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Abstract At temperatures below a certain T ∗, single
unbound electrons in high-Tc cuprates are assumed to coex-
ist with bosonic Cooper pairs (CPs) of electrons emerg-
ing incoherently from an attractively interacting system of
fermions. Due to both simultaneous interfermion attractions
(as in BCS theory) and depairings, the conductive electrons
at temperatures higher than the Tc of a Bose-Einstein con-
densation of preformed CPs fluctuate unceasingly between
single-fermionic states and states of two bound electrons
considered actual bosonic objects. We explore how these
interactions in a background of such “frustrated electrons,”
i.e., those electrons appearing both as unbound (free) elec-
trons and as constituents of the bosonic CPs, affect the
dispersion of a fermion moving in the assembly of other
electrons and, in particular, how the recently observed
“kinks” in the dispersion curves emerge.

Keywords Boson-Fermion mixture · Pseudogap · Kinks ·
Nodal quasiparticle dispersion

1 Introduction

In contrast with conventional low-Tc superconductors,
superconductivity in high-Tc materials is preceded, as
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absolute temperature T is lowered, by a state of pseu-
dogapped fermions [1]. Widespread belief is that both
superconducting and pseudogapped states are phenomena
of the same origin and ultimately stem from interfermionic
attractions [2]. The ground state made up of wavefunc-
tions of purely single-fermionic states was long believed
to be less obvious in the description of a system of attrac-
tively interacting fermions than is a ground state made up of
both free-fermion wavefunctions and two-fermionic bound
states [3–5]. If an attractive interaction operates between
electrons then below some specific T ∗, single electrons in
high-Tc cuprates are assumed to coexist with CPs emerging
incoherently from the attractively interacting system of elec-
trons. The simplest Hamiltonian describing such a system of
interacting fermions was first written phenomenologically
and was later also extracted from microscopic considera-
tions (see, Refs. in [6]). In terms of creation/annihilation
operators for fermions (a operators) and bosons (b oper-
ators), the hamiltonian H introduced to describe a binary
boson-fermion (BF) mixture of pairable fermions coexisting
with bosonic CPs of total (or center-of-mass) momentum
wavevector K is

H =
∑

k,σ

ξka
+
kσ akσ +

∑

K

EKb+
KbK

+ f

N1/2

∑

q,K

(
φqb

+
Kaq+K/2↑a−q+K/2↓ + h.c.

)
(1)

Here, N is the number of unit cells in a lattice while
fermion energies ξk and boson energies EK are measured
from μ and 2μ, respectively, where the electron chemical
potential μ is fixed by the constancy of the total elec-
tron number. The number of bosons NB corresponding to
(1) is not a fixed number. Not the number operator Ne of
unpaired fermions but the total fermion number operator
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N = Ne + 2NB commutes with (1). Therefore, the total
N which consists of both the numbers of unpaired fermions
and twice of NB of bosons is an invariant of motion [7].
Thus, it is expected that, as temperature varies, there will
be continual transitions between the fermionic and bosonic
subsystems leading to variations in the compositions of
each of them. Also, in (1), a so-called anisotropy factor
φq is introduced to account for the directional dependence
of two-fermion→boson and conversely transitions associ-
ated with the symmetry of background fermions. Being
normalized to unity φq describes the distribution of transi-
tions around an average value f as in fq = f φq. Thus,
the effect of pair formations/disintegrations in (1) appears
in a form compatible with the symmetry of the electronic
structure. To obtain BCS theory as a special case, the
boson-fermion (BF) vertex coupling constant f has been
identified [8] with

√
2�ωDV where V and ωD are respec-

tively the usual BCS model-interaction net attraction (i.e.,
including Coulomb repulsions) and the Debye frequency
(for details see ref. [6]). The Hamiltonian describing the sys-
tem of carriers interacting with localized pairs of fermions
in coordinate space had been originally suggested by J.
Ranninger [9]. The idea of a mixture state of unbound
fermions and movable bosons which emerges from a gas
of strongly attractively interacting itinerant fermions led
to the Friedberg- T.D. Lee [3] phenomenological hamil-
tonian (1) modified later to include both anisotropy as
well as Coulomb repulsions. A scenario with CPs gradu-
ally emerging from the attractively interacting system of
fermions, which relied on an unfamiliar positive-energy
solution of the familiar Cooper problem [10], was devel-
oped by us (see Refs. in [11]). There, it was shown that
owing to two-electron positive-energy resonances (convert-
ing single-particle states of attractively interacting fermions
into correlated states of two fermions above the Fermi sea
and vice versa, a mixture state of pairable/unpaired fermions
coexisting with two-fermionic entities becomes energeti-
cally more favorable than the state of unbound fermions.
The presence in a system of attractively interacting fermions
of two-fermionic resonanses with energies above the Fermi
sea was discussed, e.g., in refs. [41] and [42] cited in ref.
[11] where a proof was given for the statement that such
resonating correlations become feasible already in the well-
known Cooper problem of two fermions interacting via an
attractive potential −V in a filled Fermi sea. Processes of
formation of two-fermionic resonanses (followed by their
disintegrations into two unbound fermions and vice versa,
as given by the last term in (1)) were decisive to obtain,
upon cooling, a continuous decrease of μ with respect to the
value EF associated with unbound fermions thus leading,
below a specific T ∗, to a lower-energy binary mixture state
wherein the original system of fermions separate into two
interacting subsystems, namely, pairable/unpaired fermions

and two-fermionic entities (or preformed pairs) considered
as actual bosons (see, e.g, in [6]). This scenario enables
one to derive analytical expressions for T ∗ (defined as
the onset temperature for the formation of two-fermionic
composites considered as actual bosons but without coher-
ence) and the BEC-onset temperature Tc for a coherent
fluid in [11] which have been applied to explain the qual-
itatively different behaviors of T ∗ and Tc as function of
doping concentration, specifically, an everywhere decreas-
ing T ∗ in sharp contrast to the well-known dome-shaped Tc

behaviour reported in experiments on HTSCs. Introducing
a Coulomb interaction along with an anisotropic BF binary
gas mixture model allows one to predict in [6], even with
phonon-mediated electron dynamics, the presence in the
energy-momentum dispersion relation of HTSCs of a line of
nodal points along which the gap in the single-particle spec-
trum vanishes, and hence, gives rise to the so-called Fermi
arcs as reported [12] from ARPES experiments. Besides the
physics of pseudogapped and superconducting states seen
in HTSCs, the Hamiltonian (1) is also applied to understand
the physics of the BCS-BEC crossover in superconductors
and ultracold atoms [4]. Success of the BF model encour-
aged us in the present work to explore how the dispersion of
single-fermionic states is affected by the presence of carriers
appearing as constituents of the bosonic CPs.

2 Main Formulae

The distribution of free carriers can be determined by start-

ing from the occupation numbers
〈
a+
k,σ ak,σ

〉
obtained, e.g.,

from an infinite chain of equations for two-time retarded
Green functions (GFs)

〈〈
A(t) | B(t ′)

〉〉
as defined in ref. [13]

for dynamical operators akσ (t) and a+
k′σ (t ′). Fourier trans-

form 〈〈A| B〉〉ω of
〈〈
A(t) | B(t ′)

〉〉
in ω-space, with �ω in

energy units, satisfies the chain of equations (see, e.g., ref.
[14]. Specifically

�ω 〈〈A | B〉〉ω = 〈
[A, B]η

〉
H + 〈〈

[A,H]− | B
〉〉

ω
(2)

where square brackets [A, B]η ≡ AB + ηBA of operators
A and B denote the commutator if η = −1 or anticom-
mutator if η = +1. Here, we summarize how to get a
closed expression for the first-order retarded GFs the poles
of which determine the spectra of elementary excitations
in the system. The details of this technique are found, e.g.,
in refs. [11, 14]. Choosing A ≡ ak↑ and B = a+

k′↑ in

(2), and using the relations [a+
k,σ , ak′,σ ′ ]+ = δk,k′δσ,σ ′ ,[

ak,σ , ak′,σ ′
]
+ = 0, and [a+

k,σ , a+
k′,σ ′ ]+ = 0 to calculate

commutators
[
ak,↑,H

]
−, leads to the first equation relat-

ing
〈〈

ak↑ | a+
k′↑

〉〉
on the lhs of (2) with GFs

〈〈
a+
k↓ | a+

k′↑
〉〉

and
〈〈

bKa+
−k+K↓ | a+

k′↑
〉〉

on the rhs. Then, applying (2)
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again but now for A ≡ a+
k↓ and for the same B =

a+
k′↑ gives a new equation which relates GFs

〈〈
a+
k↓ | a+

k′↑
〉〉

with GFs
〈〈

ak↑ | a+
k′↑

〉〉
and

〈〈
b+
Ka−k+K↑ | a+

k′↑
〉〉
. Thus, one

gets a couple of equations relating the first-order GFs〈〈
ak↑ | a+

k′↑
〉〉

and
〈〈

a+
k↓ | a+

k′↑
〉〉

with higher-order GFs
〈〈

bKa+
−k+K↓ | a+

k′↑
〉〉
and

〈〈
b+
Ka−k+K↑ | a+

k′↑
〉〉
. The higher-

order GFs containing bosonic operators bK and b+
K are

rewritten correspondingly as

〈bK〉
〈〈

a+
−k+K↓ | a+

k′↑
〉〉

+
〈〈

(bK − 〈bK〉)a+
−k+K↓ | a+

k′↑
〉〉

and
〈
b+
K

〉 〈〈
a−k+K↑ | a+

k′↑
〉〉

+
〈〈(

b+
K − 〈

b+
K

〉)
a−k+K↑ | a+

k′↑
〉〉

where, following Bogoliubov [15], we retain only terms pro-
portional to 〈bK 〉 and 〈

b+
K

〉
. This allows one to truncate the

chain of equations. Some manipulations then lead to the
single-fermion GF
〈〈

ak↑ | a+
k′↑

〉〉

ω
= δkk′ [�ω − ξk − Σk(ω)]−1 (3)

with a self energy (or so-called mass operator) Σk(ω) found
as

Σk(ω) = f 2

N

∑

K

φ∗
−k+K/2φk−K/2

〈bK〉H
〈
b+
K

〉
H

�ω + ξ−k+K
. (4)

Defined on the ω complex plane, both (3) and (4) contain
real and imaginary parts. For the interaction f φq in (1) of
d-wave-like symmetry, φk crosses zero along some specific
directions kn of the Brillouin zone. Along these directions,
one immediately gets

�ω = ξkn + f 2

N

∑

K>0

∣∣φkn−K/2
∣∣2 NBK

�ω + ξkn−K
(5)

where ξk ≡ ξ−k by symmetry. However, along directions k
different from kn , the separation of terms with K = 0 and
those with K > 0 in the (4) the denominator of (3) equated
to zero gives

(�ω)2 − E2
k

�ω + ξk
= f 2

N

∑

K>0

∣∣φk−K/2
∣∣2 NBK

�ω + ξk−K
(6)

where

Ek ≡
√

ξ2k + E2
gk Egk ≡ f φk

N
1/2
B0

N1/2
(7)

and

NBK ≡ 〈bK〉H
〈
b+
K

〉
H = 〈

bKb+
K

〉
H , (8)

see ref. [16].
The poles �ω(k) of (3) appear gapless along the kn, i.e.,

change in a continuous manner particularly in directions
perpendicular to the Fermi surface. On the other hand, the
roots �ω(k) found by equating the denominator of (3) to

zero leads to a discontinuity at kμ of the Fermi surface for
directions k different from kn. To investigate how the pres-
ence of an assembly of uncondensed paired states, i.e., the
states with K �= 0, affect the single-particle spectrum, one
should estimate the sum in the rhs of (4) which can be eval-
uated as an integral over K. We are interested in occupied
electronic states below μ, as dealt with in angle-resolved
photoemission spectroscopy (ARPES) experiments [17],
i.e., with k ≤ kμ where kμ is the wavenumber correspond-
ing to the fermion chemical potential μ of an interacting
BF mixture. For the quadratic energy dispersion of holes
ξk = μ − �

2k2/2m , one puts

ξk−Q = ξk − μk−2
μ

(
Q2 − 2Qk cos θ

)
(9)

in (4). Here, (9) is energy of fermions appearing below μ

by exciting electrons and θ is a polar angle defining the
direction of Q with respect to k. In the present study, we
consider renormalizations of ξk occurring along nodal lines
only. Furthermore, to obtain qualitative results, without loss
of generality, the anisotropy factor in (5) will be replaced by
its average value φk = 1. Then, in spherical coordinates, by
fixing the z-axis along the vector k, one has

Σk(ω) = f 2

N

L3

(2π)2

∞∫

0

NBQKk,ω(Q)Q2dQ (10)

where

Kk,ω(Q) ≡
π∫

0

sin θdθ

�ω + ξ−k+Q
. (11)

For an explicit expression for (5), one needs (10) which
is easy to calculate. The operator identity (x + iε)−1 ≡
P

(
x−1

)−iπδ(x) applied to (11) leads to the full expression

Kk,ω(Q) ≡ − k2μ

2μQk

⎛

⎝P

y+∫

y−

dy

y − b
− iπ

y+∫

y−

δ(y − b)dy

⎞

⎠

(12)

with P denoting the principal value of integral (11) and b

defined as b ≡ �ω + ξ−k. The limits of integration y− and
y+ in (12) are given as y± ≡ μk−2

μ

(
Q2 ± 2Qk

)
. The inte-

grals in parenthesis are easy to find. The first integral may
be expressed in terms of the roots Q1 ≡ k − kμ

√
J (ω) and

Q2 ≡ k + kμ

√
J (ω) of the quadratic form Q2 − 2kQ −

k2μμ−1 (�ω + ξk)with J (ω) ≡ 1+�ω/μ. For it, one readily
obtains

P

y+∫

y−

dy

y − �ω − ξ−k
= ln

(∣∣∣∣
(Q + Q1) (Q + Q2)

(Q − Q1) (Q − Q2)

∣∣∣∣

)
. (13)

The second integral in (12) differs from zero only if
the region of integration includes the point b where the
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argument of the δ-function vanishes. In terms of the Heavi-
side step function, θ(x) ≡ 1 for all positive x and otherwise
0, leads to

y+∫

y−

δ(y − �ω − ξ−k)dy = θ(Q − |Q1|)θ(Q2 − Q) (14)

so that (13) and (14) written in (12) which is then accounted
for (10) yields

Σk(ω) = f 2

N

L3

(2π)2

k2μ

2μk

∞∫

0

dQNB(Q)Q

(
ln

|(Q − Q1) (Q − Q2)|
|(Q + Q1) (Q + Q2)| + iπθ(Q−|Q1|)θ(Q2−Q)

)

(15)

The coefficient before (15) may be rewritten as

f 2NB0

N

L3

2μk

3

4

(
24π

3 k3μ

(2π)3

)
1

kμ

≡ λ�ωD

NB0

N

N (μ)

N (EF )

1

kμk

where (1) the term in the large round brackets on the lhs
is replaced by the number density ne of free fermions fill-
ing a Fermi sphere of radius kμ, (2) the electronic density
of states (EDOS) for each spin N (μ) = (3ne/4μ) at the
chemical potential μ is introduced [18], and then (3) the BF
vertex coupling constant f 2 is assumed [8] to be 2�ωDV

where V ≥ 0 is the familiar net attractive interaction
between electrons of BCS theory [10] and λ ≡ N (EF )V

with N (EF ) the EDOS at μ = EF of interactionless
fermions. In the following, the abbreviation C is introduced
for λ�ωD

NB0
N

N (μ)
N (EF )

.
Integrals over Q may formally be performed exactly by

the fact that the numbers NBQ in (15) never become larger
as Q increases. Indeed, NBQ � [exp(EQ/2kBT ) − 1]−1

(see ref. [11]) rapidly decreases with Q justifying the above
suggestion. Then, according to the mean-value theorem, for
any f (x) and g(x) with nonincreasing g(x) within the inter-

val (a, b) of integration, one may write
b∫
a

f (x)g(x)dx =

g(a)
c∫
a

f (x)dx where c is some value within (a, b) and g(a)

is the value of g(x) at the lower integration limit [19]. Thus,
the integrals in (15) can be dealt with as

∞∫

0

(...)NBQQdQ = NBQ=0

Q̄∫

0

(...)QdQ

where the yet undefined Q̄ is some characteristic bosonic
wavenumber from the entire interval of allowable Q. After

some algebra, the real and imaginary parts of (15) are found
to be

ImΣk(ω) = 2πC
√
1 − |�ω| /μ. (16)

ReΣk(ω) = λ�ωD

NB0

N

N (μ)

N (EF )

1

kμk
{

Q̄2−Q2
1

2
ln

∣∣Q̄−Q1
∣∣

∣∣Q̄+Q1
∣∣ + Q2

2−Q̄2

2
ln

∣∣Q̄ + Q2
∣∣

∣∣Q̄ − Q2
∣∣ −2Q̄k

}

(17)

where (16) and (17), used in Figs. 1 and 2, determine the
self energy of fermions moving in a mixture of quasiparti-
cles consisting of unpaired fermions and paired states of two
fermions. According to (16), close to the Fermi surface free
fermionic excitations are very dissipative with a minimum
lifetime at |�ω| = 0. The most short-lived fermionic states
appearing are those on the Fermi surface. As the single-
particle levels dip deeper into the Fermi sea, dissipation of
quasiparticles decreases. For fermions sufficiently deep in
the Fermi sea, i.e., for those states less affected by the pair-
ing interaction, lifetimes change insignificantly leaving the
single-particle excitations as they were for interactionless
fermions.

3 Discussion

In Fig. 1, the imaginary part of fermionic self-energies
below μ (i.e., holes) fluctuating between single-fermionic
and bosonic hole pairs is shown as a function of a binding
energy of fermions �ω in units of �ωD . Note that ImΣk(ω)

differs from zero only if some fraction of fermions are
paired into so-called preformed pairs. In the numerical cal-
culations of Fig. 1 we putN (μ)/N (EF ) = 1 implying that
the EDOS does not vary around EF and λ = 1. Moreover,
we take �ωD/EF = 0.35 ignoring the difference between

Fig. 1 Imaginary part of self energy of holes moving in background
of particles which emerge at different instants both as single fermions
or as bound entities made up of two fermions, as function of binding
energy of fermions �ω in units of �ωD
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Fig. 2 Real part of self energy of fermions interacting with a back-
ground of “frustrated electrons” as function of binding energy of
fermions �ω in units of �ωD

μ and EF in obtaining Fig. 1. As to the fraction NB0/N

of CPs in a unit cell, for a qualitative description, we put
there NB0/N = 0.01 (solid curve), 0.02 (dashed curve), and
0.03 (dotted curve) assuming that only a very small fraction
of fermions are paired. The function ImΣk(ω) is maximum
at the Fermi level (defined as the locus of points where
k = kμ). Increasing the ratio |ω| /ωD (i.e., upon increasing
the deviation of k from the kμ), ImΣk(ω) decreases. Actu-
ally, as a function of k , it decreases within the annulus (of
width defined by the ratio �ωD/μ) centered at kμ. Outside
this annulus ImΣk(ω) becomes zero, meaning that switch-
ing on pairing interaction affects only the lifetimes of those
fermions in the immediate vicinity of the Fermi surface. The
ImΣk(ω) does not depend on the parameter Q̄ introduced
above.

For different values of a fitting parameter Q̄ Fig. 2 shows
the real part vs ω/ωD of the self energy of fermions moving
in a background of frustrated fermions (i.e., in a background
of particles which may emerge at different instants both as
single fermions or as entities made up of two fermions).
As the magnitude of binding energy |�ω| rises, ReΣk(ω)

first increases gradually reaching its maximum value and
then sharply decreases, changing sign to become negative at
energies approximately of order 2�ωD . The real and imagi-
nary parts of Σk(ω) are related through the Kramers-Kronig
relation. Thus, the shapes of ImΣk(ω) given in Fig. 1
predetermine the graphs in Fig. 2. Spectral-peak positions
and energy-momentum renomalizations are defined by the
behavior of the corresponding ReΣk(ω).

Figure 3 illustrates the single-particle energy-momentum
relation along the nodal lines, i.e., in directions of the Bril-
lioun zone along which the dispersion remains gapless at
all temperatures. In Fig. 3, we used the values λ = 2,
�ωD/EF = 0.35, assumed that the EDOS is constant near
the EF and ignored the difference between μ and EF . The
fraction NB0/N of CPs in a unit cell is assumed to be
NB0/N = 0.1. Different curves in Fig. 3 correspond (in

Fig. 3 Single-particle energy-momentum relation along the nodal
lines for fermions in an assembly of quasiparticles participating in con-
tinual pair formations and their subsequent disintegrations. Here E(k)

and k are in units of �ωD and kμ, respectively. Dotted straight line is
guide to the eye

units of kμ) to the values Q̄/2 = 0.25 (dashed curve),
0.3 (dotted curve) and 0.35 (full curve), meaning that the
phonon spectrum contributing to the pairing interaction is
cut off at the maximum wavenumber Q̄/2. Increasing the
fitting parameter Q̄ leads to stronger changes observed as
kinks in the slope of the E vs k dispersion curve. As seen in
Fig. 3, when the processes of continual pair formation and
their subsequent disintegration into two unpaired electrons
are included, the spectrum of single fermions then displays
the aforementioned kinked structure. Kinks become more
pronounced for larger λ. By bosonization, the chemical
potential μ dips below the EF of interactionless fermions. It
cannot be excluded that such an immersion of μ may bring
it close to the saddle points [20] of EDOS enhancing the
ratio N (μ)/N (EF ) and thus promoting the appearance of
kinks even for smaller values of N (EF )V of the BCS the-
ory. An extreme example of how λ changes drastically when
the chemical potential dips below the Fermi energy by dop-
ing is discussed in ref. [21]. The low-energy kink positioned
in the vicinity of 50 − 80 meV where sudden changes are
observed at different doping levels and temperatures for dif-
ferent superconducting cuprates in experimental dispersion
curves [22] appears to be in agreement with the findings
of the present very simplified viewpoint which predicts the
presence of such abrupt changes at the low-energy scale of
ω/ωD .

4 Conclusions

It was shown that the spectrum of single-fermionic excita-
tions in a binary BFmixture consisting of unbound electrons
and incoherent bosonic CPs displays a kinked structure
with sudden slope changes of the energy-momentum dis-
persion. Those kinks occur at energies ξ within the annulus
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μ − �ωD < ξ < μ + �ωD . As in BCS theory, switch-
ing on a net attractive interaction of strength V between
fermions within that annulus produces two-fermionic res-
onances above the Fermi sea of interactionless fermions
which become, on lowering T , actual bosonic CPs with
energies below the Fermi sea [6]. Emergence of preformed
CPs in an attractively-interacting fermion gas of a binary
BF mixture state occurs at and below temperatures T ∗ much
higher than the superconducting BEC Tc.

Hence, both superconductivity (as a BEC below Tc of
preformed CPs unceasingly fluctuating between single-
fermionic states and states of two bound electrons) and
kinks observed in experiments (below an onset temperature
T ∗ below which the evolution of the gas of free fermions
into a binary BF mixture state just begins) emerge as an
intrinsic property of an attractively-interacting fermion gas
evolving on lowering T from pseudogapped to supercon-
ducting states.
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