*, 530–537.

(22) Ortiz-Landeros, J.; Ávalos-Rendón, T. L.; Gómez-Yánez, C.; Pfeiffer, H. Analysis and perspectives concerning CO_2 chemisorption on lithium ceramics using thermal analysis. *J. Therm. Anal. Calorim.* **2012**, 108, 647–655.

(23) López-Ortiz, A.; Escobedo-Bretado, M. A.; Guzmán-Velderrain, V.; Meléndez-Zaragoza, M.; Salinas-Gutiérrez, J.; Collins-Martínez, V. Experimental and modeling kinetic study of the CO_2 absorption by Li₄SiO₄. *Int. J. Hydrogen Energy* **2014**, *39*, 16656–16666.

(24) Takeshita, H.; Ohmichi, T.; Nasu, S.; Watanabe, H.; Sasayama, A.; Mass, A. Spectrometric study of the evaporation of Li_5FeO_4 as a corrosion product in the compatibility experiment of Li_2O pellets with Fe-Ni-Cr alloys. *J. Nucl. Mater.* **1978**, *78*, 281–288.

(25) Hirano, A.; Matsumura, T.; Ueda, M.; Imanishi, N.; Takeda, Y.; Tabuchi, M. Electrochemical properties and mössbauer effect of antifluorite type compound Li_5FeO_4 . Solid State Ionics **2005**, 176, 2777–2782.

(26) Liang, L.; Luo, J.; Chen, M.; Wang, L.; Li, J.; He, X. Synthesis and characterization of novel cathode material Li_5FeO_4 for Li-ion batteries. *Inter. J. Electrochem. Sci.* **2013**, *8*, 6393–6398.

(27) Johnson, C. S.; Kang, S. H.; Vaughey, J. T.; Pol, S. V.; Balasubramanian, M.; Thackeray, M. M. Li₂O removal from Li_5FeO_4 : A cathode precursor for lithium-ion batteries. *Chem. Mater.* **2010**, *22*, 1263–1270.

(28) Martin, F.; Navarrete, E.; Morales, J.; Roldán, C.; Ramos-Barrado, J. R.; Sánchez, L. High-energy, efficient and transparent electrode for lithium batteries. J. Mater. Chem. 2010, 20, 2847–2852.

(29) Li, K.; Chen, H.; Shua, F.; Chen, K.; Xue, D. Low temperature synthesis of Fe_2O_3 and $LiFeO_2$ as cathode materials for lithium-ion batteries. *Electrochim. Acta* **2014**, *136*, 10–18.

(30) Yanase, I.; Kameyama, A.; Kobayashi, H. CO_2 absorption and structural phase transition of α -LiFeO₂. *J. Ceram. Soc. Jpn.* **2010**, *118*, 48–51.

(31) Kato, M.; Essaki, K.; Nakagawa, K.; Suyama, Y.; Terasaka, K. CO₂ absorption properties of lithium ferrite for application as a high-temperature CO₂ absorbent. *J. Ceram. Soc. Japan* **2005**, *113*, 684–686.

(32) Gómez-García, F.; Pfeiffer, H. Structural and CO₂ capture analyses of the Li_{1+x}FeO₂ ($0 \le x \le 0.3$) system: effect of different physicochemical conditions. *RSC Adv.* **2016**, *6*, 112040–112049.

(33) Duan, Y.; Sorescu, D. C. Density functional theory studies of the structural, electronic, and phonon properties of Li_2O and Li_2CO_3 : Aplication to CO_2 capture reaction. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, 79, 014301.

(34) Duan, Y. ab initio thermodynamic approach to identify mixed solid sorbents for CO_2 capture technology. *Front. Environ. Sci.* **2015**, *3*, 69–74.

(35) Duan, Y.; Lekse, J.; Wang, X.; Li, B.; Alcantar-Vazquez, B.; Pfeiffer, H.; Halley, J. W. Electronic structure, phonon dynamical properties, and capture capability of $Na_{2,x}M_xZrO_3$ (M = Li,K): Density-functional calculations and experimental validations. *Phys. Rev. Appl.* **2015**, *3*, 044013.

(36) Cox, D. E.; Takei, W. J.; Shirane, G. The magnetic structure of ordered and disordered LiFeO₂. *American Crystallographic Association: Program and Abstracts* **1962**, 6–6.

(37) Luge, R.; Hoppe, R. News on oxoferrates(Iii). On Li_5FeO_4 (with a remark on $Na_5Fe_{1-x}Ga_xO_4$ solid-solutions). *Z. Anorg. Allg. Chem.* **1984**, 513, 141–150.

(38) Kresse, G.; Hafner, J. ab initio molecular-dynamics for liquidmetals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1993**, 47, 558-561. (39) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.

(40) Parlinski, K. *Software PHONON* 2006, http://www. computingformaterials.com (accessed September, 2016).

(41) Lowell, S.; Shields, J. E.; Thomas, M. A. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publishers: London, 2004.

(42) Pfeiffer, H.; Bosch, P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate ($Li_6Zr_2O_7$). *Chem. Mater.* **2005**, *17*, 1704–1710.

(43) Zhao, T.; Ronning, M.; Chen, D. Preparation of nanocrystalline Na_2ZrO_3 for high-temperature CO_2 acceptors: chemistry and mechanism. *J. Energy Chem.* **2013**, *22*, 387–393.

(44) Zheng, Q.; Huang, L.; Zhang, Y.; Wang, J.; Zhao, C. Z.; Zhang, Q.; Zheng, W.; Cao, D.; O'Hare, D.; Wang, Q. Unexpected highly reversible topotactic CO₂ sorption/desorption capacity for potassium dititanate. *J. Mater. Chem. A* **2016**, *4*, 12889–12896.

(45) Kim, H.; Jang, H. D.; Choi, M. Facile synthesis of macroporous Li_4SiO_4 with remarkably enhanced CO_2 adsorption kinetics. *Chem. Eng. J.* **2015**, 280, 132–137.

(46) Wang, K.; Yin, Z.; Zhao, P. Synthesis of macroporous Li_4SiO_4 via a citric acid-based sol-gel route coupled with carbon coating and its CO_2 chemisorption properties. *Ceram. Int.* **2016**, *42*, 2990–2999.

(47) Lara-García, H. A.; Pfeiffer, H. High and efficient $Li_2CuO_2-CO_2$ chemisorption using different partial pressures and enhancement produced by the oxygen addition. *Chem. Eng. J.* **2016**, DOI: 10.1016/j.cej.2016.11.029.