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Over recent years, there has been slow but steady progress towards the qualitative numerical pre-
diction of observed behaviour when highly elastic Boger fluids flow in contraction geometries. This
has led to an obvious desire to seek quantitative agreement between prediction and experiment,
a subject which is addressed in the current paper. We conclude that constitutive models of non-
trivial complexity are required to make headway in this regard. However, we suggest that the desire
to move from qualitative to quantitative agreement between theory and experiment is making real
progress. In the present case with differential models, this has involved the introduction of a gen-
eralized continuous spectrum model. This is based on direct data input from material functions and
rheometrical measurements. The class of such models assumes functional separability across shear
and extensional deformation, through two master functions, governing independently material-time
and viscous-response. The consequences of such a continuous spectrum representation are compared
and contrasted against discrete-mode alternatives, via an averaged single-mode approximation and
a multi-modal approximation. The effectiveness of each chosen form is gauged by the quality of
match to complex flow response and experimental measurement. Here, this is interpreted in circular
contraction-type flows with Boger fluids, where large experimental pressure-drop data are available
and wide disparity between different fluid responses has been recorded in the past. Findings are then
back-correlated to base-material response from ideal viscometric flow. Published by AIP Publishing.
https://doi.org/10.1063/1.4991872

I. INTRODUCTION

In this paper, the effects of continuous spectrum and
discrete-mode time-dependencies are explored through the
numerical prediction of experimental excess pressure-drop
(epd) data (and flow structure) for some Boger fluids.
To accomplish this task, various axisymmetric contraction-
expansion geometries are considered, with either sharp or
rounded-corners and contraction aspect-ratios (αaspect) of four
and ten. Accordingly, this work pursues some fundamental and
taxing questions posed from a background companion paper
(López-Aguilar et al., 2016a) concerned with the same topic.
These questions may be stated as follows: (i) Can discrete-
spectrum multimode approximation alone provide desired
matching to the experimental data? (a question posed by an
earlier reviewer) (ii) As a consequence, can one make a case
for additional material characteristic times, as determined prin-
cipally through extensional response? (iii) From this evidence,
can one construct a generalised continuous-spectrum model,
incorporating functions for shear and extensional deformation,

a)Author to whom correspondence should be addressed: M.F.Webster@
swansea.ac.uk

which can be driven directly by rheometric characterisation
data? In answering such questions, this work provides the
following benefits and outcomes: (a) a bridge between experi-
mentation and predictive computation, (b) uses the relaxation-
time spectrum directly within a continuous-spectrum model
(dispensing with the need for a discrete relaxation-time repre-
sentation), (c) incorporates functional separability over shear
and extensional description.

Naturally, this leads on to several adjunct ramifications.
For example, to the investigation of computational tractability
and the limits of stable steady-state solutions in such flows.
At least one experimental data-set (cf. MIT -data, Rothstein
and McKinley, 2001) exposes this phenomenon, its onset and
transition, to aid detailed interrogation. Moreover, to the iden-
tification of the precise role (mutual or conflicting) of normal-
stress differences and extensional viscosity in the windows
of matching to experimental pressure-drops; and their coun-
terpart influence on attendant flow-structure, as governed by
multiple vortices, vortex domination and vortex trends more
generally (cf. Mexico-data, Pérez-Camacho et al., 2015). In
passing, one notes and correlates extremes in field response of
deformation rate, normal-stress differences, and extensional
viscosity; each of these being observed in complex flow at
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specific flow rates, to distinguish from trends gathered in
viscometric flow at equivalent flow rates.

Current observations for Boger fluids lie relative to several
recent predictive studies conducted to match experimen-
tal epd and flow-structure data. First, in a set of sharp-
cornered axisymmetric contraction-expansion geometries of
contraction-ratios αaspect = {2, 4, 6, 8, 10} (Mexico-
data). There, an averaged single-mode swanINNFM(q) model
(López-Aguilar et al., 2016a) was used, with a novel extra-
dissipation component of White-Metzner-type (White and
Metzner, 1963), supplementing a Finite Extendible Nonlin-
ear Elasticity -Chilcott and Rallison (FENE-CR) base-form
to provide the networked structure-function ( f ) (Chilcott and
Rallison, 1988). The extra-dissipative term therein is driven
by a new characteristic-time λD, which is related to a dissi-
pative extensional time scale. Previously, solutions with such
an averaged single-mode swanINNFM(q) model (Tamaddon-
Jahromi et al., 2016), made a number of significant pre-
dictive breakthroughs, which were uncharted earlier. Firstly,
they successfully matched the large pressure-drops observed
experimentally in circular contraction-expansion flow with
rounded-corners (aaspect=4) [cf. MIT-data, a dilute (0.025
wt.%) monodisperse polystyrene in oligomeric polystyrene
(PS/PS) Boger fluid]. Secondly, in a companion study
(López-Aguilar et al., 2016b, comparing circular and pla-
nar contraction flows (aaspect=4) with sharp-corners), coun-
terpart solutions offered large pressure-drops in circular
but not in planar configurations [Aber-data, Nigen and
Walters, 2002]. Thirdly, in switching to alternative flow
problems, they captured the experimental drag data for
Boger fluids associated with the falling-sphere problem
(Garduño et al., 2016).

A major finding in our earlier cited work (López-Aguilar
et al., 2016a) has proven to be the necessity of a rate-varying
dissipative extensional material time scale λD; in itself, this
has motivated a step-function approximation (of linear-spline
form) across a wide range of deformation rates. Such a theme
reappears in this multimodal approach.

In addition, the present study considers a generalised mul-
timodal discrete relaxation-time representation, where some
multimodes (λi

1) may be determined, in principle, through
shear-measurement, and other multimodes (λi

D) are suggested
likewise through extensional-measurement; the latter affect-
ing dissipation in extension. This facilitates the direct com-
parison for discrete-spectra approximations, through solu-
tion quality between single-mode (both averaged, λ1 and λD)
and multi-mode (λi

1, λi
D) forms, again taken against target

experimental data on pressure-drops. Then, as a consequence
and likewise, discrete-mode and continuous spectrum forms
may also be contrasted. Such issues are explored in depth
below.

II. A MULTIMODAL swanINNFM(q) MODEL

We begin with the swanINNFM(q) model as in Tamaddon-
Jahromi et al., 2016 and López-Aguilar et al., 2016a. This
may be written in dimensionless shear-extension multimodal
form as

T = τs +
n∑

i=1

τpi = 2ηsφavg (ε̇) D

+
n∑

i=1

ηi
pφi (ε̇)

λi
1

fi (Tr (|Ai |)) (Ai − I), (1)

where T is the total stress-tensor, D is the deformation-rate
tensor, τs = 2ηsφavg (ε̇) D represents the solvent-contribution,
n∑

i=1
τpi is the constituent polymeric-contribution, ηs is the sol-

vent viscosity, and λi
1 and ηi

p are modal relaxation times and
respective polymeric-viscosities for each mode (i).

Here (n) denotes the sum of the individual modes (i)
in which the polymeric-contribution is split, denoted in
modal conformation-tensor Ai-form on the rhs of Eq. (1).
Then, φavg is an averaged dissipative-function, given as

φavg = 1 +
(
λDavgε̇

)2
. In this, the averaged dissipative-

factor is λDavg =

n∑
i=1
λi

D

n , governed by independent modal
dissipative-factors, λi

D, and the strain rate ε̇.
Then, the corresponding solvent-fraction is βs =

ηs
ηo

, the

polymeric-concentration factors are
ηi

p

ηs+
n∑

i=1
ηi

p

=
ηi

p

ηo
= (1 − βi)

or βi = 1 −
ηi

p

ηo
, and the total viscosity is ηo = ηs +

n∑
i=1
ηi

p.

As such, a dimensionless relaxation-time per mode may
be extracted as Dei = λ

i
1

U
L . Here U is an averaged character-

istic velocity, based on the flow rate (Q), and L is a charac-
teristic length taken as the radius of constriction. The parity
between experimental and predictive De is given in detail in
Tamaddon-Jahromi et al. (2016) and López-Aguilar et al.
(2016a), covering both MIT-fluid and Mex-fluid data; see
Table I, where Maxwellian single-mode averaged relaxation
times are also provided.

Then, based on each individual modal dissipative-factor,
λi

D, the set of modal dissipative-functions are defined as

φi (ε̇) = 1 +
(
λi

Dε̇
)2

. (2)

Each mode (i) contributes to the total polymeric stress in its
counterpart conformation-tensor Ai-form as

λ1

∇

Ai + fi (Tr (|Ai |)) (Ai − I) = 0, (3)

where
∇

Ai =
∂Ai
∂t + u · ∇Ai − (∇u)T · Ai − Ai · (∇u) represents

the upper-convected derivative of each mode.

TABLE I. Non-dimensionalised modal parameters for swanINNFM(q)
(swIM).

Mode (Mex-fluid) (1 � βi) λ1i(Shear) λDi(Extension)

1 0.03 1 0.5
2 0.04 1.5 0.7
3 0.03 1.9 0.9
Single-mode

0.1 1 (0.174 s) 0.7
(Maxwellian, Mex-fluid)
Single-mode

0.1 1 (0.146 s) 0.14
(Maxwellian, MIT-fluid)
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Kramers’ rule provides the identity between the
conformation-tensor Ai-form and polymeric stress-tensor τpi-
form. For each mode, such an identity may be written as

τpi =
µi

p

λi
1

fi (Tr (|Ai |)) (Ai − I) . (4)

Then, the modal fi-functionals in Eq. (3) are defined as

fi (Tr (|Ai |)) =
1

1 − Tr (|Ai |)/L2
. (5)

As a consequence under ideal-deformation, the shear-viscosity
ηShear , uniaxial extensional viscosity ηExt , and normal-stress
response in shear, N1Shear and N2Shear , may be expressed as

ηShear = ηs +
n∑

i=1

ηi
p , N1Shear =

n∑
i=1

2ηi
pλ

i
1γ̇

2

fi
, N2Shear = 0,

ηExt = 3φavg (ε̇) ηs +
n∑

i=1

3φi(ε̇) ηi
p



fi
2(

fi − 2λi
1ε̇

) (
fi + λi

1ε̇
)  .

(6)

Non-zero N2Shear , if desired, may be introduced via a gener-
alised convected derivative, or indeed, a Giesekus additional
term (Giesekus, 1982). Note that, beyond ideal deformation
setting and whilst providing frame invariance, here a gener-
alised shear rate and an extension rate are defined on the basis
of the second invariant (I2) and the third invariant (I3) of the
rate-of-deformation tensor, so that

γ̇ = 2
√

I2, ε̇ =
3I3

I2 + 1
, (7)

with regularisation utilised within the denominator of the
expression for generalised extension rates. This effectively
avoids the possibility of singularity through scaling with small
to vanishing shear rates.

A. On numerical discretisation

A thorough description of the present numerical scheme
can be found in Wapperom and Webster (1998), Webster et
al. (2005), Belblidia et al. (2008), and López-Aguilar et al.
(2015). In short, the unsteady form of the momentum and
continuity equations are approximated by a finite-element
( fe) approach, whereas a finite volume ( fv) approximation
discretises the extra-stress constitutive equation. This results
in a time-stepping hybrid finite-element/finite-volume ( fe/fv)
scheme. For the momentum subsystem, the time-stepping pro-
cedure consists of a two-step Lax-Wendroff method devel-
oped through a semi-implicit Taylor series expansion in
time. Then, the momentum-continuity combination is trans-
lated into an incremental pressure-correction balance, repre-
sented through three split equation stages per time step. A
Galerkin spatial finite element ( fe) discretisation is engaged
for the momentum equation at the first stage (two-step,
semi-implicit form), followed by an incremental pressure-
correction at the second stage, with finally, incompressibility
enforced at the third stage. On system solvers, a spatially

efficient element-by-element Jacobi iterative scheme is
employed for the first and last stages (mass matrix-bound),
with a direct Choleski decomposition/back-substitution solver
for the second pressure-incremental stage. For the extra-stress
constitutive equation, subcell cell-vertex fv-schemes are
applied (through diagonalised pointwise nodal-solution,
implemented alongside the stage-one Jacobi scheme). This
cell-vertex fv-scheme utilises fluctuation distribution as the
upwinding technique of choice (of conservation form deriva-
tion) to distribute control volume residuals and furnish nodal
solution updates. The non-trivial driving inhomogeneous
source terms are approximated through a median-dual-cell dis-
cretisation, grafted alongside the fluctuation distribution, to
provide a consistent space-time scheme. In this study, some
new and more recent algorithmic modifications are neces-
sary to extend the steady-state solution tractability well into
the nonlinear regime and up to the onset of steady-unsteady
transition. These include using (a) compatible stress/velocity-
gradient representation on parent( fe)-subcell( fv) discretisa-
tion, (b) absolute f -functional constitutive correction, and
(c) strong centreline continuity/velocity-gradient enforcement
(see López-Aguilar et al., 2015).

III. NEW PREDICTIVE FINDINGS WITH SwanINNFM(q)
vs LÓPEZ-AGUILAR ET AL. (αaspect = 4,
SHARP-CORNER, CIRCULAR)
A. On material-function response—Averaged
single-mode (SM) versus multimode (MM)

Extensional vis cosity ηExt-response [Fig. 1(a)]—Disp-
arity is apparent in the moderate deformation-rate range
λ1ε̇ = {0.1, 1} (see López-Aguilar et al., 2015). In this strain-
rate range and for both levels of average dissipative-factor λD

studied, λD = {0, 0.7}, MM � ηExt lies above that provided
by the SM � ηExt variant. Such a response is unified at low
strain rates (linear regime) and at high strain rates. Moreover,
for the fixed parameter-set of {βs, L} = {0.9, 5}, the value of
the dissipative factor λD = {0, 0.7} determines the behaviour
at high-deformation rates. For the non-dissipative/weakly dis-
sipative λD = 0 cases (both SM and MM), ηExt limiting-
plateaux lie at∼7.5 units. In contrast, for the highly dissipative
λD = 0.7 cases, ηExt continually rises with a strain rate increase
[nb. the Oldroyd-B response is provided as a cross-reference
in Fig. 1(a)].

First normal stress N1Shear-response [Fig. 1(b)]—In con-
trast to rheological properties under SM-swanINNFM(q) rep-
resentation, where only extensional viscosity response is influ-
enced with λD , 0, one notes that the MM-swanINNFM(q)
elastic response is also apparent in shear deformation. This
is on account of and influence from the contributions of
the multiple relaxation times λi

1. Consistently, the differ-
ences in N1Shear-data-curves of Fig. 1(b) segregate the
various responses in SM and MM-instances, where SM
λD = {0, 0.7} data-curves appear overlapped and relatively
retarded against the shear rate, compared to those for MM-
cases. This shift in N1Shear-behaviour at low-to-moderate
shear rates is due to the slightly larger average MM-λ1avg

(∼1.5, see Table I), in comparison to the SM-λ1avg (=1).
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FIG. 1. (a) Uniaxial extensional viscosity and (b) N1Shear against dimen-
sionless deformation rate; swIM model, SM & MM variants; {βs, L}
= {0.9, 5.0}.

At high shear rates, all SM and MM N1Shear-data-curves
unify, resulting ultimately in a weaker than quadratic rising
slope.

FIG. 2. epd against De; swIM model, SM & MM variants; αaspect = 4, {βs,
L} = {0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al.,
2015); lines: numerical-predictions.

B. On pressure-drops

In Fig. 2 for aspect-ratio αaspect = 4, both experimen-
tal and predicted epd-data are recorded against the flow-rate
Q-increase (interpreted via De). Accordingly, epd-predictions
for non-dissipative/weakly dissipative λD = 0 and highly dissi-
pative λD = 0.7 cases are provided, under single and multimode
approximations. The non-dissipative/weakly dissipative
λD = 0 predictions capture only the low deformation-rate
epd-plateau, up to a De ∼ 0.5; henceforth, remaining around
the level of unity with De-rise. Notwithstanding this, a slight
difference is observed between SM and MM-forms, with
epd-elevation in the MM data-curve, departing at De ∼ 1.
This trend is in keeping with the larger MM-ηExt-response at
intermediate strain rates, with respect to the SM-variant [see
Fig. 1(a)].

Indeed, beyond De > 0.5, a distinct change in flow
response is observed experimentally, whereupon a sharp epd-
rise is encountered. Such an epd-rise is captured under highly
dissipative λD > 0 solutions. In addition, and to illustrate
the comparison against the earlier findings in López-Aguilar
et al. (2016a), the single-mode (SM) predictive limiting-
window on λD is also constructed, viz., λD = {0.5, 0.8}. The
expanse of such a window fully captures the experimental data
above the Newtonian unity reference-line for De > 0.5. Within
this window lies the highly dissipative (λD = 0.7) SM and MM-
solutions. Once again, the MM epd-data lie above those of SM,
attributable to its larger ηExt-response at these intermediate
deformation rates.

Due to the solvent-dominated nature of PAA-corn-
syrup Boger fluids, as deployed in the Mexico-team exper-
iments (Pérez-Camacho et al., 2015), and captured through
the swanINNFM(q) model with 90% solvent fraction, here
the averaged single-modal option (which is more prag-
matic and efficient in implementation) is observed to per-
form equally as well as the discrete multimodal approach.
Nevertheless, there are some apparent differences to be
appreciated, both in the rheology and their counterpart
energy-related epd-data. Hence, one may expect that for
more highly polymer-concentrated fluids and broader rate-
ranges, contributions from the shear-extension multimodal
non-linear components may well be required to ren-
der improved interpretation (finer detail) of complex-flow
phenomena.

IV. A PRECURSOR f(αJm)-MODEL

Based on our earlier prior and collective computational
experience with various forms of constitutive models (see, for
example, Aguayo et al., 2008; Walters et al., 2009a; 2009b;
Tamaddon-Jahromi et al., 2008; and 2010), a new and gen-
eralised form has emerged, termed the f(αJm)-model. This
generalised version combines the principal features of a set of
models: FENE-CR( f ), α-model, and Jm-model (Tamaddon-
Jahromi et al., 2011). Such a f(αJm)-model is based on a mod-
ified White-Metzner construction, in which the rhs viscosity-
function term producting the deformation-rate tensor D is itself
a function of second and third invariants of the rate-of-strain
tensor, imbuing frame-invariance.
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φ1(γ̇) φ2(ε̇)

α
[

1
1+Jγ̇m

]
1 − λ1αφ3(ε̇)ε̇ − 2λ1

2
α2φ2

3(ε̇)ε̇2

1 − λ1ε̇ − 2λ1
2
ε̇2

,

where φ3(ε̇) =

[
1

1 + 3Jε̇m

]
, J ≥ 0, 0 ≤ α ≤ 1.0

Such a f(αJm) constitutive equation may be expressed in
stress-tensor form as

f(τp ) τp + λ1φ1 ( γ̇)
∇
τp = 2ηpφ2(ε̇)f D. (8)

Then, functions of φ1(γ̇) and φ2(ε̇) are defined on the shear
rate (γ̇) and extension rate (ε̇) and classified as

Accordingly, an alternative representation of the f(αJm)-
model may be expressed in terms of ratios of both the first
normal stress difference (N1, lhs-ratio) and extensional viscos-
ity (ηExt , rhs-ratio), in this case to the base FENE-CR model,
viz.,

f τp + λ1




N fαJm

1

NFENE−CR
1




∇
τp = 2ηp




ητ FENE−CR
Ext

η
τ fαJm FENE−CR
Ext




f D,

where

ητ FENE−CR
Ext =

f 2

f 2 − f λ1ε̇ − 2(λ1ε̇) 2
,

ητ αJ FENE−CR
Ext =

f 2

f 2 − f αλ1φ3( ε̇) ε̇ − 2
[
αλ1φ3( ε̇) ε̇

]2
,

N fαJm

1 =
2ηpαλ1γ̇

2

f (1 + J γ̇m)
, 0 ≤ m ≤ 2,

NFENE−CR
1 =

2ηpλ1γ̇
2

f
. (9)

Through this notational form, one observes the relationship
established between φ1(γ̇) and φ2(ε̇) and base material prop-
erties, and indeed, the role that lhs/rhs stress-ratios adopt
here. Accordingly, this presents the realisation and capability
of incorporating rheometrical characterisation data directly
from the experimental measurement into the stress-ratios iden-
tified in the constitutive equation (9). That is, assuming such
rheometrical data are available, and locating it within the
numerator of the lhs-ratio, viz., N fαJm

1 , and the denominator

of the rhs-ratio, viz., ητ fαJm FENE−CR
Ext . Then, the remaining

components of these stress-ratios come from derived theory,
being, respectively, NFENE−CR

1 and ητ FENE−CR
Ext .

As gathered from the material functions of Fig. 3, such
a model possesses a trend in the first-normal stress difference
N1Shear that is ultimately slightly weaker than that apparent
with the base FENE-CR form. In Fig. 3, N1Shear for f(αJm) is
shown under a specific parameter setting of α = 0.1, to show
its consequent lateral rate-shift. The role of the J-parameter
imbues control on the precise departure point on N1Shear to
enter the non-linear viscoelastic regime. Note that choosing
the dependence of φ2(ε̇) on (ε̇), and hence the third invari-
ant in such a manner, achieves the desired aim of matching

FIG. 3. First normal stress difference (N1), Oldroyd-B, α, J, FENE-CR, and
f (αJm) models, {βs, L} = {0.9, 5.0}.

the FENE-CR extensional viscosity. Clearly, the extensional
viscosity response is independent of the J-parameter setting.

Unfortunately, and though helpful in derivation analysis,
under practical implementation this model was found to suf-
fer from premature numerical intractability. Early numerical
instability resulted due to the specific characteristics of the
φ2(ε̇) function, and in particular, to the roots governing its
denominator (as for the Oldroyd-B model). As a consequence
below, the proposed new model [swanINNFM(q)+ or swAM]
has been suggested. We proceed to demonstrate that, with
alternative manipulation of similar terms in the constitutive
equation, the computational barriers posed with the f(αJm)-
model may be overcome, whilst achieving essentially parallel
objectives.

V. THE LATEST MODEL DEVELOPMENT:
swanINNFM(q)+ (OR swAM) MODEL—A CONTINUOUS
SPECTRUM FUNCTION APPROACH

The continuous spectrum swanINNFM(q)+ (swAM, in
short) model is based on formulations arising through FENE-
CR (Chilcott and Rallison, 1988; White and Metzner, 1963;
Debbaut and Crochet, 1988; Debbaut et al., 1988; Bind-
ing, 2013; and Binding et al., 1996) and swanINNFM(q)
(swIM) (Tamaddon-Jahromi et al., 2016; López-Aguilar
et al., 2016a; 2016b; and Garduño et al., 2016). Recall,
the precursor and motivating discrete-mode swIM model, with
its extension-rate-dependent viscosity (although constant in
shear), has already proven well-capable of capturing enhanced
levels of pressure-drop (Tamaddon-Jahromi et al., 2016 and
López-Aguilar et al., 2016a) and resistance in counterpart set-
tling flows (Garduño et al., 2016). Importantly, this has been
borne out under experimental measurements, over comparable
measures of deformation rates.

In considering a continuous spectrum function approach,
with both viscous and polymeric contributions to such a
White–Metzner construction (swAM), the ensuing hybrid
model-combination may be expressed in the form

τs = 2 ( βsη0)φd(λD1ε̇)D = 2ηsφd(λD1ε̇)D,

fτp + αλ1 ∗ λ(γ̇, ε̇)τ∇p = 2η0
(
1 − βs

)
η(γ̇, ε̇)f D. (10)
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Whilst retaining sufficient generality, this representation
assumes functional separability across shear and extensional
deformation, through its two master functions, λ(γ̇, ε̇), η(γ̇, ε̇),
governing material-time and viscous-response, viz.,

λ(γ̇, ε̇) = λ1 ∗ λsh(λ1γ̇)λext(λD2ε̇), λext(0) = 1,

η(γ̇, ε̇) = η0 ∗ ηsh(λ1γ̇)ηext(λD1ε̇), ηext(0) = 1,

ηext(λD1ε̇) = φd(λD1ε̇), ηsh(γ̇ → 0) = 1,

φd(λD1ε̇) = 1 + (λD1ε̇)
2. (11)

Then, each of the two master functions spurns two sub-
functions, one for shear and the other for extension. Under
the present study, we also recognise and propose suitable trial
functional forms for the material-time functions λsh(λ1γ̇) and
λext(λD2ε̇) as

λsh(λ1γ̇) =
1

[
1 + (λ1γ̇)2

]m1
, λext(λD2ε̇) =

1
[
1 + (λD2ε̇)

2
]m2

.

(12)

Such functionality emerges as a counterpart to that for
φd(λD1ε̇) and from

{
φ1(γ̇) , φ2(ε̇), φ3(ε̇)

}
of the precursor

f(αJm)-model above.
This novel continuous spectrum (swAM)-model predicts,

exactly, the shear viscosity and first normal stress difference
N1Shear in steady simple shear, through the λsh(ϕ) and ηsh(ϕ)
functions, whilst ϕ ≥ 0. Indeed, the dynamic data from small
amplitude oscillatory shear flow, of dynamic viscosity η ′ (ω)
and storage modulus G′ (ω), may also be linked function-
ally to ηsh(ϕ) and λsh(ϕ), under the condition ϕ ≤ 0 (see
Appendix A for detailed explanation).

Likewise, the extensional viscosity is predicted exactly
through the λext(λD2ε̇) function. As such, the (swAM)-model is
capable of matching the experimental data, extracted directly
from the rheometrical measurement, as in the standard and
parallel/orthogonal shear flow superposition data. Then, the
(swAM)-model (with three time-constants {λ1, λD1, λD2} and
two power-indices {m1, m2}) can be organised, through sepa-
rate functional and parametric control, to provide any common
practical extensional viscosity response, as required. Hence,
in principle, this offers the potential to independently vary
the weighting of purely dissipative-stress (non-recoverable)
components, as opposed to mixed dissipative-stress (recov-
erable) components; see Eqs. (10)–(12). Furthermore, one
can extract the f(aJm)-extensional viscosity and first normal
stress difference, via such a rich swanINNFM(q)+ function-
ality. Note that this model collapses into a standard Maxwell
form, when β = 0 and f = 1. Moreover, the (swAM)-model
offers two power-indices {m1, m2}, enjoying independence
of choice over response for that in shear to that in extension
(see Binding et al., 1996). These power-index parameters may
be identified by matching to the experimental data for any
polymeric liquid of interest: generating {m1} from the shear-
viscosity (ηShear) and first normal-stress difference (N1Shear)
data and {m2} from the extensional-viscosity (ηExt) data. This
also attends to the respective positions for both constant shear-
viscosity and shear-thinning fluids. As for the former case,
one can take ηsh(λ1γ̇) = 1 ∀ γ̇ ≥ 0, which also satisfies the
limiting requirement towards vanishing γ̇, irrespective of the

{m1}-setting. So for Boger fluid representation, this collapses
the four sub-function specification to necessitating only three
sub-functions.

The associated extensional-viscosity (ηExt) and first nor-
mal stress difference (N1Shear) of the swAM model are given
by

ηExt = 3η0βφd(λD1ε̇) + 3η0(1 − β)φd(λD1ε̇)

∗

{
f2

f2 − f [αλsh(λ1ε̇)λext(λD2ε̇)ε̇] − 2[αλsh(λ1ε̇)λext(λD2ε̇)ε̇]
2

}
,

λsh(λ1ε̇) =
1

[
1 + 3(λ1ε̇)

2
]m1

, (13)

N1Shear = NfαJm

1 =
2η0(1 − β)α[λsh(λ1γ̇)]γ̇2

f

=
2η0(1 − β)αλ1γ̇

2

f
[
1 + (λ1γ̇)2

]m1
.

Herein noting the additional requirement to specify the
functional λsh(λ1γ̇) of Eq. (12) in uniaxial extension. See
Appendix A for more detail on fuller specification under
viscometric flow (Binding, 2013).

VI. FURTHER COMPUTATIONAL PREDICTIONS:
FINDINGS AND OBSERVATIONS WITH THE
swAM-MODEL

A major aspect of this study has been to compare and
contrast the behaviour in complex flows of the continuous-
spectrum swAM and discrete-spectrum swanINNFM(q) (or
swIM) models; the latter swIM-model being taken under
both single-mode (SM) and multi-mode (MM) versions. This
endeavour seeks to calibrate results in terms of prior swanIN-
NFM(q)-solutions and epd and vortex-enhancement charac-
teristics. Specifically, the intention has been to demonstrate
that the swAM-model is well capable of predicting realis-
tic fluid response, by matching experimental epd-outcome
over representative and wide ranges of deformation rates. One
may emphasise that all the experimental data and numerical
predictions reported in this study are dimensionless.

A. Numerical predictions versus Mexico experimental
data (αaspect = 4, abrupt-corner)—Base case

Following López-Aguilar et al. (2016a) and Pérez-
Camacho et al. (2015), and to demonstrate the associated
response with the swAM-model, six different parameter-sets
have been configured, categorised under Fluid-{A, B, C, D
E, F}. Parameter selection is displayed in Table II, with

TABLE II. swanINNFM(q) + (swAM) parameters, Fluids A-F.

Fluids m1 m2 λD1 λD2 βs

A 0 0.5 0.7 0.7 0.9
B 0 �0.5 0.7 0.7 0.9
C 0 �1.0 0.7 0.7 0.9
D 0.2 1.0 0.7 0.7 0.9
E 0.2 �1.0 0.7 0.7 0.9
F 0.3 �0.3 0.7

√
3λ1 0.9



121613-7 López-Aguilar et al. Phys. Fluids 29, 121613 (2017)

FIG. 4. Extensional viscosity, Oldroyd-B, swIM and swAM (Fluid-A, Fluid-
B, Fluid-C) models, {βs, L} = {0.9, 5.0}.

FIG. 5. (a) Extensional viscosity and (b) first normal stress difference of
Oldroyd-B, swIM and swAM (Fluid-D, Fluid-E) models, {βs, L} = {0.9,
5.0}.

corresponding rheological material functions plotted in
Figs. 4–6. Distinction in extensional-viscosity (ηext) is estab-
lished between Fluid-A and Fluid-B, through adjustment of the
m2-power-index alone (setting m1 = 0, as with FENE-CR).
Fluid-A assumes m2 = 0.5 and represents an underestimate
of swanINNFM(q)-ηExt at rates 0.4 < λ1ε̇ < 4.5. Alterna-
tively, Fluid-B with m2 = �0.5 provides an overestimate at
rates 0.4 < λ1ε̇ < 20, (see Fig. 4). Notably, both Fluid-A
and Fluid-B share the same rheological properties with the
swanINNFM(q) model, under constant shear-viscosity (ηShear)
and first normal stress difference (N1Shear). Moreover, Fig. 4
also provides a third fluid (Fluid-C, m1 = 0, m2 = �1.0), pos-
sessing an even more exaggerated ηExt response than that
manifested by Fluid-B (m2 = �0.5).

Both Fluid-D and Fluid-E with m1 = 0.2 manifest slight
weakening in N1Shear , above and beyond that for Fluids
A-C. Fluid-D and Fluid-E share identical N1Shear properties,
but now following the f(αJm)-fluid, whilst also maintaining
ηShear constant (see Pérez-Camacho et al., 2015, for simi-
lar experimental N1Shear properties). At the same time, their
selection permits adjustment over ηExt . Accordingly, Fluid-D

FIG. 6. (a) Extensional viscosity and (b) first normal stress difference of
Oldroyd-B, swIM and swAM (Fluid-F) models; {βs, L} = {0.9, 5.0}.
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FIG. 7. epd against De; swAM (Fluid-A, Fluid-C) vs swIM (SM & MM vari-
ants) model; αaspect = 4, {βs, L} = {0.9, 5.0}; symbols: experimental-data
(Mexico, Pérez-Camacho et al., 2015), lines: numerical-predictions.

underestimates and Fluid-E overestimates the swanIN-
NFM(q)-ηExt position (Fig. 5), whilst maintaining such weaker
N1Shear-response.

The sixth fluid option, Fluid-F (m1 = 0.3, m2 = �0.3),
is chosen to isolate normal-stress effects whilst anchoring
ηExt, using as a basis for comparison the SM-swanINNFM(q)-
model. Here the extensional viscosity of Fluid-F and that of
SM-model are matched, when taking λD2 =

√
3λ1 in Eq. (13).

Then, one notes that with Fluid-F, under this matched ηExt-
setting, the shear rate dependence of the first normal stress
difference [N1Shear of f(αJm)-fluid] is now weaker than that
for the SM-model (with the exception of low shear rates) (cf.
Fig. 6).

Figure 7 displays the epd–findings for the first three vari-
ants of swAM(m1 = 0), with values of the power-law index:
m2 = 0.5 (Fluid-A), m2 = �0.5 (Fluid-B), and m2 = �1.0 (Fluid-
C). In this instance, one can observe that for epd(m2 = 0.5,
Fluid-A)-solution underestimates the SM-data. As anticipated,
the trend denoted by the epd(m2 = �0.5, Fluid-B)-solution
proves larger than that with the epd(m2 = 0.5, Fluid-A)-
solution, and this is true across a wide range of De. In the
mid-range 0.8 ≤ De ≤ 1.3, epd(m2 = �0.5, Fluid-B) recorded
is seen to provide a closer match to the experimental epd-
data (agreeing at the extremes, De = {0.8, 1.3}), specifically,
when taken against the epd(m2 = 0.5, Fluid-A) solution. One
notes that some epd-elevation is observed with Fluid-B in

comparison against the SM-data-curve at De > 1.2; this being
consistent with its larger ηExt-response at intermediate strain
rates. Note also that across the earlier deformation-rate range
0 ≤ De ≤ 0.75, both Fluid-A and Fluid-B display close match-
ing to the experimental epd-data, somewhat closer than that
with either SM or MM epd-data (see Fig. 7). Hence, to this
point, epd(m2 = �0.5, Fluid-B) provides the more preferable
prediction.

Systematically progressing through the parameter sets, the
epd(m2 = �1.0, Fluid-C)-solution is again observed to capture
the experimental data at low-De, when compared against the
SM(λD1 = 0.7)-data-curve, replicating epd-trends for Fluid-B
(see Fig. 7). At still higher-De, of De > 1, epd for Fluid-C rises
slightly more rapidly than with Fluid-B, hence intercepting the
experimental epd-data line somewhat earlier. Clearly, from the
data coverage in Fig. 7, one may deduce that the (swAM)-
model achieves equal tractability to the original swIM-model.

Next, one considers epd-trends for Fluid-D and Fluid-E
with m1 , 0, as demonstrated in Fig. 9(a). Recall, both Fluid-
D and Fluid-E share the same weakened/thinning first normal
stress difference [N1Shear of f(αJm)-fluid] and the same con-
stant shear-viscosity (ηShear) properties; hence distinction in
this regard may be ruled out as one looks to their differing
extensional response. First, epd-levels of both Fluid-D and
Fluid-E lie well below those of the (SM) or (MM) solutions,
hence reflecting the N1Shear-weakening influence. Here, and
particularly beyond De = 0.5, the epd(Fluid-E)-solution proves
more elevated than that offered with epd(Fluid-D). As strain
rate increases, this correlates with the higher levels observed
in ηExt of Fluid-E against Fluid-D (see Fig. 5).

It is possible to fine-tune epd-matching for Fluid-E, when
one considers gradually tighter fits to the original Mexico-
experimental N1-data. Recall that to this point, only the
general form of N1 has been considered under λsh(λ1γ̇) of
Eq. (12), essentially taking the J-factor that products λ1 as

unity in N1Shear for f(αJm), so λsh(Jλ1γ̇) = 1[
1+(Jλ1 γ̇)2

]m1 .

Specifically, the role of the J-factor in the N1-response is
to determine the precise rate-location at which the strong-
quadratic-Oldroyd-B form gives way to weakening. Then,
Figs. 8(a) and 8(b) demonstrate what can be achieved when
J < 1 is selected, with three alternatives to Fluid-E, those being
Fluids-{E1, E2, E3}. Clearly, improved matching to Mexico-
N1-data [Fig. 8(a)] has the desired outcome of elevating away

FIG. 8. (a) Extensional viscosity and
(b) first normal stress difference of
Oldroyd-B, swIM and swAM (Fluids-
E-E3) models, {βs, L} = {0.9, 5.0},
Fluid-E3 (L = 7).
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FIG. 9. epd against De; αaspect = 4, {βs, L} = {0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al., 2015), lines: numerical-predictions;
(a) swAM (Fluid-D, Fluid-E) vs swIM (SM & MM variants) model; (b) swAM (Fluids-E, E1, E2, E3) vs swIM (SM & MM variants) model; Fluids-E3

(L = 7).

from Fluid-E(epd) and towards the Mexico-experimental-epd
as rates rise and for De > 0.8, see Fig. 9(b). One notes that
with Fluid-E3, the FENE-CR L-parameter is slightly raised
to L = 7, from the base-form of L = 5, so that in com-
bination with the J-parameter, still further improved match-
ing to Mexico-N1-data is extracted in the extreme rate-range
{101, 102}. Unfortunately, taking into account the error-
bars anticipated on the experimental epd-data, the benefits
of such fine adjustment with Fluid-E3 still remain somewhat
inconclusive.

Furthermore in Fig. 10, one turns to the epd-results for
Fluid-F, with equitable ηExt-response of SM, and yet whilst
retaining the weaker N1Shear-behaviour of f(αJm)-fluid. Then,
epd(Fluid-F) lies consistently below the SM-reference epd-
data. Once again, and as observed in epd-levels for both Fluid-
D and Fluid-E, the drop noted in epd(Fluid-F) from epd(SM)
is substantiated by the N1Shear-weakening influence.

In general, and from the numerical solutions in com-
plex flow obtained thus far with the six different trial fluids
(Fluids A-F) above, one may conclude that the swAM-
model enjoys at least the same computational tractabil-
ity as the original swIM-model. Hence, this effectively
demonstrates that the computational tractability hurdle,

presented earlier with the f(αJm)-model, has been overcome.
The swAM-formulation subsumes and therein offers a master-
class, over both f(αJm) and SM-swanINNFM(q) models. The
MM-swanINNFM(q) form stands apart with its multi-modal
discrete spectrum, as opposed to single functions used under
swAM.

B. Numerical predictions versus MIT experimental data
(αaspect = 4, rounded corner): Computational tractabil-
ity and limit points of stable steady-state solutions

To widen the comparison basis further, particular attention
has been given to matching the well-founded pressure-drop
data obtained experimentally by the MIT-team, as reported
in Rothstein and McKinley (2001), see Fig. 12. That is,
when using the rounded-corner version 4:1:4 geometry and
their particular choice of PS/PS Boger fluids (López-Aguilar
et al., 2016a and Pérez-Camacho et al., 2015). The swanIN-
NFM(q)-model or swIM (Tamaddon-Jahromi et al., 2016 and
López-Aguilar et al., 2016a) has already proved well-capable
of reproducing such large experimental excess pressure-drops
(epd). Note the discussion therein on Deborah number selec-
tion and matching to the Maxwellian relaxation-time extracted
for the MIT-fluid (λ1 = 0.146 s, see Table I). Here, in Fig. 12

FIG. 10. epd against De; swAM (Fluid-F) vs swIM (SM & MM variants) model; αaspect = 4, {βs, L} = {0.9, 5.0}; symbols: experimental-data (Mexico,
Pérez-Camacho et al., 2015), lines: numerical-predictions.
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FIG. 11. (a) Extensional viscosity,
(b) first normal stress difference of
Oldroyd-B, swIM and swAM (Fluid-A1,
Fluid-A1+, Fluid-B1) models, {βs, L}
= {0.9, 5.0}, 4:1:4 rounded.

and plotted against the increasing flow rate (De), hollow sym-
bols represent stable steady-state solutions reported, whilst
full symbols show the tracking of counterpart oscillatory
flow emergence and onset. One can observe that the epd(λD1

= 0.14)-solution for swIM well-tracks the Rothstein and
McKinley epd-data to around De ∼ 3.2. Moreover, through
extensional-viscosity capping, the Rothstein and McKinley
limiting-plateau on epd-data (Rothstein and McKinley, 2001)
may also be resolved, as further illustrated in Fig. 12. Such cap-
ping was achieved by restriction on the maximum strain rate
permitted within the dissipative functionφd(λD1ε̇) (Tamaddon-
Jahromi et al., 2016).

Subsequently under the Q-increase mode, and specif-
ically to demonstrate the computational tractability prop-
erties of the new model (swAM), solutions are presented
with two selected fluids (Fluid-A1 and Fluid-B1), in con-
trast to the foregoing swIM-solutions. The majority of mate-
rial parameters for Fluid-A1 and Fluid-B1 follow those of
Fluid-A and Fluid-B above (see Table II; then notably
m1 = 0, with FENE-CR N1Shear properties), except that
the material-time constants, elastic (λD2) and viscous (λD1),
are now set to λD1 = λD2 = 0.14, as appropriate for
MIT-fluids, see further explanation in Tamaddon-Jahromi
et al. (2016). One notes that in passing, MIT-fluids are

reported in Rothstein and McKinley (2001), to closely follow
swIM-FENE-CR N1Shear properties [as in Fig. 11(b)]; hence
the base-choice of m1 = 0. For comments on epd(Fluid-A1+)-
solutions with m1 , 0, and matching to linear viscoelastic data,
see Appendix A. In Fig. 11(a), the corresponding extensional
viscosities of Fluid-A1, Fluid-A1+, and Fluid-B1 are provided
alongside that for the swIM-model. Beyond a strain rate of
O(1) and up to ∼O(30), the extensional viscosity of swIM falls
between that for Fluid-A1 and Fluid-B1. This correlates well
with epd-findings for Fluid-A1 and Fluid-B1.

The epd(Fluid-A1) and epd(Fluid-A1+)-solutions are
observed to be only marginally smaller than with swIM-
(λD1 = 0.14), this becoming more apparent beyond De ∼ 3.2
in Fig. 12. Yet positively, one notes similar swAM-tractability
properties exhibited as with swIM. Hence, the use of a spec-
trum function, or discrete relaxation-times (SM or MM), has
not affected this position.

Then, epd(Fluid-B1)-findings prove larger than those with
swIM-(λD1 = 0.14) in Fig. 12; in fact, they follow more closely
the swIM-(λD1 = 0.16)-outcome beyond De = 4.1, but clearly
whilst using the reduced value of λD1 = 0.14. One notes
that swIM-(λD1 = 0.16) steady-state solutions are stable to
De ∼ 4.4, whilst the stability threshold for Fluid-B1 is a little
more generous, to around De ∼ 4.6.

FIG. 12. epd against De; swAM (Fluid-A1, Fluid-B1) vs swIM model, {βs, L} = {0.9, 5.0}; full symbols represent the oscillatory flow condition, 4:1:4 rounded,
numerical-predictions vs experimental-data (MIT, Rothstein and McKinley, 2001).
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FIG. 13. Extensional viscosity of Oldroyd-B, swIM and swAM (Fluid-A2, Fluid-B2) models, {β, L} = {0.9, 5.0}.

C. Numerical predictions versus Mexico experimental
data (αaspect = 10, abrupt-corner)

Finally, in keeping with the set of abrupt-corner flows
considered, the more stringent αaspect = 10 flow-scenario is
addressed. This provides significant differences in epd-data
when compared to αaspect = 4 (Mexico-data, Pérez-Camacho
et al., 2015 and López-Aguilar et al., 2016a). Conspicuously
for αaspect = 10, one must track larger deformation rates to
capture the experimental data, and the level of epd increases
some four times, from αaspect = 4 to αaspect = 10 config-
urations. The position on extensional viscosity for swIM-
(λD1 = {0.2, 0.3, 0.4}) is charted in Fig. 13. There, equivalent
data are also provided for swAM (Fluid-A2, Fluid-B2) with m2

, 0 as for Fluid-A and Fluid-B, and (λD1 = λD2 = 0.3) cho-
sen to match the Mexico-data αaspect = 10, Pérez-Camacho et
al., 2015 and López-Aguilar et al., 2016a. Note that, under
matching in extension, the extensional viscosity of swIM-
(λD1 = 0.3) is located between that for swAM (Fluid-A2)
and swAM (Fluid-B2) forms. The corresponding epd-data
are then presented in Fig. 14. Here again, and as expected,
swIM-(λD1 = 0.3) epd-data lie between the epd-data of

swAM (Fluid-A2) and swAM (Fluid-B2) and refer to their
corresponding extensional viscosities, as plotted in Fig. 13.

1. Vortex behaviour

A comparative set of streamline-patterns is provided in
Fig. 15, where trends in the vortex-structure growth with rise
in the flow rate may be contrasted across the three fluids,
swIM-fluid, swAM(Fluid-A2), and swAM(Fluid-B2). Here
each column contains sample streamline-fields, representa-
tive of low, intermediate, and high flow-rate regimes. In
a first phase of low De(Q), particularly at De = 1.39,
the variation of rheological-response from the parent
swIM-model to swAM(Fluid-A2) and swAM(Fluid-B2) pro-
vokes early upstream lip-vortex (lv) formation. In contrast,
swIM-streamlines display symmetrical salient-corner vortices
(scv).

The increase of flow rate towards an intermediate-
Q second-phase of kinematical-response triggers lip-vortex
enhancement and coexistence of the two vortex-patterns and
lip- and salient-corner vortices. Across the various fluid
options, the upstream-to-downstream scv-lv coexistence varies

FIG. 14. epd against De; swAM (Fluid-A2, Fluid-B2) vs swIM model, αaspect = 10, {βs, L} = {0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho
et al., 2015), lines: numerical-predictions.
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FIG. 15. Streamlines against De;
swAM (Fluid-A2, Fluid-B2) vs swIM
λD1 = 0.3; αaspect = 10, {βs, L} = {0.9,
5.0}.

in degree. For instance, at De(Q) = 3.47, swAM(Fluid-A2) dis-
plays the scv-lv coexistence at both upstream and downstream
locations, whilst swAM(Fluid-B2) possesses an upstream
elastic-corner vortex (ecv) and coexistent downstream scv-lv
structures. In contrast, swIM upstream scv-lv coexists, whilst
a single retracted scv is apparent downstream of the constric-
tion. With further increase of the flow rate up to De(Q) = 4.2 of
Fig. 15, but still lying within the intermediate vortex-phase
regime, ecv-formation is witnessed upstream of the contrac-
tion with both swAM(Fluid-A2) and swIM. Such ecv-response
is borne out of the coalescence of the earlier lip- and salient-
corner vortices, present at lower flow rates. Downstream,
coexistent lip- and salient-corner vortices remain apparent at
this flow rate of De(Q) = 4.2. Here, one notes that vortex-
structures, for both swAM(Fluid-A2) and swAM(Fluid-B2),
seem slightly larger than those of the parent swIM-fluid.

Finally at larger flow rates, a third phase-regime in the
streamline-pattern is observed, characterised by the growth
and enhancement of upstream and downstream elastic-corner
vortices. So, at De(Q) = 17.4, one notes significant enhance-
ment in the rotational-strength for all fluids (see rotation-
loci in intense blue). Notably, swAM(Fluid-B2) displays the
largest and most intense ecv structures, as noted in the
counterpart experiments (Mexico-data, αaspect = 10, Pérez-
Camacho et al., 2015). Such swAM(Fluid-B2) response
may be correlated with its stronger extensional viscosity
response over swAM(Fluid-A2) and parent swIM-fluid, par-
ticularly observed at strain rates larger than λ1ε̇ = 1 (see
Fig. 13).

2. Linear spline-fit matching

Next, one turns to Fig. 16 and fine-tuning of the epd-
match with the inclusion of the spline-fit, Lspline, a piecewise

linear-function of (λD1). This strategy was employed earlier to
introduce the rate dependence on the (λD1)-parameter across
a wide range of deformation rates. Success with such a fit
was covered in the background companion paper (López-
Aguilar et al., 2016a), when producing swIM-data for epd
(αaspect = 10). There, the slopes (a) of the original (option1)
spline-fit linear-function (λD1), of λD1 = aDe + b, cov-
ered a five-interval option with epd-data ranges (subsets)
adopting slope-values: a = {0.0, 0.2071, �0.0065, �0.0190,
�0.00143} over rate-ranges of De = {{0, 3},{3, 5},{5, 9},
{9, 14},{14, 18}}. Under swIM-Lspline, this generates aver-
age (λD1)-values per interval and a 5-tuple of {0.0, 0.2,
0.37, 0.31, 0.22} over the five intervals; additional coun-
terpart (m2)-parameters for swAM-Lspline yield the 5-tuple
of {1.1, 0.05, �0.1, �0.075, 0.05}. In this manner and over
each individual rate-range interval, separate functions may
be employed (governed by these respective rate-dependent
parameters), piecing together to form the complete rep-
resentation over the full five-interval rate-region. Clearly,
there is some element of choice with swAM-Lspline in
variation of functions and parameters, specifically govern-
ing the λext(λD2ε̇)-functional for extension, through either
λD2 or (m2)-power-index parameter. In this first instance,
the (m2)-variation has been taken to offer greater functional
influence.

With this option1, five-interval spline-fit linear-function
(λD1), the ensuing tight-fit generated to the experimental-
epd is illustrated in Fig. 16. One can gather that both swIM
and swAM five-interval option1 spline-fit solutions match
closely across all five-interval rate-ranges and data-points,
as desired. If anything, slight distinction can be gathered
with a modest improvement for swAM in the first and last
intervals.
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FIG. 16. epd against De; swAM vs swIM model, original five-interval fit,αaspect = 10, {βs, L}= {0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho
et al., 2015), lines: numerical-predictions.

Greater disparity between Lspline swIM and swAM five-
interval fits can be gathered, by slightly varying the interval
splits in an option2-fit, which provides for some scope in
parameter improvement (see Appendix B for more detailed
inspection on this point).

VII. CONCLUSIONS

In this paper, a new continuous-spectrum model [swanIN-
NFM(q)+ or swAM] has been presented, based on FENE-CR,
White-Metzner, and swanINNFM(q) (or swIM) models and
those in Debbaut et al. (1988). This swAM model assumes
functional separability across shear and extension and is func-
tionally rich. For Boger fluids, it is defined on three inde-
pendent sub-functions, drawing upon three time-constants
{λ1, λD1, λD2} and two power-indices {m1, m2}. Such a
swAM-model has the attractive benefits that it can predict
exactly, the shear viscosity and first-normal stress difference in
shear deformation, through its ηsh(λ1γ̇) and λsh(λ1γ̇) function-
alities (see matching to N1-experimental data). As such, this
continuous-spectrum model provides an all-important bridge
between experimental material characterisation and consti-
tutive theory. In addition, its extensional viscosity through
λext(λD2ε̇) and φd(λD1ε̇) [or ηext(λD1ε̇)] functionalities can be
manipulated to fit any desired extensional response (as in thick-
ening, softening, or combinations thereof), with the option of
in-built finite extensibility. Moreover, this offers the poten-
tial to independently vary the weighting of purely dissipa-
tive (non-recoverable) from mixed-dissipative (recoverable)
stress component contributions in any one flow-setting, as
desired. In contrast to a discrete multimode approximation, the
continuous spectrum function approach is not only more direct
and physically representative but is also more efficient in
terms of practical implementation, as only a single constitu-
tive stress variable is required (as opposed to multiple discrete

stress-modes). Indeed, the precise functional nature of swAM
models dispenses with the need for extraction of discrete
multi-modes and hence avoids this inversion from the original
continuous primary data.

Here, sharp-cornered axisymmetric contraction-expansion
geometries of contraction-ratios of αaspect = 4 and 10 (Mexico-
data, Pérez-Camacho et al., 2015) and 4:1:4 rounded-corner
versions (MIT -data, Rothstein and McKinley, 2001) have been
analysed to derive a match to the experimental excess pres-
sure drop (epd) data. As such, close quantitative agreement
has been established between the numerical predictions for
the swAM model and the experimental data provided by both
Pérez-Camacho et al. (2015) and Rothstein and McKinley
(2001). Of particular merit is the close-fitting reproduction of
the experimental data with Lspline-fit approximation. Some
rheometrical arguments are proposed to explain and relate the
influence of extensional properties and first-normal stress dif-
ference on epd, by studying the solutions generated from these
swIM and swAM models. The implication from such findings
is that if enhanced epd is sought, strong strain-hardening prop-
erties are crucial to raise levels of stress across the constriction.
If anything, weakening of N1Shear (being recoverable) stimu-
lates decline in epd. Furthermore, it is shown that the use of
a more representative discrete multi-mode approximation, as
opposed to a single-mode Maxwellian approximation, would
not substantially alter such epd-findings overall.

It is also shown that vortex enhancement can be associ-
ated with the counterpart generation of strong strain-hardening
(larger extensional viscosity). Rich vortex dynamics has been
traced in the more severe instance of Mexico-data, αaspect = 10,
covering three flow-rate regimes of low, intermediate, and
high, each offering its distinct phase of vortex behaviour. In
this, symmetrical salient-corner vortices are seen to give way
to co-existence with lip-vortex formation, prior to coalescence
of the same, and then the ultimate formation of strong elastic
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corner vortices. The upstream dynamics proves stronger than
the downstream dynamics, and the cycle of vortex-patterns
occurs earlier upstream through the flow rate rise. These vor-
tex growth features are faithfully reflected in the underlying
experimental data (Mexico-data, αaspect = 10, Pérez-Camacho
et al., 2015). This bears out credit to the robust nature of the
present predictive capability, as exemplified in the many cited
earlier references.

Given the solvent-dominated nature (βs ∼ 0.9, solvent
fraction) of the polyacrylamide (PAA)-corn syrup (CS) Boger
fluids studied experimentally in the (Mexico-data), numer-
ical epd-predictions have already revealed that an aver-
aged uni-modal discrete-spectrum approximation (govern-
ing both shear and extension) is at least as effective as a
multi-modal discrete representation (López-Aguilar et al.,
2016a). Still this leaves open the position on resolution for
the counterpart class of highly polymeric solute-dominated
viscoelastic fluids (βs ∼ 0.1, solvent fraction). This is, of
course, beyond the composition of common Boger fluids,
the focus of our present attention. There, one might sus-
pect that a multi-modal discrete-spectrum approximation,
or indeed a continuous-spectrum form, may perform rather
better.
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NOMENCLATURE

swIM swanINNFM(q), a discrete spectrum function
approach

swAM swanINNFM(q)+, a continuous spectrum function
approach

SM Single-mode
MM Multi-mode
epd Excess pressure-drop
scv Salient-corner vortex
ecv Elastic-corner vortex
lv Lip-vortex

APPENDIX A: THE swAM MODEL UNDER
VISCOMETRIC FLOW

Following Binding (Binding, 2013), in original choice of
notation, two metric parameters ϕ and ψ may be defined as

ϕ =
2trA2

2 −
(
trA2

)2

2trA2
1

and ψ = trA2
2 −

(
trA2

)2
, (A1)

where, A1 = (∇v)+(∇v)T and A2 =
•

A1 +(∇v)T ·A1 + A1·(∇v)
are the first and second rates of strain, and where

ϕ =
2trA2

2 −
(
trA2

)2

2trA2
1




= −ω2 for small amplitude oscillatory shear flow

= k2 for steady simple shear flow

= 0 for all steady homogeneous extensional flows,

ψ = trA2
2 −

(
trA2

)2




= O(ε) for small amplitude oscillatory shear flow

= 0 for steady simple shear flow

= 32
(
ε̇2

1 + ε̇2
2 + ε̇1ε̇2

)2
for all steady homogeneous extensional flows.

Consider first the following modified White-Metzner model, with vanishing solvent content (Maxwellian form):

λ
∇

T + T = ηA1,

λ = λ(A1, A2) = λ(ϕ,ψ) = λ1 (ϕ + ψ) λ2 (ψ), λ2 (0) = 1,

η = η(A1, A2) = η(ϕ,ψ) = η1 (ϕ + ψ) η2 (ψ), η2 (0) = 1. (A2)

Then, the steady simple shear flow, with velocity field (v), can be expressed as vx = ky, vy = vz = 0. Taking ϕ = k2 and ψ ≥ 0,
η (k) and N1 (k) can be identified as

η (k) = η (ϕ,ψ) = η1 (ϕ) η2 (ψ)⇒ η1 (ϕ) = η
(√
ϕ
)
,

N1 (k) = 2η (ϕ,ψ) λ (ϕ,ψ) γ̇2 ⇒ λ1 (ϕ) =
N1

(√
ϕ
)

2ϕη
(√
ϕ
) for ϕ ≥ 0. (A3)
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Hence, one can incorporate exactly the shear viscosity and first
normal stress difference in shear deformation through η1 (ϕ)
and λ1(ϕ) functionalities.

In addition, one may consider small amplitude oscillatory
shear flow: vx = εωeiωty, vy = 0, vz = 0. The dynamic viscos-
ity η ′(ω) and storage modulus G′ (ω) are easily shown to be
given by

η ′ (ω) =
η (ϕ,ψ)

1 + ω2λ2 (ϕ,ψ)
=

η1 (ϕ)

1 + ω2λ2
1 (ϕ)

,

G′ (ω) =
ω2η (ϕ,ψ) λ (ϕ,ψ)

1 + ω2λ2 (ϕ,ψ)
=
ω2η1 (ϕ) λ1 (ϕ)

1 + ω2λ2
1 (ϕ)

. (A4)

Now, since ϕ = −ω2 andψ = 0 for small amplitude oscillatory
shear flow, then (A4) yields

η1 (ϕ) = η ′
(√
−ϕ

) 


1 −
G′2

(√
−ϕ

)
ϕ η ′2

(√
−ϕ

) 


λ1 (ϕ) =
−G′

(√
−ϕ

)
ϕ η ′

(√
−ϕ

)
for ϕ ≤ 0.

(A5)

Hence, both the linear and non-linear rheometrical data are
provided for these two functions η1 (ϕ) and λ1(ϕ). In this man-
ner, the dynamic viscosity η ′ (ω) and storage modulus G′ (ω)
are related to {η1 (ϕ), λ1(ϕ)} for ϕ ≤ 0, whilst the shear

viscosity and first normal stress difference are related to
{η1 (ϕ), λ1(ϕ)}for ϕ ≥ 0.

Moreover, one may attempt to match λ1 (ϕ) and η1 (ϕ)
functions, as characterized in small amplitude oscillatory shear
flow and steady shear flow, by appealing to the wider experi-
mental data available. This has been made possible with one
(MIT-)fluid here, from the linear viscoelastic data supplied in
Rothstein and McKinley (2001). Note that the same cannot
be said for Mexico fluid-data since there only information on
steady shear-flow N1 data was available. Figure 17 provides
clarity on how well the present model reflects the properties
of the MIT-fluid. Accordingly, good agreement can be estab-
lished between MIT-data (G′, G′′, η, ψ1 measurement) and
model predictions, with slight model parameter adjustment
[e.g., Fluid-A1(m1 = 0, J = 1) switch to Fluid-A1+(m1 = 0.2, J
= 10�2)], see the corresponding material properties in Fig. 11.
Then, Fluid-A1 predictions provided above on epd-matching
in the complex flow are barely affected by these minor param-
eter adjustments composing Fluid-A1+, see Fig. 12. One notes
practically that using Fluid-A1+ parameters does imply signifi-
cant increase in computational overhead through each flowrate
steady-state solution. Yet, this impact can be compensated
through a continuation approach at each flowrate, by first seek-
ing a Fluid-A1 solution and extracting a Fluid-A1+ solution
from there.

Furthermore under generalized extensional deformation,
vx = ε̇1x, vy = ε̇2y, vz = − (ε̇1 + ε̇2) z, then one extracts the
corresponding stress distributions of

FIG. 17. [(a) and (c)]λ1 (ϕ) and [(b) and (d)]η1 (ϕ) functions in small amplitude oscillatory shear flow and steady shear flow, model-predictions vs experimental-
data (MIT, Rothstein and McKinley, 2001).
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FIG. 18. epd against De; swAM vs swIM model, second five-interval fit,αaspect = 10, {βs, L} = {0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho
et al., 2015), lines: numerical-predictions.

σ11 − σ22 = 2η1 (0) η2 (ψ)

{
ε̇1

(1 − 2λ1 (0) λ2 (ψ) ε̇1)
−

ε̇2

(1 − 2λ1 (0) λ2 (ψ) ε̇2)

}
,

σ22 − σ33 = 2η1 (0) η2 (ψ)

{
ε̇2

(1 − 2λ1 (0) λ2 (ψ) ε̇2)
+

(ε̇1 + ε̇2)
(1 + 2λ1 (0) λ2 (ψ) (ε̇1 + ε̇2))

}
,

(A6)

with respective implied stress tensor component notations,
σ11, σ22, and σ33. Then, this form may be manipulated,
through λ2 and η2, to give appropriate uniaxial, biaxial,
and planar extensional viscosities. If λ2 decreases suffi-
ciently rapidly, and η2 is bounded, then the extensional

viscosities are bounded. This motivates separability and inde-
pendence of functional control over the extensional viscos-
ity and first-normal stress difference. Under uniaxial exten-
sional flow, ε̇2 = −

ε̇1
2 , ψ = 18ε̇4

1, σ22 − σ33 = 0, and
then

σ11 − σ22 = 2η1 (0) η2 (ψ) ε̇1

{
1

(1 − 2λ1 (0) λ2 (ψ) ε̇1)
+

1
2 (1 + λ1 (0) λ2 (ψ) ε̇1)

}
. (A7)

This also applies under planar extensional flow when
ε̇2 = −ε̇1, ψ = 32ε̇4

1, and

σ22 − σ33 = −2η1 (0) η2 (ψ) ε̇1

{
1

(1 + 2λ1 (0) λ2 (ψ) ε̇1)

}
.

(A8)

Unfortunately, computation with A2 proved spectacularly
intractable in the complex flow due to its fourth power depen-
dency on the strain rate under extension. As noted above, and
following Eq. (7) beyond ideal deformation setting, a gener-
alised shear rate (γ̇) and extension rate (ε̇) may be defined on
the basis of the deformation rate second invariant (I2) and third
invariant (I3) from which binding parameters ϕ and ψ may be
implied as appropriate.

APPENDIX B: SPLINE-FIT MATCHING2

Greater detail on Lspline matching with these five-interval
fits can be gathered by slightly varying the interval splits. This
empowers parameter improvement and some insight to dis-
parity between swIM and swAM Lspline-fits. To demonstrate
this, a second five-interval fit is employed, with rate-ranges of
De = {{0, 2}, {2, 4}, {4, 7}, {7, 12}, {12, 17}} and
spline-slopes of a = {0.0, 0.1031, 0.0582, �0.0123, �0.0161}.
Under swIM-Lspline2, the corresponding average (λD1)-5-
tuple remains the same as for option1-fit, whilst for swAM-
Lspline2, the only other change is to the additional counterpart
(m2)-5-tuple, which now becomes {0.2, �0.25, �0.6, �0.075,
0.075}.

Then, considering the data represented in Fig. 18, both
(swIM, Lspline) and (swAM, Lspline, m1 = 0, m2 , 0) share
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the same shear-viscosity (constant) and first normal stress
difference (N1). Nevertheless, the (swAM, Lspline, m1 = 0,
m2 , 0)-epd-data are observed to lie somewhat closer to the
experimental data in the intermediate rate-range of 4 ≤ De
≤ 8, as compared to the (swIM, Lspline) fit. In this instance,
the (m2 , 0) parameter selection stimulates relatively larger
extensional viscosity and consequently larger epd–response.

Furthermore, the consequence of N1Shear-weakening with
(m1 , 0) is also represented in Fig. 17. This is achieved with
fluids (swAM, Lspline, m1 = 0.2, m2 , 0) and (swAM, Lspline,
m1 = 0.2, m2 = 0), both with a (λsh(λ1γ̇)) spectrum-function.
Here and at any given De with (swAM, Lspline) fluids, those
instances with N1Shear-weakening (m1 , 0) clearly display
a decrease in epd over those devoid of such influence, and
of these, forms with (m2 ,0), provide epd-enhancement over
those without (m2 = 0).
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